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Closed sets of finitary functions between
finite fields of coprime order

Stefano Fioravanti

Abstract. We investigate the finitary functions from a finite field Fq to the
finite field Fp, where p and q are powers of different primes. An (Fp,Fq)-
linearly closed clonoid is a subset of these functions which is closed under
composition from the right and from the left with linear mappings. We
give a characterization of these subsets of functions through the invariant

subspaces of the vector space F
Fq\{0}
p with respect to a certain linear

transformation with minimal polynomial xq−1−1. Furthermore we prove
that each of these subsets of functions is generated by one unary function.
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1. Introduction

The problem of characterizing sets of functions that satisfy some closure prop-
erties plays an increasingly important role in General Algebra. E. Post’s char-
acterization of all clones on a two-element set [13] is a foundational result in
this field, which was developed further, e.g., in [14,12,15,10]. Starting from
[9], clones are used to study the complexity of certain constraint satisfaction
problems (CSPs).

The aim of this paper is to describe sets of functions from Fq to Fp that
are closed under all linear mappings from the left and from the right, in the
case p and q are powers of distinct primes. We are dealing with sets of functions
with different domains and codomains; such sets are investigated, e.g., in [1]
and are called clonoids. Let B be an algebra, and let A be a non-empty set.
For a subset C of

⋃
n∈N

BAn

and k ∈ N, we let C [k] := C ∩ BAk

. According to
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Definition 4.1 of [1] we call C a clonoid with source set A and target algebra
B if
(1) for all k ∈ N: C [k] is a subuniverse of BAk

, and
(2) for all k, n ∈ N, for all (i1, . . . , ik) ∈ {1, . . . , n}k, and for all c ∈ C [k], the

function c′ : An → B with c′(a1, . . . , an) := c(ai1 , . . . , aik) lies in C [n].
By (1) every clonoid is closed under composition with operations of B on

the left. In particular we are interested in those clonoids whose target algebra
is the vector space Fp which are closed under composition with linear mappings
also from the right side.

Definition 1.1. Let p and q be powers of different primes, and let Fp and Fq be
two fields of orders p and q. An (Fp,Fq)-linearly closed clonoid is a non-empty

subset C of
⋃

n∈N
F
F
n
q

p with the following properties:

(1) for all n ∈ N, f, g ∈ C [n] and a, b ∈ Fp:

af + bg ∈ C [n];

(2) for all m,n ∈ N, f ∈ C [m] and A ∈ F
m×n
q :

g : (x1, . . . , xn) �→ f(A · (x1, . . . , xn)t)

is in C [n].

Clonoids are of interest since they naturally arise in the study of promise
constraint satisfaction problems (PCSPs). These problems are investigated,
e.g., in [4], and recently in [5] clonoid theory has been used to give an algebraic
approach to PCSPs. Moreover, a description of the set of all (Zp,Zq)-linearly
closed clonoids, where p and q are distinct primes, is a useful tool to investi-
gate (polynomial) clones on Zp × Zq or to represent polynomial functions of
semidirect products of groups. In [8] S. Kreinecker characterized linearly closed
clonoids on Zp, where p is a prime, and found a description of all clones on Zp

that contain the addition, all iterative algebras on Zp which are closed under
composition with the clone generated by + from both sides, and proved that
there are infinitely many non-finitely generated clones above Clo(Zp × Zp,+)
for p > 2.

Our main result (Theorem 1.3) provides a complete description of the
lattice of all (Fp,Fq)-linearly closed clonoids, where p and q are powers of
different primes. First, an important observation is that each such clonoid is
generated by its subset of unary members (Theorem 4.3). We can say even
more about the generators of an (Fp,Fq)-linearly closed clonoid.

Theorem 1.2. Let p and q be powers of different primes. Then every (Fp,Fq)-
linearly closed clonoid is generated by one unary function.

The proof of this result is given in Section 5. With Theorem 4.3 and the
characterization of the invariant subspaces lattice of a cyclic linear transfor-
mation over a finite-dimensional vector space in [3], we obtain a description of
the lattice of all (Fp,Fq)-linearly closed clonoids as a direct product of chains
(Section 5).
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The structure of the lattice of all (Fp,Fq)-linearly closed clonoids depends
on the prime factorization of the polynomial g = xq−1 − 1 in Fp[x]. Once this
factorization is known, it is easy to find this lattice. Let us denote by 2 the
two-element chain and, in general, by Ck the chain with k elements. Moreover,
we denote by L(p, q) the lattice of all (Fp,Fq)-linearly closed clonoids.

Theorem 1.3. Let p and q be powers of different primes. Let
∏n

i=1 pki
i be the

factorization of the polynomial g = xq−1 − 1 in Fp[x] into its irreducible divi-
sors. Then the number of distinct (Fp,Fq)-linearly closed clonoids is 2

∏n
i=1(ki+

1) and the lattice L(p, q) of all (Fp,Fq)-linearly closed clonoids is isomorphic
to

2 ×
n∏

i=1

Cki+1.

2. Preliminaries and notations

We use boldface letters for vectors, e.g., u = (u1, . . . , un) for some n ∈ N.
Moreover, we will use 〈v ,u〉 for the scalar product of the vectors v and u .

We write Clg(S) for the (Fp,Fq)-linearly closed clonoid generated by a
set of functions S. The (Fp,Fq)-linearly closed clonoids form a lattice with
the intersection as meet and the (Fp,Fq)-linearly closed clonoid generated by
the union as join. The top element of the lattice is the (Fp,Fq)-linearly closed
clonoid of all functions and the bottom element consists of only the constant
zero functions. Let f be an n-ary function from a group G1 to a group G2.
We say that f is 0-preserving if f(0G1 , . . . , 0G1) = 0G2 .

As examples of non-trivial (Fp,Fq)-linearly closed clonoids we can see that
the set of all 0-preserving finitary functions from Fq to Fp forms an (Fp,Fq)-
linearly closed clonoid and that the following set of functions forms an (Fp,Fq)-
linearly closed clonoid.

Definition 2.1. Let p and q be powers of primes and let f be a function from
F
n
q to Fp. The function f is a star function if and only if for every vector

w ∈ F
n
q there exists k ∈ Fp such that for every λ ∈ Fq\{0}:

f(λw) = k.

It is easy to see that the star functions form an (Fp,Fq)-linearly closed
clonoid for every p and q and they represent an instance of the nice behaviour
that the (Fp,Fq)-linearly closed clonoids have in relation to the lines of the
space F

n
q . Indeed, the composition with scalar multiplications from the right

hand side can be used to permute the values that functions of (Fp,Fq)-linearly
closed clonoid have in lines that pass through the origin.

3. Preliminaries from linear algebra

In this section we review some concepts of linear algebra that we need in order
to find a description of the lattice of all (Fp,Fq)-linearly closed clonoids, where
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p and q are powers of distinct primes. We recall that a T-invariant subspace of
a linear operator T of a vector space V is a subspace W of V that is preserved
by T ; that is, T (W ) ⊆ W . Let S be a set of linear operators of a vector space
V . We can consider the S-invariant subspaces lattice of V and we denote it by
L(S).

In Section 5 we will see that the problem to find the structure of the
lattice of all (Fp,Fq)-linearly closed clonoids can be reduced to the problem
to find all T -invariant subspaces of the vector space F

Fq\{0}
p , where T is a

certain linear transformation that permutes the components of FFq\{0}
p . In [3]

the structure of the invariant subspaces lattice of a linear transformation on
a finite-dimensional vector space over an arbitrary field has been studied, and
in [6] the number of invariant subspaces of a finite vector space with respect
to a linear operator is determined.

Let T be a linear transformation on a finite-dimensional vector space V
over a field K and let g be the minimal polynomial of T . We call T primary
if g = fc for some irreducible polynomial f and some positive integer c. We
know from [3, Theorem 1] that, with the prime factorization of g =

∏s
i=1 pki

i

over K[x ], we can split the vector space V into what is called its primary
decomposition:

V =
s⊕

i=1

Vi,

and Vi = ker(pi(T )ki) are called the primary components of V . According to
[3], the lattice L(T ) of the T -invariant subspaces of V is a direct product of
the lattices L(Ti), where Ti = T |Vi

. Thus:

L(T ) =
s∏

i=1

L(Ti).

Definition 3.1. Let V be a vector space, let M be a subspace of V , and let
T be a linear transformation. If M is generated by {x, Tx, T 2x, . . . } for some
x ∈ V , then T is called cyclic, M is called a T -cyclic subspace, and x is called
a T -cyclic vector for M .

Remark 3.2. Let V be a finite dimensional vector space over a field K and let
T : V → V be a linear operator such that V is T -cyclic. Then every T -invariant
subspace of V is T -cyclic.

Proof. Let W = 〈w1, . . . ,wn〉 be a T -invariant subspace of V and let v be a
T -cyclic vector of V . Then there exist p1, . . . , pn ∈ K[x] such that wi = pi(T )v
for all i ∈ {1, . . . , n}. Let d = gcd(p1, . . . , pn). Then W = {q(T )(d(T )v) | q ∈
K[x]}. Thus W is T -cyclic with T -cyclic vector d(T )v . �

In [3, Lemma 2] it is proved that L(T ) is a chain if and only if T is cyclic
and primary. In particular they show that if the minimal polynomial of T is
g = fn, with f irreducible, then:

L(T ) = {ker(f(T )k) | k ∈ {0, 1, . . . , n}}.
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4. Generators of (Fp, Fq)-linearly closed clonoids

In this section our aim is to find a set of unary generators of an (Fp,Fq)-linearly
closed clonoid. In general we will see that it is the unary part of an (Fp,Fq)-
linearly closed clonoid that determines the clonoid. To this end we shall show
the following Lemma.

Lemma 4.1. Let Fp and Fq be finite fields and let f, g : Fn
q → Fp be functions

such that there exists b ∈ F
n
q \ {(0, . . . , 0)} with f(λb) = g(λ(1, 0, . . . , 0)) for

all λ ∈ Fq and f(x ) = g(y) = 0 for all x ∈ F
n
q \{λb | λ ∈ Fq} and y ∈

F
n
q \{λ(1, 0, . . . , 0) | λ ∈ Fq}. Then f ∈ Clg({g}).

Proof. Let n ∈ N and b = (b1, . . . , bn) ∈ F
n
q \{(0, . . . , 0)}. Let 1 ≤ i ≤ n be

such that bi 
= 0 and let f, g : Fn
q → Fp be functions as in the hypothesis.

Moreover, let L = {sb | s ∈ Fq} be the line of the space F
n
q generated by the

vector b. Let us consider lj ∈ F
n
q for 1 ≤ j ≤ n − 1 such that the solutions of

the system formed by the equations (〈lj ,y〉 = 0)1≤j≤n−1 describe the line L
of Fn

q . Then:

g(b−1
i xi, 〈l1,x 〉, . . . , 〈ln−1,x 〉) = f(x ), for all x = (x1, . . . , xn) ∈ F

n
q .

Hence g ∈ Clg({g}) and the claim holds. �

In order to show the main theorem of the section we introduce the def-
inition of Lagrange interpolation functions, which are functions built to have
a value different from zero only in one point, and they can be seen as charac-
teristic functions of a point in the vector space F

n
q with codomain {0, 1} ⊆ Fp.

Definition 4.2. Let a = (a1, . . . , an) ∈ F
n
q . The n-ary Lagrange interpolation

function fa from Fq to Fp is the function defined by:

fa (a) = 1,

fa (x ) = 0, for x ∈ F
n
q \{a}.

We are now ready to prove that an (Fp,Fq)-linearly closed clonoid C is
generated by its unary part.

Theorem 4.3. Let p and q be powers of different primes. Then every (Fp,Fq)-
linearly closed clonoid C is generated by its unary functions. Thus C = Clg(C [1]).

Proof. The inclusion ⊇ is obvious. For the other inclusion let C be an (Fp,Fq)-
linearly closed clonoid and let f be an n-ary function in C. In order to prove
that f ∈ Clg(C [1]) we show that f ′ = f−f(0 ) is in Clg(C [1]), where f(0 ) is the
constant n-ary function with value f(0 ). This implies the claim because the
n-ary constant function with value f(0 ) is in Clg(C [1]) by Definition 1.1. We
can see that f ′ is a 0-preserving function of C. The strategy is to interpolate
f ′ in every line passing through the origin. To this end, let

R = {Li | 1 ≤ i ≤ (qn − 1)/(q − 1) = s}
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be the set of all s distinct lines of the space F
n
q that pass through the origin,

parametrized by the vectors li ∈ F
n
q with i ∈ {1, . . . s} = I. For all i ∈ I, let

fLi
: Fn

q → Fp be defined by:

fLi
(λli) = f ′(λli), for λ ∈ Fq,

fLi
(x ) = 0, for x ∈ F

n
q \{λli | λ ∈ Fq}.

Since f ′ is 0-preserving we can write f ′ as:

f ′ =
s∑

i=1

fLi
.

To prove that f ∈ Clg(C [1]) it is therefore sufficient to show that fLi
∈

Clg(C [1]) for all Li ∈ R. Let i ∈ I and let g : Fq → Fp be a function such
that fLi

(xli) = g(x) = f ′(xli). Then we prove by induction on the arity m
that the function tm : Fm

q → Fp defined by:

tm(x, 0, . . . , 0) =g(x), for all x ∈ Fq,

tm(x1, . . . , xn) =0, for x ∈ F
n
q \{λ(1, 0, . . . , 0) | λ ∈ Fq},

is in Clg(C [1]).
Case m = 1: if m = 1 then t1 = g is a unary function of C [1].
Case m > 1: by the induction hypothesis we know that tm−1 ∈ Clg(C [1]).

We define sm : F2
q → F

m
q by sm(i, j) = (i, j, 0, . . . , 0). We denote by fsm(h,k)

the Lagrange interpolation function of the point sm(h, k) (Definition 4.2). Let
us define the function r : Fm

q → Fp by:

r(x ) =
∑

a∈Fq

tm−1(x1 − ax2, x3, . . . , xm) −
∑

a∈Fq\{0}
tm−1(ax2, x3, . . . , xm) (4.1)

for all x = (x1, . . . , xm) ∈ F
m
q . We prove that:

r(x1, . . . , xm) = qtm(x1, . . . , xm)

for all (x1, . . . , xm) ∈ F
m
q .

Case xi 
= 0 for some i ∈ {3, ..., n}: then r(x ) = 0 = tm(x ).
Case x2 = 0: in this case r(x ) =

∑
a∈Fq

g(x1−ax2)−
∑

a∈Fq\{0} g(ax2) =
qg(x1) for all x1 ∈ Fq, as required.

Case x2 
= 0: we have r(x ) =
∑

a∈Fq
g(x1 − ax2) − ∑

a∈Fq\{0} g(ax2) =
∑

a∈Fq
g(a) −∑

a∈Fq\{0} g(a) = g(0) = 0.
Because of (4.1), we have r ∈ Clg({tm−1}) ⊆ Clg(C [1]). Hence we have

that qtm ∈ Clg(C [1]) and thus tm ∈ Clg(C [1]). This concludes the induction.
Thus tn ∈ Clg(C [1]) and we can see that fLi

(λli) = tn(λ(1, 0, . . . , 0)) = g(λ),
for all λ ∈ Fq, and fLi

(x ) = tn(y) = 0 for all x ∈ F
n
q \{λli | λ ∈ Fq} and

y ∈ F
n
q \{λ(1, 0, . . . , 0) | λ ∈ Fq}. By Lemma 4.1, fLi

∈ Clg({tn}) ⊆ Clg(C [1]),
which concludes the proof. �

Theorem 4.4. Let p and q be two powers of distinct primes. Then the (Fp,Fq)-
linearly closed clonoid of all 0-preserving functions is generated by the unary
Lagrange interpolation function f1 (Definition 4.2).
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Proof. The proof follows directly from Theorem 4.3 since Clg(f1) contains
every 0-preserving unary function. �

The following two corollaries of Theorem 4.3 tell us that there are only
finitely many distinct (Fp,Fq)-linearly closed clonoids.

Corollary 4.5. Let p and q be powers of different primes. Let C and D be two
(Fp,Fq)-linearly closed clonoids. Then C = D if and only if C [1] = D[1].

Corollary 4.6. Let p and q be powers of distinct prime numbers. Then every
(Fp,Fq)-linearly closed clonoid has a set of finitely many unary functions as
generators, and hence there are only finitely many distinct (Fp,Fq)-linearly
closed clonoids.

5. The lattice of all (Fp, Fq)-linearly closed clonoids

In this section we investigate the structure of the lattice L(p, q) of all (Fp,Fq)-
linearly closed clonoids through a characterization of their unary parts. We call
the (Fp,Fq)-linearly closed clonoids that are composed by only 0- preserving
functions 0-preserving (Fp,Fq)-linearly closed clonoids. We will see that there
is an isomorphism between the sublattice L0(p, q) of the 0-preserving (Fp,Fq)-
linearly closed clonoids and the lattice of subspaces that are invariant under a
particular cyclic linear transformation A(p, q) on the vector space F

Fq−1
p .

In order to characterize the lattice of all (Fp,Fq)-linearly closed clonoids
we need the definition of a monoid ring.

Definition 5.1. Let 〈M,+〉 be a monoid and let 〈R,+,�〉 be a commutative
ring with identity. Let

S := {f ∈ RM | f(a) 
= 0 for only finitely many a ∈ M}.

We define the monoid ring of M over R as the ring (S,+, ·). Here + is
the point-wise addition of functions and (σ · ρ)(a) :=

∑
b∈M σ(b) � ρ(a − b).

We denote the monoid ring of M over R by R[M ].
Using the notation of [2] for all a ∈ M we define τa to be the element of

RM with τa(a) = 1 and τa(M\{a}) = {0}. We observe that for all f ∈ R[M ]
there is an r ∈ RM such that f =

∑
a∈M raτa and that we can multiply such

expressions using the rule τa · τb = τa+b.

Definition 5.2. Let Fp and Fq be finite fields and let F
×
q = (Fq, ·) be the mul-

tiplicative monoid reduct of Fq. We define the action ∗ : Fp[F×
q ] × F

Fq
p → F

Fq
p

for all a ∈ F
×
q and f ∈ F

Fq
p by

(τa ∗ f)(x) = f(ax).

So for σ ∈ Fp[F×
q ] with σ =

∑
a∈F

×
q

zaτa, then

(σ ∗ f)(x) =
∑

a∈F
×
q

zaf(ax).
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We can observe that V is an (Fp[F×
q ], ∗)-submodule of FFq

p if and only if
it is a subspace of FFq

p satisfying

x �→ f(ax) ∈ V, (5.1)

for all f ∈ V and a ∈ Fq. Clearly the following lemma holds.

Lemma 5.3. Let p and q be powers of primes. Then the unary part of an
(Fp,Fq)-linearly closed clonoid is an (Fp[F×

q ], ∗)-submodule of FFq
p .

In order to show the following results we use the Galois correspondence
between clonoids and pairs of relations as developed in [11].

Definition 5.4. For a set I and R ⊆ AI , S ⊆ BI let

Pol(R,S) := {f : Ak → B | k ∈ N, f(R, . . . , R) ⊆ S}
denote the set of finitary functions preserving (R,S). We call Pol(R,S) the set
of polymorphisms of the relational pair (R,S).

Let R := {(Si, Ti) | i ∈ I} be a set of pairs of relations on A and B. Then
the set of functions that are polymorphisms of all pairs of all the relations in
R is denoted by Pol(R).

Lemma 5.5. Let p and q be powers of distinct primes. Let U be the subspace of
F
Fq
q that is generated by the identity map on Fq, and let V be an (Fp[F×

q ], ∗)-
submodule of F

Fq
p . Then Pol(U, V ) is an (Fp,Fq)-linearly closed clonoid with

unary part V .

Proof. By Definition 5.4 we have that V ⊆ Pol(U, V ) and every unary function
in Pol(U, V )[1] is in V . Thus Pol(U, V )[1] = V .

Next we show that Pol(U, V ) is an (Fp,Fq)-linearly closed clonoid. Let
f, g ∈ Pol(U, V ) be m-ary. Thus the functions x �→ f(c1x, . . . , cmx) and x �→
g(c1x, . . . , cmx) are in V for all c1, . . . , cm ∈ Fq.

Let a, b ∈ Fp and let b1, . . . , bm ∈ Fq. Then

(af + bg)(b1x, . . . , bmx) = af(b1x, . . . , bmx) + bg(b1x, . . . , bmx),

for all x ∈ Fq. Hence af + bg ∈ Pol(U, V ).
Next let n ∈ N, let A ∈ F

m×n
q , and let b1, . . . , bn ∈ Fq. Then

x �→ f(A · (b1x, . . . , bnx)t) = f

(
n∑

i=1

A1ibix, . . . ,

n∑

i=1

Amibix

)

is in V . Hence the n-ary function g : Fn
q → Fp such that g : (x1, . . . , xn) �→

f(A · (x1, . . . , xn)t) is in Pol(U, V ) and thus Pol(U, V ) is an (Fp,Fq)-linearly
closed clonoid. �

A clonoid C with source set A and target algebra B is finitely related if
there exists a finite set of pairs of finitary relations R on A and B such that
C = Pol(R). It can be easily observed that every finitely related clonoid is the
clonoid of polymorphisms of a single pair of relations.

Together with Theorem 4.3, Lemma 5.5 implies immediately the follow-
ing.
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Lemma 5.6. Let p and q be powers of distinct primes. Then every (Fp,Fq)-
linearly closed clonoid is finitely related.

Corollary 5.7. Let p and q be powers of distinct primes. Then the function π[1]

that sends an (Fp,Fq)-linearly closed clonoid to its unary part is an isomor-
phism between the lattice of all (Fp,Fq)-linearly closed clonoids and the lattice
of all (Fp[F×

q ], ∗)-submodules of FFq
p .

With the next lemma we begin to characterize the unary parts of the
(Fp,Fq)-linearly closed clonoids. In order to do so we consider the group ring
Fp[Fq\{0}] and the (Fp[Fq\{0}], ∗)-submodules of F

Fq\{0}
p where ∗ is the re-

striction of the action defined in Definition 5.2 and Fq\{0} is the multiplicative
group of Fq.

Lemma 5.8. Let p and q be powers of distinct primes. Then the lattice of
all (Fp[F×

q ], ∗)-submodules of F
Fq
p is the direct product of the lattice of all

(Fp[Fq\{0}], ∗)-submodules of F
Fq\{0}
p (isomorphic to L0(p, q)) and the two-

element chain 2.

Proof. Let V0, V1 ⊆ F
Fq
p be defined by:

V0 := {v ∈ F
Fq
p | v0 = 0},

V1 := {λ(1, . . . , 1) | λ ∈ Fp}.

It is clear that V0 and V1 are (Fp[F×
q ], ∗)-submodules of FFq

p and we denote
the lattices of all (Fp[F×

q ], ∗)-submodules of V0 and V1 by L0 and L1. We can
observe that L1

∼= 2. Moreover, V0 + V1 = F
Fq
p and V0 ∩ V1 = 0. Let W be an

(Fp[F×
q ], ∗)-submodule of FFq

p . Then we have that either W ≤ V0 or W ≥ V1,
since v 
∈ V0 implies v0 
= 0 and thus that (1, . . . , 1) is in the (Fp[F×

q ], ∗)-
submodule of FFq

p generated by v . Next, we show that W = (W ∩V0)+(W ∩V1):
Case W ≤ V0: then (W ∩ V0) + (W ∩ V1) = W + (W ∩ V1) = W

Case W ≥ V1: then (W ∩ V0) + (W ∩ V1) = (W ∩ V0) + V1 which is equal
to W ∩ (V0 + V1) = W , using the modular law. Thus the function γ from the
lattice L0 × L1 to the lattice of all (Fp[F×

q ], ∗)-submodules of F
Fq
p such that

γ : (R,W ) �→ R+W is clearly surjective and order preserving. Furthermore, let
(R1,W1), (R2,W2) ∈ L0 × L1 with R1 + W1 = R2 + W2. Then, since R1, R2 ≤
V0, W1,W2 ≤ V1, and V0∩V1 = 0, R1 = (R1+W1)∩V0 = (R2+W2)∩V0 = R2,
using the modular law. With the same strategy we can prove that W1 = W2

and it is clear that γ−1 is order preserving. Thus γ is a lattice isomorphism.
Hence, by Corollary 5.7, L(p, q) is isomorphic to 2×L0. Furthermore, the

lattice L0 is isomorphic to L0(p, q) via the isomorphism π≥2 : L0 → L0(p, q)
such that:

π≥2(C) := {(v1, . . . , vq−1) | (0, v1, . . . , vq−1) ∈ C}, (5.2)

for all C ∈ L0. �
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The next step is to characterize the lattice L0(p, q). To this end we observe
that V ∈ L0(p, q) if and only if is a subspace of FFq\{0}

p satisfying

x �→ f(ax) ∈ V, (5.3)

for all f ∈ V and a ∈ Fq\{0}.
Let α be a generator of the multiplicative subgroup of Fq. The clo-

sure under the linear transformation A(p, q) : FFq\{0}
p → F

Fq\{0}
p defined as

A(p, q)(f) = x �→ f(αx) is enough to describe the property to be closed un-
der all the q − 1 linear transformations in (5.3). We can see that the minimal
polynomial of A(p, q) is xq−1 − 1.

Thus the last step is to characterize the lattice of the A(p, q)-invariant
subspaces of FFq\{0}

p . This is sufficient to conclude our characterization of the
lattice of all (Fp,Fq)-linearly closed clonoids since we know from Corollary
5.7 and Lemma 5.8 that L(p, q) ∼= 2 × L0(p, q) and the lattice of all the
A(p, q)-invariant subspaces of FFq\{0}

p is isomorphic to the lattice L0(p, q) of
all (Fp,Fq)-linearly closed clonoids composed by 0-preserving functions and to
the lattice of all (Fp[Fq\{0}], ∗)-submodules of FFq\{0}

p .
Corollary 5.7 and Lemma 5.8 describe the structure of the lattice of all

(Fp,Fq)-linearly closed clonoids in case p and q are powers of distinct primes. In
Figure 1 we draw a scheme of the lattice of all (Fp,Fq)-linearly closed clonoids.
On the right hand side we have the 0-preserving part and on the left, the part
with constants. Let 1,0P,C, {0} denote the (Fp,Fq)-linearly closed clonoids
of all functions, of all 0-preserving functions, of all constants, and of the zero
constants respectively.

The lattice of invariant subspaces under a linear transformation on finite-
dimensional vector spaces was characterized in [3]. We can see that A(p, q) has
minimal polynomial g = xq−1 −1. Let g =

∏s
i=1 pki

i be the prime factorization

Figure 1. .
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of g over Fp[x]. We define Vi = ker(pi(A(p, q))ki), and A(p, q)i = A(p, q)|Vi
.

We know from [3] that with the prime factorization of g we can split our vector
space F

Fq\{0}
q into its primary decomposition:

F
Fq\{0}
q =

s⊕

i=1

Vi.

According to [3] the lattice L(A(p, q)) of the A(p, q)-invariant subspaces of FFq\{0}
q ,

is:

L(A(p, q)) ∼=
s∏

i=1

L(A(p, q)i). (5.4)

We can observe that FFq\{0}
q is an A(p, q)-cyclic space generated by the vector

(1, 0, . . . , 0). Thus, every A(p, q)-invariant subspace of FFq\{0}
q is A(p, q)-cyclic,

by Remark 3.2.
With these tools we are now ready to prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2.. Let C be an (Fp,Fq)-linearly closed clonoid and let C0

be its 0-preserving part. Let V be the image of C0 under the isomorphism
of Corollary 5.7 and let (V1, V2) be the image of V under the isomorphism
of Lemma 5.8. Furthermore let W be the image of V1 under π≥2. We have
observed that W is an A(p, q)-cyclic space. Let v be the A(p, q)-cyclic vector
for W (Definition 3.1). We can observe that f = (0, v1, . . . , vq−1) is a generator
for C

[1]
0 and thus, by Theorem 4.3, is a unary generator for C0. Furthermore,

either C0 = C or C0 ⊂ C.
Case C0 = C: then C is generated by f .
Case C0 ⊂ C: then {1} ∈ C, where 1 is the constant unary function with

value 1. Let f be the unary generator of C0. We will prove that C is generated
by h = f + 1. Indeed, let g ∈ C be an n-ary function. Then, there exists
a 0-preserving n-ary function g0 such that g = g0 + g(0 ), where g(0 ) is the
constant n-ary function with value g(0 ). Hence, g ∈ Clg({g0})∨Clg({g(0 )}) ⊆
Clg({f})∨Clg({1}) ⊆ Clg({h}). Thus C = Clg({h}) and the claim holds. �

Proof of Theorem 1.3. Let p and q be powers of distinct primes and let
∏n

i=1 pki
i

be the prime factorization of the polynomial g = xq−1 − 1 in Fp[x]. First we
know from Corollary 5.7 and Lemma 5.8 that L(p, q) ∼= 2 × L0(p, q). Further-
more, we know that L0(p, q) is isomorphic to the lattice of all A(p, q)-invariant
subspaces of F

Fq\{0}
p . We have observed that A(p, q) has g as minimal poly-

nomial. So let Vi be the ith primary component and let (A(p, q))i be the
ith restriction of A(p, q) with minimal polynomial pki

i , for i = 1, . . . , n. Then
we know that F

Fq\{0}
p is (A(p, q))-cyclic with (1, 0, . . . , 0) as (A(p, q))-cyclic

vector. Hence also Vi is (A(p, q))-cyclic, for i = 1, . . . , n, as a subspace of
an (A(p, q))-cyclic space (Remark 3.2). From [3, Lemma 2], the lattice of all
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A(p, q)i-invariant subspaces of Vi is isomorphic to the chain with ki + 1 ele-
ments. Thus, from (5.4), we have that:

L(p, q) ∼= 2 ×
n∏

i=1

Cki+1

and the claim holds. �

With this theorem we have completely characterized the structure of the
lattice L(p, q) using the prime factorization of the polynomial xq−1 − 1, which
can be easily computed. We conclude our investigation with a corollary that
shows how the lattice of all (Fp,Fq)-linearly closed clonoids is structured.

Corollary 5.9. Let p and q be powers of distinct primes. Then the lattice L(p, q)
of the (Fp,Fq)-linearly closed clonoids is a distributive lattice.

Proof. It follows from Theorem 1.3 that L(p, q) is a direct product of chains
and hence is distributive. �
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