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Abstract—This article presents the design and experimen-
tal characterization of microwave structures based on par-
ity time-reversal duality symmetric bifilar edge waveguides
(PTD-BEWs) realized through a parallel plate waveguide (PPW)
loaded by a metasurface. The analyzed structures include
transmission lines with bends and multiple line arrangements.
Due to their unique symmetry properties, these structures are
robust against backscattering, thus resembling the behavior of
topological WGs, despite the fact they are reciprocal. This makes
it possible to guide the electromagnetic (EM) waves along the
edge with low insertion losses and unique matching properties.
Measurements, performed in the frequency range between 24 and
32 GHz, have confirmed the feasibility of the theoretical concept.

Index Terms—Boundary conditions (BCs), edge waveguide
(WG), parity time-reversal duality (PTD) symmetry, substrate
integrated WG (SIW), topological modes.

I. INTRODUCTION

N THE recent years, topological edge modes have drawn

considerable attention due to their unidirectional property,
which implies inherent immunity to backscattering at discon-
tinuities [1]. These edge modes are normally supported at
the interface of two nonreciprocal media with different Chern
numbers [2]-[6]. However, recent research studies have shown
that a similar robust propagation can also be achieved in recip-
rocal structures exhibiting parity time-reversal duality (PTD)
symmetry. The topological insulators introduced in [7] are
particular examples of reciprocal systems with an Q-type
bianisotropic coupling. In general, a waveguiding structure is
named PTD-symmetric if it is invariant under the combination
of parity, time-reversal, and duality transformations. It was first
shown in [8] that bidirectional PTD-symmetric N-port net-
works are characterized by a scattering matrix with vanishing
diagonal elements, that is, S;; = ------ = Syn = 0. Thus,
a PTD-invariant microwave network is always matched at all
ports. Quite remarkably, this property can also be achieved
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in passive, lossless, and reciprocal guiding structures, which
implies a significant simplification for practical realization
with respect to active or nonreciprocal solutions. In fact, since
passive, lossless, and reciprocal structures are time-reversal
symmetric, PTD symmetry, in this case, is achieved anytime
an axis exists in the transverse cross section whose inver-
sion produces dual boundary conditions (BCs) with respect
to the original ones [see Fig. 1(a)]. Propagation in such
guiding structures will be unaffected by any perturbation or
defects that do not break the PTD symmetry. It is noted
that also the perturbation introduced by termination into free
space belongs to this class. Different symmetry-protected
waveguides (WGs) proposed in the literature can be cast in
this framework [9]-[11]. In particular, the WG introduced
in [10] consists of a junction between two planar surfaces
characterized by complementary impedance BCs (capacitive
and inductive). This structure supports an edge mode, whose
field is tightly confined in the proximity of the junction; such a
mode exhibits highly efficient propagation also along nonrecti-
linear paths, as experimentally demonstrated in [12]. However,
the structures in [10] and [12] are open; as a consequence, their
Green’s functions are characterized by a continuous spectrum
of modes, and therefore, even if there is no backscattering at
PTD-symmetric discontinuities, there can be radiation losses.
In contrast, a PTD-symmetric WG with a closed cross section
does not suffer from this impairment. Examples of this latter
class of guiding structures are presented in Fig. 1. In particular,
the square cross section structure in Fig. 1(b) has been studied
in [9]. An array of such open-ended WGs has been investigated
in [13] and [14]. The array elements are arranged so that the
overall structure still satisfies PTD-symmetry with respect to
multiple axes, and this allows one to obtain wide-angle beam
scanning with good matching performance.

An alternative structure, represented in Fig. 1(c), was
proposed and analyzed in [11]. It is obtained by pairing
two semi-infinite parallel plate WGs (PPWs) with swapped
perfect electric conducting (PEC) and perfect magnetic con-
ducting (PMC) BCs. This structure satisfies PTD-symmetry
with respect to the direction normal to the two plates [11],
[15] and, for separation between walls less than a quarter of
a wavelength, it supports a unique mode strongly confined at
the edges between PEC and PMC. For this reason, we denote
this guiding structure as a bifilar edge waveguide (BEW).
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Fig. 1. Examples of cross sections of PTD-symmetric WGs.
(a) PTD-symmetric WG where the z-axis is the parity axis. (b) Square cross
section structure with two parity axes (both z- and y-axes). (c¢) BEW-PPW
WG with z-axis as parity axis, which is a simplified model for the structure
discussed in this article.
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This PTD-BEW is numerically and experimentally investi-
gated in this article. In particular, we present here experimental
evidence of robust unidirectional propagation in PTD-BEW,
implementing the geometry at Ka-band by means of mush-
room metasurfaces [16] to realize the PMC. In the simu-
lations, rectangular WGs (RWGs) have been used to excite
the structure. In the realization, the RWG is substituted by a
grounded co-planar WG (GCPW) to benefit from the printed
circuit board (PCB) technology.

This article is organized as follows: Section II presents the
design of the PTD-BEW unit cell based on the mushroom
surface. Section III introduces different structures based on
the PTD-BEW and shows the relevant simulated results.
Section IV gives details about the prototype assembling tech-
nology and the realized feeding structure. Section V provides
the measured results for the manufactured PTD-BEW struc-
tures. Finally, Section VI draws the concluding remarks.

II. DISPERSION OF PTD-BEW

The practical implementation of the WG in Fig. 1(c) is
performed by using a mushroom-type metasurface to emulate
PMC BC. The unit cell of this metasurface consists of a
square patch printed on a grounded dielectric substrate and
connected to the ground plane through a central via, as shown
in the inset of Fig. 2. In the ideal case of Fig. 1(c), each half
of the structure consists of a PPW with PEC/PMC BCs on
the two plates; for separation distances between walls smaller
than a quarter of a wavelength, such a WG does not support
any modal propagation. In the practical implementation, the
PMC is substituted by a mushroom metasurface designed
to exhibit high impedance in the desired frequency band.
This way, each half of the PTD-BEW, which consists of the
mushroom metasurface covered by a metal plate, individually
exhibits a bandgap in the same frequency band. A parametric
study has been carried out in order to optimize the mush-
room unit cell. Finally, the following geometrical parameters
have been selected: size of the unit cell @ = 1.6 mm, side
of the square patch L = 1.45 mm, and via radius r =
0.1 mm. The space between the PEC wall and the top of the
mushroom is filled by a dielectric with relative permittivity
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Fig. 2. Dispersion diagram of the PEC-covered mushroom metasurface.

€, = 2.33 and has a thickness d = 0.508 mm. The resulting
structure has been analyzed with Simulia CST. The dispersion
diagram, reported in Fig. 2, exhibits a bandgap between 15
and 32 GHz.

When the WG in Fig. 2 is paired with an analogous
structure with PEC on the bottom and mushroom on top,
the two edge-lines at the junction support a bifilar edge
wave, whose field is exponentially attenuated on the two sides
x > 0 and x < 0 with a penetration depth (inverse of the
attenuation constant) approximately equal to the separation
distance between the top surface of the mushroom and the
PEC wall d. Since the field is confined between the two edge
lines, the structure resembles a bifilar transmission line. The
dispersion diagram of this structure is reported in Fig. 3 along
with the light line in the filling dielectric. It is worth noting
that the light line crosses the BEW dispersion curve at the
frequency where the mushroom surface better emulates the
PMC. Around this point, the edge mode is quasi-transverse
EM (TEM). In fact, for the ideal PEC-PMC BCs, the supported
mode is TEM [11], [15], but the practical implementation of
the PMC through mushrooms introduces a limited dispersion,
so that the mode will be quasi-TEM. It is noted that around
the central frequency, at which the mode is quasi-TEM, the
dispersion curve crosses the light line, which means that
around that frequency the mode exhibits a transition from a
fast wave to a slow wave. This occurs also in other closed
guiding structures with impedance-loaded walls, for example,
in the realization of the WG in Fig. 1(b) with practical high
impedance surfaces, due to the fact that the impedance of the
walls changes from inductive to capacitive [17]. As opposed to
the case of ideal PEC/PMC BCs, this transition is associated
with a group velocity smaller than the speed of light. Despite
this effect, the backscattering protection seems to be preserved.

The unimodal bandwidth ranges from 19.36 GHz (the cut-
off frequency of the edge mode) to 32.57 GHz (the cut-
off frequency of the higher order mode), corresponding to
a percent bandwidth of approximately 50%. However, the
percentage bandwidth in which the structure is expected to
approach the ideal behavior, represented by the shaded area in
Fig. 3), is around 20%.
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Fig. 3. Dispersion diagram of the PTD-BEW. The black line represents the

light line in the dielectric filling the WG.

Fig. 4. Branch of BEW fed by RWGs.

III. PTD-SYMMETRIC BASIC BEW STRUCTURES

The first considered structure, represented in Fig. 4, has
been used to design a practical feeding arrangement to excite
the PTD-BEW. It consists of a branch of PTD-BEW based
on the basic unit cell introduced in Section II and shown
in Fig. 3, connected at the two sides to two sections of
RWG. The height of the RWG has been set equal to the
distance between the mushroom surface and PEC wall in
the PTD-BEW (i.e., 0.508 mm), and its width has been
varied to obtain a good matching over the frequency band
of interest. A parametric study has been conducted on HFSS
to this end. The reflection coefficients resulting from this
parametric study, with the width W ranging between 4.1 and
4.8 mm, are reported in Fig. 5. For the smallest size, the
low-frequency peak corresponds to the cut-off frequency of
the WG; results are therefore to be considered significant only
above that frequency. Fig. 6 presents the amplitude of the
transmission coefficient for different values of W. The best
matching performance in the frequency range between 25 and
32 GHz is obtained for W = 4.3 mm. This value makes the
modal impedance of the T Ejp mode of the RWG close to the
intrinsic impedance of the TEM-BEW.

Fig. 7 presents a snapshot of the amplitude of the electric
field inside the WG. As can be seen, the field is confined at
the bifilar junction of PEC and mushroom, with a penetration
distance approximately equal to a couple of mushroom unit

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 70, NO. 11, NOVEMBER 2022

>
T

_
S

)
S
-

Reflection Coefficients (dB)
&
<

-40
=50 -
-60 | . . . . .
24 25 26 27 28 29 30 31 32
Frequency (GHz)
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Fig. 7. Snapshot of the electric field in the central longitudinal section of
the structure in Fig. 4 when the port on the left (P2) is excited.

cells. Leakage away from the junction is prevented by the
bandgap of the PPW with dual BCs, which extends up
to 32 GHz. A certain coupling of the RWG with the lateral
edges in the front is also perceivable from the picture.

Once the feeding structure has been designed, other con-
figurations can be analyzed. Fig. 8 shows a WG path with
90° bends (segmented PTD-BEW). This structure serves to
test the robustness of the guiding structure against reflections.
The PTD-BEW is entirely enclosed by metallic walls lat-
erally. From the simulated S-parameters reported in Fig. 9,
we observe that reflection at the input port is limited over the
entire bandwidth. The reflection coefficient is below —20 dB
in the frequency range between 29.5 and 31.5 GHz, where the
PTD-BEW is expected to better emulate the ideal behavior
(see Fig. 3). It is worth noting that these results also include
the effect of the two transitions to RWG, which are the major
cause of reflections. A snapshot of the electric field in the
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Fig. 8. PTD-BEW path with 90° bends. The light blue color denotes the
PEC part of the top wall.
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Fig. 9. Simulated reflection coefficient of the BEW with 90° bends.

- s

20K |

Fig. 10. Snapshot of the electric field in a longitudinal cross section for the
PTD-BEW with 90° bends.

longitudinal cross section can be seen in Fig. 10. We observe
that the field is properly confined at the edge throughout the
entire path and the propagation follows the bends.

IV. DETAILED PROTOTYPE DESIGN

PTD-BEW prototypes have been realized in PCB technol-
ogy. The stratification of the prototypes is shown in Fig. 11.
Three layers of dielectric materials are glued together by
means of two layers of Astra MT77 Prepreg 1035LD of the
thickness of 0.126 mm each. The first dielectric layer is Rogers
RO3003 of thickness 0.762 mm, with a top metalization made
by copper of 0.06 mm and a bottom one of 0.05 mm. The third
layer is also of the same material as the first one, with 0.05 mm
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Fig. 12. Transverse cross section of the PTD-BEW. The prepreg is
represented in red, copper in yellow, and Rogers RT5870 in light blue. The
bottom picture highlights the regions emulating the ideal PEC/PMC BC.
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metalization on the top and 0.06 mm on the bottom. In between
those two layers of RO3003 (used for the realization of the
mushroom metasurface), there is a layer of Rogers RT5870,
which has ¢, = 2.33 and electric loss tangent equal to 0.0012.
Fig. 12 shows the cross section of the PTD-BEW structure
transverse to the propagation direction. The region that should
act as PEC is created by a dense distribution of metallic
vias made of copper crossing the RO3003 layer, while the
mushroom surface is realized in the same dielectric layer,
with the external metalizations acting as ground planes and
the patches created in the inner metalizations and connected
to the external copper layer by vias. All vias have a radius
of 0.2 mm and the mushroom patches are immersed in the
prepreg.

The examples discussed in Section III are with RWG
feeding. An alternative solution more convenient for PCB
realization, and including transitions to SMA connectors is
presented in Fig. 13. This solution includes a transition from
a G-CPW to a substrate-integrated WG (SIW), which is used
to feed the PTD-BEW [18]—[20]. The basic rules for the design
of the SIW are provided in [21] and [22].

The central strip of the G-CPW has an initial width of
wo = 1.56 mm to exhibit 50 Q at the input port, while the
width at the end of the tapered section is W = 4.3 mm. The
lengths L1 and L2 of the tapered and nontapered sections
are approximately 12 mm. The diameter of the vias for the
feeding structure is d = 0.5 mm. There are few metallic vias
of 0.7 mm crossing all the dielectric layers (both RO3003 and
RT5870) enclosing the PTD-BEW to support the handling of
the structure.

The strip of the G-CPW is printed at the same level as the
mushroom surface patches. Taking into account the additional
thickness due to the presence of the prepreg, the thickness of
the RT5870 was taken to equal to 0.254 mm in order to achieve
performance similar to the ones obtained without prepreg and
a thickness of 0.508 mm. The branch of PTD-BEW includes
12 unit cells, and the total length of the structure, including the
feeding sections, is 43.8 mm. A length corresponding to five
unit cells of the mushroom metasurface has been considered
in the transverse direction for each side; the overall width of
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Fig. 13.  Straight PTD-BEW section fed by a G-CPW port. The feeding
structure includes a transition to SIW.
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Fig. 14. Simulated scattering coefficients of the structure shown in Fig. 13.

the structure is 16.5 mm. The simulated scattering coefficients
of this structure are shown in Fig. 14. The structure exhibits
good matching over the whole bandwidth from 25 to 32 GHz
and low losses (the transmission coefficients are larger than
—1 dB up to 30.5 GHz, with an average value of 0.6 dB).

The second considered structure is an arrangement of paral-
lel PTD-BEWs and it is used to investigate the mutual coupling
between them. Five pieces of BEW WGs are realized in the
same PCB to obtain a multiple port configuration as shown
in Fig. 15. Each BEW has four mushroom unit cells for each
side in the transverse cross section, and the same four unit
cells are shared by two adjacent WGs. It is important to
note that there is no physical separation between the various
BEW structures. The distance between the centers of adjacent
line ports (and therefore between adjacent edge junctions) is
8 mm which is approximately 0.8 free space wavelengths. The
simulated scattering coefficients are reported in Fig. 16. It can
be seen that the coupling is always lower than —30 dB between
ports located on the same side, and below —20 dB for ports
located on opposite sides. At the same time, the matching of
each channel appears unaffected by the presence of the other
channels.

V. MEASUREMENTS
A. Straight PTD-BEW Section

Fig. 17 shows a picture of the realized prototype of
a straight PTD-BEW section fed with a GCPW-to-SIW
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Fig. 15.  Multiport PTD-BEW structure in which five BEW sections are
arranged together.
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Fig. 16. Simulated coupling coefficients for the structure in Fig. 15.

43.8 mm

16.5 mm

Fig. 17.
transitions.

Layout of the realized PTD-BEW section with GCPW-to-SIW

transition, according to the design presented in Section IV.
Fig. 18 shows the measured scattering parameters in a range
from 20 to 36 GHz. It is seen that the structure presents a
reflection coefficient smaller than —7.5 dB across the whole
band from 24 to 31 GHz, and smaller than —15 dB within the
subband from 24 to 26.5 GHz. The transmission coefficient is
around —1.5 dB between 24 and 31.5 GHz. The discrepancy
with respect to simulations is thought to be due to realiza-
tion imperfections and higher losses in the real materials.
Fig. 19 shows a different realization of a straight PTD-BEW
section with GCPW-to-SIW transition. In this case, only three
mushroom unit cells are used in the transverse direction,
while 12 unit cells are used in the longitudinal direction. The
measured results for this structure are illustrated in Fig. 20;
the reflection coefficient is generally lower than in the previous
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case, with bandwidth at —9.5 dB between 24.5 and 31.5 GHz,
probably due to a better realization. The insertion loss is still
around —1.5 dB.
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Fig. 21.  Layout of a PTD-BEW section with 24 mushroom unit cells in the
longitudinal direction and GCPW-to-SIW transitions.
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Fig. 22. Measurements of Si; (blue line) and Sj; (red line) in the range

20-36 GHz for the layout shown in Fig. 21.

48. 75 mm

Fig. 23. Layout of the PTD-BEW path with 90° bends.

The layout in Fig. 21 is relevant to a longer PTD-BEW
section, including 24 unit cells, for a total length of 63.6 mm.
In this case, five mushroom unit cells are considered in the
transverse direction. The relevant measured results can be seen
in Fig. 22. The structure exhibits an insertion loss of around
—2 dB, with a good matching between 24 and 26.5 GHz and
between 29 and 30.8 GHz.

B. Segmented PTD-SEW Structure

The layout of a segmented PTD-BEW structure is presented
in Fig. 23. The path is constituted by a single square meander,
with four 90° bends. This layout is analogous to the one in the
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Layout of the multiple PTD-BEW structure.
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example given in Fig. 8 and is used to test the robustness of
the propagation against discontinuities in the path. Despite the
abrupt discontinuities provided by the four right-angle bends,
measurements in Fig. 24 show the same level of matching seen
for the straight path (around —10 dB in the range from 24 to
31 GHz) with —2 dB of insertion loss.
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Fig. 27. Measurements of S34 (blue line), S33 (red line), S3 (green line),
and S3; (magenta line) in the range 20-36 GHz.

C. Multiple PTD-BEW

The last structure analyzed consists of an arrangement
of adjacent PTD-BEW sections and its layout is shown in
Fig. 25. The distance between adjacent lines is about 16 mm,
corresponding to about one wavelength at the lowest frequency
of the bandwidth. It can be seen from Figs. 26 and 27 that
the measured level of cross-coupling has an average value of
—50 dB in the range 20-30 GHz, with a maximum value of
—45 dB. The transmission coefficient is around —1.7 dB.

VI. CONCLUSION

The experimental verification of robust propagation in the
PTD-symmetric BEW proposed in [11] has been carried out
in this article. The practical feasibility of the structure has
been demonstrated in the range between 22 and 32 GHz.
For practical implementation, mushroom metasurfaces have
been used to emulate the PMC BCs. The analyzed structures
include a transmission line with bends and multiport junc-
tions. Despite the passivity and the absence of nonreciprocal
elements, the PTD-BEW is immune from reflections for those
discontinuities which respect to the PTD symmetry. Thanks
to this property, it is possible to guide the bifilar mode along
bent paths with low insertion loss and good matching. In the
simulations of the structures, we did not include any losses,
because our focus was on the demonstration of the backscatter-
ing protection feature. In the fabricated structure, we had some
losses that were caused by two sources: 1) finite conductivity
of the metal and 2) losses in the dielectric. Leakage toward
the lateral PPWs, on the other hand, is prevented due to the
existence of a bandgap. It is also worth noting that other
types of bandgap structures, such as the ones used in gap WG
technology, could be used to reduce losses. This is currently
being considered and will be the subject of future work.
It should also be noted that the leakage in the lateral structures
is prevented only in the bandgap region, which represents a
limit to the operational bandwidth of any device that uses
the PTD-BEW, such as beamformers or couplers. In spite of
the many criticalities related to manufacturing, experimental
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results have been found fully satisfactory. This paves the way
for the possibility of designing new microwave devices with
low return losses up to the Ka-band.
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