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A B S T R A C T

In this paper a systematic procedure to compute the first integrals of the dynamics of a circuit with an ideal
memristor is presented. In this perspective, the state space results in a layered structure of manifolds generated
by first integrals, which are associated, via the choice of the initial conditions, to different exhibited behaviors.
This feature turns out to be a powerful investigation tool, and it can be used to disclose the coexistence of
attractors and the so called ‘‘extreme multistability,’’ which are typical of the circuits with ideal memristors.
The first integrals can also be exploited to study the energetic behavior of both the circuit and of the memristor
itself. How to extend these results to the other ideal memelements and to more complex circuit configurations
is shortly mentioned. Moreover, a class of ideal memristive devices capable of inducing the same first integrals
layered in the state space is introduced. Finally, a mechanism for the loss of the ideality is conceived in terms
of spoiling the first integrals structure, which makes it possible to develop a non-ideal memristive model.
Notably, this latter can be interpreted as an ideal memristive device subject to a dynamic nonlinear feedback,
thus highlighting that the non-ideal model is still affected by the first integrals influence, and justifying the
importance of studying the ideal devices in order to understand the non-ideal ones.
1. Introduction

In the last decade, the interest in the ideal element, theorized in
1971 by Prof. Chua in his pioneering paper [1] and called ‘‘memristor’’,
has been stimulated by the discovery of memristive effects in solid-state
nanoscale electronic devices with ionic transport subjected to an exter-
nal bias voltage [2]. Ideal memristors, indeed, are blessed with many
properties, which make them suitable candidates for the hardware im-
plementation of a new generation of brain-inspired analog computing
machines conceived in the neuromorphic computing paradigm [3–7].
Under this motivation, a vast scientific literature of papers focused
on circuits with memristors has been produced, but the community is
still debating on very important issues. Indeed, the actual relationship
between the ideal memristor and the models describing the memristive
effects found in the real devices has not been completely disclosed
yet. In fact, it is not even clear in what sense the ideal memristor
dynamics can actually be approximated by real memristive devices,
which count several different models depending on the physical effect
the implementation is based on [5,8–12]. The nature of the nonlinear
characteristic function of the memristor is another critical issue, since
it also defines the energetic behavior of the element, and many authors
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argue about the active/passive nature of real implementations and
their capability of being at least locally active [13,14]. Despite the
debate on the connection between ideal and real memristors is still
lively, many papers have been focused on the first one, even though
its study is made difficult by the nonlinear nature of the element.
Specific investigation techniques have been developed to systematically
address this study [15–19], while an important branch of the scientific
literature focuses on studying circuits with ideal memristors mainly
resorting to numerical techniques and simulations [20,21]. These pa-
pers have highlighted the incredible richness of behaviors, that a single
circuit with ideal memristors is able to exhibit. Some authors have even
coined the term ‘‘extreme multistability’’ to refer to the capability of
memristive devices to generate a huge number of coexisting attractors
in their state space representation [22,23].

In this paper we will show that, when an ideal memristor is con-
nected to a circuit belonging to a broad class of devices, it induces
the existence of a first integral of the motion. Moreover, this special
structure corresponds to a reduced order dynamics, which describes
the system behavior under the effect of a tuning parameter, which
in reality depends on the initial conditions of the circuit. Notably,
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this scheme is defined by a nonlinear non-homogeneous differential
equation, that can also be seen as a forced feedback system. Reasoning
on this premise, in Section 2 it will be illustrated how the first integral
can be spotted in a simple circuit with an ideal charge-controlled
memristor. The circuit will be investigated highlighting a multistabile
dynamics, that can be directly related to the features of the same first
integral. In Section 3 it will be shown that the existence of the first
integral is a common property for circuits with ideal memristors, and
a general procedure for their analytic computation will be presented.
In particular, in Section 3.3 the first integrals will be exploited to give
a dynamical interpretation of the richness of behaviors exhibited by
circuits with memristors, thus providing a structural explanation of
their extreme multistability. Section 4 will be devoted to the energetic
characterization of circuits with ideal memristors in order to disclose
that there is no link between the first integral of the motion and the
energy storage. Motivated by the previous results, a new class of ‘‘ideal’’
memdevices able to induce first integrals as well as the original ideal
memristor will be introduced in Section 5, and it will be exploited in
Section 6 to elaborate on the concept of ‘‘loss of ideality,’’ just meant
here as the loss of the first integrals structure. Notably, such a loss of
ideality does not completely erase the first integrals imprint from the
circuit behavior, motivating the proposed non-ideal memristive models
as suitable candidates for describing real devices, which then could
be investigated applying to their ideal counterpart the proposed tools
based on the first integrals.

2. Background and motivation

In the recent literature, many circuits with memristive devices have
been introduced for the richness of their dynamics, and especially
for their capability of showing complex behaviors in a multistability
scenario. This latter property is very desirable in many contexts, but
it plays a critical role in the analog computing framework, which is
attracting increasing interest thanks to many innovative neuromorphic
computing paradigms [3–7]. Such an opportunity has fired up the
study of circuits featuring memelements, bringing forth promising re-
sults related to their ability of exhibiting multiple different stationary
dynamics (e.g., constant and periodic solutions) under the same config-
uration [24–26]. Indeed, this is a basic feature to increase the quantity
of information a single system is able to process.

Many authors refer to the number and variety of distinct behaviors,
which are observed even in simple memristive circuits, as ‘‘extreme
multistability’’ [22,23]. This property, however, has been mainly ad-
dressed via numerical simulations of artificial circuits, while real mem-
ristive devices are still affected by technological limitations, such as
the operative ranges, which depend on the materials and the fabri-
cation process. Nonetheless, in the recent works [27,28] real circuits
with memristor have been investigated, verifying the richness of their
dynamics. The digitalization of the ideal memristor has also been
theorized as an alternative approach to overcome the implementation
issues [29–31], but the research is still in a preliminary stage and no
actual digital circuit mimicking the analog device has been produced
yet.

Several analytic studies of circuits with ideal memelements have
been recently presented with the goal of investigating the inner mecha-
nisms responsible for the richness of the dynamics and the coexistence
of many distinct regimes. The pioneering paper [16] has been the
very first providing a mathematical explanation for the existence of
multiple attractors in circuits with ideal memristors. The machinery
behind this result is referred to as Flux-Charge Analysis Method [15],
a technique developed to study circuits with memelements into their
natural domain, i.e. the flux-charge representation of the devices. The
application of this method generates an equivalent model of the cir-
cuit, where all the initial conditions of the memelements explicitly
appear in the equations as coefficients. Therefore, the initial conditions
of the system turn out playing the same role of tuning parameters,
2

Fig. 1. The circuit studied in Section 2.1.

i.e. changing their values modifies the circuit dynamics. In general, the
system is able to exhibit different behaviors just because of different
initializations, a phenomenon also referred to as ‘‘bifurcations without
parameters’’ [16,32]. The dynamics exhibited by circuits with ideal
memristor can be also programmed by using a properly designed set
of pulses, as illustrated in [33].

Inspired by Corinto and Forti [16], the problem of the coexistence
of multiple attractors has been addressed in the domain of the original
state variables in [34,35]. The results presented in these works refer
to circuits with ideal memelements, whose presence causes the split
of the state space into a continuum of manifolds, which turn out to
be invariant with respect to the circuits dynamics, i.e. if the system is
initialized onto a certain manifold, then the ensuing trajectory is bound
to remain over there. The state space is also said to be ‘‘foliated’’ into
infinitely many multidimensional surfaces. Conditions for the existence
of this structure as well as a method to derive the mathematical
form of the dynamics actually exhibited onto each invariant manifold
have been provided. An important consequence of these results is that
a circuit with ideal memelements can be completely studied in its
natural domain using just the manifold dynamics, which is described
by a reduced order model whose derivation requires some algebraic
operations involving suitable changes of coordinates.

In this paper, we propose a new way for explaining the coexistence
of multiple attractors and the extreme multistability seen in circuits
with memristors. The mathematical tool that will be used is the concept
of ‘‘first integral of the motion’’ [36], which is a relationship among
the state variables that is constant along each solution of the circuit.
It will be shown that the existence of a first integral is a common
feature for a vast class of circuits featuring an ideal memristor, and that
generalizations to the case of, even multiple, ideal memelements are
straightforward. For these systems the first integral of the motion can
always be written as a nonlinear differential equation of the memristor
internal state, and so, in a sense it describes the evolution of the circuit
as it is seen from the memristor point of view. Notably, this differential
equation has order lower than the original model, and, above all, it
is not autonomous, i.e. it describes a forced dynamics. The nature of
the forcing input will be completely disclosed, because it turns out
to be crucial in the analysis of the dynamics induced by a broader
class of non-ideal memristive devices, which will be introduced later
in this paper. Indeed, when the ‘‘ideality’’ is lost, the first integral of
the motion disappears and thus the related differential equation no
longer holds. Nevertheless, the circuit dynamics is still affected by the
first integral since it obeys a structure where the previous nonlinear
differential equation is no longer alone, but it interacts with other
elements in a feedback interconnected fashion.

Hereafter, an example will be used to illustrate the computation of
the first integral in a very simple circuit with an ideal memristor. The
nonlinear differential equation obtained this way will also be used to
infer some features of the overall dynamics.

2.1. Example: Resistor, capacitor, inductor, and 𝑞-memristor mesh

Consider a mesh featuring a resistor, a capacitor, an inductor, and

an ideal charge-controlled memristor as depicted in Fig. 1, where
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the value 𝑖 represents the mesh current, while the voltages are taken
according to the passive sign convention. Using the notation introduced
in the figure, the resistor, capacitor and inductor are respectively
described by the constitutive equations

𝑣𝑅 = 𝑅𝑖 , 𝑑
𝑑𝑡

𝑣𝐶 = 1
𝐶
𝑖 , 𝑑

𝑑𝑡
𝑖 = 1

𝐿
𝑣𝐿 ,

nd so the Kirchhoff voltage law yields the second order model

𝑑
𝑑𝑡

𝑣𝐶 = 1
𝐶 𝑖

𝑑
𝑑𝑡

𝑖 = − 1
𝐿𝑣𝐶 − 𝑅

𝐿 𝑖 −
1
𝐿𝑣𝑀

. (1)

nstead, the ideal charge-controlled memristor is modeled by

𝑑
𝑑𝑡

𝑞𝑀 = 𝑖

𝑣𝑀 = 𝐺𝑚𝑟(𝑞𝑀 )𝑖
, (2)

here 𝐺𝑚𝑟(⋅) is its memristance and 𝑞𝑀 its charge. Notice that the
ombination of Eqs. (1) describing the linear part of the system and
qs. (2) of the memristor provides the standard third-order autonomous
odel of the circuit. Next, we will illustrate that spotting a first integral

n such a representation will lead to an equivalent but externally forced
educed order model.

Observe that

= 𝐶 𝑑
𝑑𝑡

𝑣𝐶 = 𝑑
𝑑𝑡

𝑞𝑀 , (3)

hich implies that
𝑑
𝑑𝑡

(

𝐶𝑣𝐶 − 𝑞𝑀
)

= 0 .

Integrating this equation, a first integral is finally discovered, and its
form is

𝑣𝐶 = 1
𝐶
𝑞𝑀 +𝑤0 , (4)

where

𝑤0 = 𝑣𝐶 (0) −
1
𝐶
𝑞𝑀 (0) ∈ R (5)

ith 𝑣𝐶 (0) and 𝑞𝑀 (0) denoting the initial conditions of the capacitor
nd the memristor. According to (3), 𝑖 depends on 𝑞𝑀 , while equa-
ion (4) implies that the knowledge of both 𝑤0 and 𝑞𝑀 (𝑡) for 𝑡 ≥ 0

provides the value of 𝑣𝐶 (𝑡) for every 𝑡 ≥ 0. Therefore, these relationships
can be exploited in the Kirchhoff voltage law along the mesh to obtain
𝑣𝐿 as a function of 𝑞𝑀 and 𝑤0:

𝑣𝐿 = − 1
𝐶
𝑞𝑀 −𝑤0 − 𝑅 𝑑

𝑑𝑡
𝑞𝑀 − 𝐺𝑚𝑟(𝑞𝑀 ) 𝑑

𝑑𝑡
𝑞𝑀 . (6)

hen, using the constitutive equation of the inductor and Eq. (3), after
roperly arranging all the terms, we arrive to the following forced
econd order nonlinear differential equation
(

𝐿 𝑑2

𝑑𝑡2
+ 𝑅 𝑑

𝑑𝑡
+ 1

𝐶

)

𝑞𝑀 − 𝐺𝑚𝑟(𝑞𝑀 ) 𝑑
𝑑𝑡

𝑞𝑀 = 𝑤0 , (7)

which describes the dynamic behavior of the memristor charge 𝑞𝑀
enerated by the constant forcing term 𝑤0.

Observe that Eq. (7) is equivalent to a second order system of ordi-
ary differential equations. Indeed, using Eq. (3) it can be formulated
s

𝑑
𝑑𝑡

𝑖 = −𝑅
𝐿
𝑖 − 1

𝐿𝐶
𝑞𝑀 − 1

𝐿
𝐺𝑚𝑟(𝑞𝑀 )𝑖 − 1

𝐿
𝑤0

𝑑
𝑑𝑡

𝑞𝑀 = 𝑖
(8)

hat is just a different way to represent Eqs. (3) and (6). System (8)
escribes the dynamics for initial condition that satisfy (5), and it is
quivalent to (1) and (2) under the same initial configuration. In the
hird order model, however, the dynamics always satisfies (5), which
eans that the trajectory lies on a plane.
3

t

It is worth stressing that Eq. (7) depicts the circuit using a reduced
rder model which is parameterized by the initial conditions that
odulate the forcing term 𝑤0 according to (5). In other words, the

irst integral allows us to describe the circuit dynamics using a set of
implified models whose parametric configurations are related to the
nitial conditions. Moreover, the reduced order dynamics is taken from
he perspective of the memristor itself, in the sense that it is expressed
nly through the variable 𝑞𝑀 . The main advantage of (7) is that it
as gained parameter 𝑤0 to lose one degree in the model order, which
therwise would had been three.

The order reduction can deeply simplify the circuit analysis, as
llustrated hereafter. From (7) it follows that all the equilibrium points
f the circuit are solutions of
1
𝐶
𝑞𝑀 = 𝑤0

for 𝑤0 ∈ R. Notice that the corresponding value of 𝑣𝐶 is zero, because
the fixed point itself lies onto the first integral (see (4)). Moreover,
the constitutive equations of both the capacitor and the memristor
imply that in a steady regime the current must be equal to zero too.
So, the equilibrium points have the form (𝑞𝑀𝑒, 𝑣𝐶𝑒, 𝑖𝑒) = (−𝐶𝑤0, 0, 0),
nd since 𝑤0 can sweep all the real values, they are not isolated
nd describe an infinite straight line. Their stability can be studied
inearizing the parametric reduced order model (8) around the fixed
oints line (𝑖𝑒, 𝑞𝑀𝑒) = (0,−𝐶𝑤0).

To clarify the circuit behavior, assume that

𝑚𝑟(𝑞𝑀 ) = 𝑚1 + 3𝑚3𝑞
2
𝑀 .

hen, the jacobian matrix reads

(𝑖, 𝑞𝑀 ) =

⎡

⎢

⎢

⎢

⎣

−
𝑅 + 𝑚1 + 3𝑚3𝐶2𝑤2

0
𝐿

− 1
𝐿𝐶

1 0

⎤

⎥

⎥

⎥

⎦

and, assuming 𝑅,𝐿, 𝐶 > 0, a fixed point (𝑖𝑒, 𝑞𝑀𝑒) = (0,−𝐶𝑤0) is stable
if

𝑅 + 𝑚1 + 3𝑚3𝐶
2𝑤2

0 > 0 .

f we set 𝑚3 > 0 and 𝑚1 < −𝑅, then the stability depends on the
ondition

2
0 > −

𝑅 + 𝑚1

3𝑚3𝐶2
> 0 ,

which means that for initial conditions such that 𝑤0 in (5) satisfies
his inequality a stable fixed point is experienced. Moreover, if 𝐿 >
𝐶
(

𝑅 + 𝑚1 + 3𝑚3𝐶2𝑤2
0
)2, at

𝑤2
0 = −

𝑅 + 𝑚1

3𝑚3𝐶2
(9)

a Hopf bifurcation ‘‘without parameters’’ occurs (see [37] and refer-
ences therein), and, therefore, somewhere in the range

|𝑤0| <

√

−
𝑅 + 𝑚1

3𝑚3𝐶2
,

imit cycles appear, as much probably as they are close to the bi-
urcation onset. Notably, many of the above computations have been
ade easier thanks to the simplified parametric model (7) (or equiva-

ently (8)) being second order.
Summing up, for proper choices of the circuit parameters, we can

itness quite a complex behavior. Indeed, given an initial configuration
f the circuit, let it be (𝑞𝑀 (0), 𝑣𝐶 (0), 𝑖(0)), if

𝑣𝐶 (0) −
1
𝐶
𝑞𝑀 (0)

|

|

|

|

>

√

−
𝑅 + 𝑚1

3𝑚3𝐶2
,

he circuit evolves towards a fixed point at (−𝐶𝑣𝐶 (0) − 𝑞𝑀 (0), 0, 0).
therwise, limit cycles are expected to appear near the Hopf bifurca-

ion (9).
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Fig. 2. Orbits of the circuit analyzed in Section 2.1. All the trajectories have been
initialized for the same couple (𝑣𝐶 , 𝑖) = (2, 2), but different values of 𝑞𝑀 (green
diamonds). The final points reached by the simulations are marked with red circles.
Different regimes (purple lines) are exhibited by the selected orbits. In particular,
attractive fixed points and attractive limit cycles are reached after the transients.
According to (4) and (5), each trajectory evolves on a different plane of the form
𝑣𝐶 − 1

𝐶
𝑞𝑀 = 𝑤0 = 𝑣𝐶 (0)−

1
𝐶
𝑞𝑀 (0). One of them has been depicted with a wired surface.

For interpretation of the references to color in this figure legend, the reader is referred
o the web version of this article.)

Consider the following configuration in normalized units of measure

= 1 , 𝐿 = 2 , 𝐶 = 1 , 𝑚1 = −2 , 𝑚3 = 1∕3 ,

which yield
√

−(𝑅 + 𝑚1)∕(3𝑚3𝐶2) = 1. In Fig. 2 seven trajectories
starting from the same (𝑣𝐶 (0), 𝑖(0)), but for different values of 𝑞𝑀 (0),
are depicted. The initial conditions of the charge are chosen to span
over both the side of the Hopf bifurcation. The figure shows the
coexistence of attractors. Indeed, depending on the initialization, the
trajectory converges to a fixed point, with different transients, or to a
limit cycle. In Fig. 3 a greater number of initial conditions spanning
an interval larger than the condition for the existence of limit cycles
has been considered. The figure only shows the regime behavior, thus
highlighting the existence of an infinite number of coexisting attractors.

3. First integral equations in circuits with an ideal memristor

The situation presented in the previous example of Section 2.1 is
not a special case. In fact, hereafter, we will develop a technique to
prove the structural existence of a first integral in circuits with an ideal
memristor. Moreover, we will show that the first integral is naturally
associated to a non-homogeneous nonlinear differential equation of
reduced order with respect to the original dynamics in the memristor
state variable, and that the forcing input turns out to be a constant
signal depending on the initial conditions. Such a signal will play a
crucial role in Section 6, where we will extend the proposed analysis
tools to non-ideal memristive devices. Moreover, it will be highlighted
that the constant forcing input spans over the entire real axis, according
to the nature of the memristor characteristic function, and that this
feature is the key for the coexistence of a possibly infinite number of
attractors in the state space of circuits of the class introduced hereafter.

Let 𝛴 be a one port circuit containing only linear elements of any
kind, except for independent voltage and current sources, which are
excluded only for the sake of simplicity. The circuit is depicted in Fig. 4,
where an ideal memristor is connected to the port of 𝛴. Extensions to
different ideal memelements and to multi-port versions of circuit 𝛴 are
straightforward, and they will be shortly discussed in the next section.

Denote the voltage of 𝛴 measured between the terminals of its port
4

as 𝑣𝛴 , and let 𝑖𝛴 be the related current, taken using the active sign O
Fig. 3. Solutions of the circuit studied in Section 2.1. The blue curves are the regime
orbits obtained initializing the circuit on different first integrals. As one can imagine,
the system has a continuous envelope of limit cycles, a case of coexistence of attractors
which boils down to ‘‘extreme multistability.’’ The circuits has also an infinite number
of fixed points arranged along a straight line. The green circles are fixed points, which
are ‘‘transversally’’ attractive with respect to that line, while the red circles denote
‘‘unstable’’ fixed points. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 4. Schematics of a circuit featuring only one memristor. The memristor is isolated,
so that the remaining part of the circuit can be addressed as a one-port device connected
to it.

convention. Under the previous assumptions, circuit 𝛴 enforces a rela-
tionship between 𝑣𝛴 and 𝑖𝛴 , which involves multiple derivatives and
olynomial rules. To be precise, if we denote the derivative operator
s

= 𝑑
𝑑𝑡

,

such a relationship can be formulated as

𝛤𝑣()𝑣𝛴 (𝑡) = 𝛤𝑖()𝑖𝛴 (𝑡) ,

here 𝛤𝑣(⋅) and 𝛤𝑖(⋅) are assumed to be coprime polynomials. Notice
hat the relative order between 𝛤𝑣 and 𝛤𝑖 defines the causality of 𝛴:
f the degree of 𝛤𝑣 is strictly higher than that of 𝛤𝑖, then 𝛴 induces a
trictly causal relationship from 𝑖𝛴 to 𝑣𝛴 , and vice versa. When their
egree is just the same, the relationship is causal, but not strictly, from
oth the directions.

Since we want to deal with causal operators, let us introduce the
ollowing notation. Denote as 𝑄() the polynomial with higher (or, at
ost, equal) degree between 𝛤𝑣() and 𝛤𝑖(), and let 𝑃 () represent

he other one. If 𝑃 is 𝛤𝑣, then let 𝑢 denote 𝑣𝛴 , and 𝑦 the current 𝑖𝛴 .

therwise, let 𝑢 represent 𝑖𝛴 , and 𝑢 the voltage 𝑣𝛴 . Hence, the causal
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relationship described by circuit 𝛴 can be expressed as

𝑦(𝑡) =
𝑃 ()
𝑄()

𝑢(𝑡) = 𝐿()𝑢(𝑡) ,

where 𝑄 has degree 𝑛 and 𝑃 degree 𝑚 ≤ 𝑛. Notice that the two
polynomials can always be rewritten in the form

𝑃 () = 𝑏𝑚𝑚 + 𝑏𝑚−1𝑚−1 +⋯ + 𝑏1 + 𝑏0 ,

𝑄() = 𝑛 + 𝑎𝑛−1𝑛−1 +⋯ + 𝑎1 + 𝑎0 .

We also enforce the working hypothesis 𝑄(0) = 𝑎0 ≠ 0, which prevents
𝐿() from exhibiting a native integral effect.

Consider now the ideal memristor connected to 𝛴, and assume for
this device the passive sign convention. The memristor equations, then,
reads
{

𝑥 = 𝑦
𝑢 = 𝐺(𝑥)𝑦

. (10)

The state variable 𝑥 can alternatively be 𝑞𝑀 or 𝜑𝑀 depending on the
memristor being charge- or flux-controlled. Notably, the nature of 𝛴
can restrict the types of memristor that can be connected to it. In
particular, observe that 𝑥 is equal to the flux 𝜑𝑀 , if 𝑦 is 𝑣𝛴 , while 𝑥
is the charge 𝑞𝑀 , when 𝑦 is 𝑖𝛴 . Therefore, if 𝛴 is strictly causal, the
nature of 𝑥 and 𝑦 is uniquely fixed and only one kind of ideal memristor
can be connected to it. Otherwise, if 𝛴 is causal, but not strictly, 𝑣𝛴
and 𝑖𝛴 can be switched in the role of 𝑥 and 𝑦, and so both the flux-
controlled and the charge-controlled memristor can be used. Assume
that the nonlinear characteristic 𝐺(⋅) is the derivative of a function 𝐻(⋅),
so that

𝑢 = 𝐺(𝑥)𝑦 = 𝐻(𝑥) .

Function 𝐻 must be differentiable a sufficient number of times to sat-
isfy the consistency of the model. Hence, the complete circuit dynamics
is described by

𝑦 − 𝐿()𝐻(𝑥) = 𝑦 −
𝑃 ()
𝑄()

𝐻(𝑥) = 0 . (11)

Observe that 𝑦 = 𝑥, and recall that 𝑄(0) ≠ 0, so that also 𝑄() and 
are coprime. Then, the application of the operator 𝑄() to both of the
sides brings to

𝑄()𝑥 − 𝑃 ()𝐻(𝑥) = 0 , (12)

which is a nonlinear homogeneous differential equation of degree 𝑛+1
in 𝑥, i.e. it can be formulated as


(

𝑛+1𝑥,𝑛𝑥,… ,𝑥, 𝑥
)

= 0 (13)

for some proper function  ∶ R𝑛+2 → R. Notice that the solutions of
such an equation are described by trajectories in a (𝑛 + 1)-dimensional
state space. A common choice for the state space is

 =
{

(𝑥,𝑥,… ,𝑛𝑥)𝑇 ∈ R𝑛+1} . (14)

Such a space can be used only if the operator 𝑃 ()𝐻(⋅) is well-posed,
that depends on the regularity of the nonlinearity 𝐻(⋅). In the end
the condition for  being a proper state space is just an extension
of the one making the memristor model consistent, and that is why
this choice is so widespread. Then, in the rest of the paper  will
always be assumed as in (14). Notice that the variables of  may not
represent electric quantities strictly related to the single elements of the
circuit. Nonetheless, if 𝛴 is a properly defined circuit, it always exists a
linear invertible transformation, that changes its natural state variables,
i.e. the voltages of the capacitors and the currents of the inductors, into
those of , and vice versa (see [34]).

Let us now integrate the differential equation (12) to compute its
first integral. This is formally done by applying to both the sides the
operator −1, which is defined as the inverse operator of , i.e. the
one satisfying

−1 = −1 = 𝐼𝑑 ,
5

where 𝐼𝑑 represents the identity operator. Since  and −1 commute
by assumption, Eq. (12) becomes

𝑄()𝑥 − 𝑃 ()𝐻(𝑥) = 𝑤 ,

where 𝑤 is a signal satisfying

𝑤(𝑡) = 0 .

Therefore, it is straightforward to verify that 𝑤(𝑡) = 𝑤0, 𝑤0 ∈ R, for all
𝑡. This makes the above equation equal to

𝑄()𝑥 − 𝑃 ()𝐻(𝑥) = 𝑤0 (15)

hat is a first integral of the dynamics, because it involves the variable 𝑥
nd at most its first 𝑛 derivatives, i.e. it defines a constant relationship
mong the state coordinates of the space . Indeed, Eq. (15) can be
ewritten in the form
(

𝑛𝑥,… ,𝑥, 𝑥
)

= 𝑤0 (16)

for some proper nonlinear function 𝛺 ∶ R𝑛+1 → R acting as a structural
condition each trajectory in  has to satisfy always and everywhere.
Eq. (16) is also connected to the existence of invariant manifolds in the
circuit state space (see [34]).

Notably, the first integral (15) also represents a nonlinear non-
homogeneous (or forced) differential equation of degree 𝑛 in the vari-
ble 𝑥. The ‘‘artificial’’ input 𝑤0 is constant, and its value deeply affects
he dynamics actually exhibited by the circuit. Varying 𝑤0 modifies its

behavior, for instance, by changing the displayed attractor.
Eq. (15) is a first integral of the motion, and it also describes

the dynamics of the complete circuit. Consequently, a reduced order
model in the coordinates (𝑥,𝑥,… ,𝑛𝑥) and parametric in the initial
configuration through 𝑤0 is sufficient to represent the whole system.
Such a model reduction turns out to be a powerful tool for the circuit
analysis, as it will be illustrated in Sections 3.2, 3.3, and 3.4.

3.1. Technical remarks and extensions

In this section a number of technical observations will be provided
to highlight how the first integral affects the inner structure of the
system dynamics, and to stress the role of the elements it is made up
of.

First, notice that the first integral exists because

𝑄()𝑥 − 𝑃 ()𝐻(𝑥) = 0
−1
←←←←←←←←←←←←←←←←←→ 𝑄()𝑥 − 𝑃 ()𝐻(𝑥) = 𝑤0 ∈ R

eans that
(

𝑥,𝑥,… ,𝑛𝑥,𝑛+1𝑥
)

= 0
−1
←←←←←←←←←←←←←←←←←→ 𝛺

(

𝑥,𝑥,… ,𝑛𝑥
)

= 𝑤0 ∈ R

n the (𝑛+1)-dimensional space , where (16) is an invariant manifold.
herefore, the same space  is just where the features induced by the
irst integral take form and become evident. Moreover, since Eq. (15)
escribes the whole system through a reduced order model in the
oordinates (𝑥,𝑥,… ,𝑛𝑥), there exists a mapping from the natural
ariables of the circuit and . As a byproduct, the initial configura-
ions at 𝑡 = 0 of both 𝛴 and the memristor translate into a certain
𝑥(0),𝑥(0),… ,𝑛𝑥(0)), and so 𝑤0 can be computed as

0 = 𝛺
(

𝑥(0),𝑥(0),… ,𝑛𝑥(0)
)

. (17)

Notably, if, in addition to being sufficiently regular, 𝐻(𝑥) is also
roperly defined for all 𝑥 ∈ R, then for any 𝑤0 ∈ R there exist initial
onditions, i.e., (𝑥(0),𝑥(0),… ,𝑛𝑥(0))𝑇 ∈ R𝑛+1, such that (17) holds,
hanks to the assumption 𝑚 ≤ 𝑛 on the degrees of 𝑃 and 𝑄. Clearly,
ll the states belonging to the manifold defined by (16) share the same
alue of 𝑤0.

Moreover, Eq. (16) also implies that 𝑤0 acts as an ‘‘index’’ that
elects which first integral of the motion is actually followed by the
ircuit dynamics. Therefore, since it plays the role of a forcing input
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for the reduced order dynamics (15), it deeply affects the behavior
exhibited along the first integral. If for different values of 𝑤0 the
forced nonlinear dynamics (15) exhibits distinct regimes, then the state
space of the circuit comprises as many coexisting attractors. However,
changing the index 𝑤0 is not the only way to modify the regime.
Indeed, for a fixed 𝑤0 the reduced order nonlinear dynamics (15)
can be multistable by itself, and therefore different initial conditions
(𝑥(0),𝑥(0),… ,𝑛𝑥(0))𝑇 ∈ R𝑛+1 related to the very same 𝑤0 can
converge to different attractors. Hence, always starting the circuits from
the same 𝑤0 may be not enough to uniquely determine its regime.
This is a peculiar property that greatly increases the capability of
the complete system to generate very rich and complex multistable
scenarios.

The existence of the first integral of the motion has been proved
for the simple circuit depicted in Fig. 2, but it can be proved in an
analogous way even in far more complex configurations. Hereafter,
an outline of the techniques to extend the previous results to more
complicated circuits is presented.

The first extension consists in considering the same circuit structure,
but substituting the ideal memristor with any other ideal memelement
(see [34,38] for their mathematical modeling). In such a configuration,
an analogous result about the existence of a first integral of the motion
can be proved using a method almost identical to the previous one. So,
our procedure turns out general with respect to any ideal memelement.

Another interesting extension is when 𝛴 is a multi-port version
of the circuit considered so far and many ideal memelements are
connected to it. In this case we get a couple (𝑢𝑖, 𝑦𝑖) for each port
and 𝐿() is replaced by a matrix of similar operators, leading to as
many equations of the form (11) where each memelement adds its own
contribution. Exploiting the constitutive equations of the memelements
and properly collecting the  operator, the differential equations can
e put in an integrable form. Then, since the port variable 𝑦𝑖 possibly

depend on all the 𝑢𝑖, there exist changes of coordinates which cast
the complete dynamics into a single extended state space of minimal
degree, where the previous first integrals of the motion merge into a
unique higher order structure of invariant manifolds.

Circuit 𝛴 can be extended to include voltage and current sources.
In this case the analysis can be carried on the same way by pulling all
the sources out of 𝛴 and considering it as a multi-port connected to all
of them and to the memelements. Then, after a proper rearrangement
of the differential equations, all the contributions of the sources can
be pushed to the right hand sides of otherwise homogeneous equa-
tion similar to (13). Hence, after the integration the forcing external
inputs are not constant terms of the form 𝑤0 any more, but they
are time-varying signals depending on the sources. In this case the
existence of the integrals of the motions depends on the sources, and
in particular on their capability to keep these forcing external inputs
constant. Nevertheless, if the sources can be modeled as the outputs of
known autonomous models, then the explicit dependence on the time
can be removed, and the first integral structure comes out again (see
also [17]). From a different point of view, the dynamics in presence of
sources can be seen as the ensemble of a state space foliated in invariant
manifolds and a driving mechanism that forcibly makes the trajectory
switch from one to another.

Using the same pushing out technique, similar results can be pos-
sibly derived even when other nonlinear electronic components, other
than the memelements, are present in the circuit. Indeed, each of them
can be modeled as connected to 𝛴 through a dedicated port, and so
its contribution appears as a port equation. For the sake of simplicity
but without loss of generality, assume they do not add any other state
variable. Then, their port equations just provide nonlinear relationships
which add nonlinear contributions to the remaining equations having
the form (12). Therefore, if they do not prevent collecting the deriva-
tive operator , a first integral of the motion can be spotted again.
This demonstrates how general the mechanism that generates the first
integrals is, and justifies why their existence is very common in circuits
6

with ideal memelements.
Fig. 5. The circuit illustrated in Section 3.2.

3.2. Example: Resistor, capacitor, inductor, and 𝜑-memristor cut

Consider a circuit with a single cut consisting of a resistor, a capaci-
tor, an inductor, and a flux-controlled memristor as in Fig. 5. Moreover,
let 𝑅, 𝐶, and 𝐿 be the resistance, capacitance, and inductance of the
previous elements, which are all connected to the same two terminals,
forming the circuit 𝛴 as depicted in the figure. Denoting as 𝑣𝛴 its
voltage, straightforward computations lead to the sought input–output
formulation of the circuit:

𝑣𝛴 = −

1
𝐶


2 + 1
𝑅𝐶

 + 1
𝐿𝐶

𝑖𝛴 .

Then, in this case necessarily 𝑦 = 𝑣𝛴 , 𝑢 = 𝑖𝛴 , and

𝐿() =
− 1
𝐶


2 + 1
𝑅𝐶

 + 1
𝐿𝐶

=
𝑃 ()
𝑄()

.

The only memristor suitable to be connected to this 𝛴 is the flux-
ontrolled one, whose equations read

𝜑𝑀 = 𝑣𝛴 .

For the sake of simplicity, let us enforce the hypothesis that the
memconductance is an integrable function, i.e.

𝐺𝑚𝑐 (𝜑𝑀 ) =
𝜕𝐻𝑚𝑐 (𝜑𝑀 )

𝜕𝜑𝑀
.

Therefore, it holds that

𝑖𝛴 = 𝐺𝑚𝑐 (𝜑𝑀 )𝑣𝛴 = 𝐻𝑚𝑐 (𝜑𝑀 ) .

Comparing this model with (15), it directly follows that 𝑥 = 𝜑𝑀 . Hence,
the sought first integral has the form
(

2 + 1
𝑅𝐶

 + 1
𝐿𝐶

)

𝜑𝑀 + 1
𝐶
𝐻𝑚𝑐 (𝜑𝑀 ) = 𝑤0 .

Assume now that

𝐻𝑚𝑐 (𝜑𝑀 ) = 𝑚1𝜑𝑀 + 𝑚3𝜑
3
𝑀 ,

𝐺𝑚𝑐 (𝜑𝑀 ) = 𝑚1 + 3𝑚3𝜑
2
𝑀 .

Then, the first integral boils down to

2𝜑𝑀 +
1 + 𝑚1𝑅

𝑅𝐶
𝜑𝑀 + 1

𝐿𝐶
𝜑𝑀 +

3𝑚3
𝐶

𝜑2
𝑀𝜑𝑀 = 𝑤0 . (18)

Since

𝜑𝑀 = 𝑣𝛴 = 𝑣𝐶 ,

2𝜑𝑀 = 𝑣𝐶 = 1
𝐶
𝑖𝐶 = − 1

𝐶

(

𝐺𝑚𝑐 (𝜑𝑀 )𝑣𝐶 + 1
𝑅
𝑣𝐶 + 𝑖𝐿

)

,

he first integral can be represented in the natural state space (𝑣𝐶 , 𝑖𝐿,
𝑀 ) of the circuit as

− 1 (

𝑚 𝑣 + 3𝑚 𝜑2 𝑣 + 1 𝑣 + 𝑖
)

𝐶 1 𝐶 3 𝑀 𝐶 𝑅 𝐶 𝐿
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Fig. 6. Orbits of the circuit studied in Section 3.2, obtained initializing the system on
different first integrals. The figure portrays only the regime trajectories. The ending
points of the simulated solutions are marked with red circles. The situation illustrates
the coexistence of infinitely many attractors in the forms of limit cycles and fixed
points. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

+
1 + 𝑚1𝑅

𝑅𝐶
𝑣𝐶 + 1

𝐿𝐶
𝜑𝑀 +

3𝑚3
𝐶

𝜑2
𝑀𝑣𝐶 = 𝑤0

which boils down to the 2-dimensional invariant manifold:

𝜑𝑀 − 𝐿𝑖𝐿 = 𝐿𝐶𝑤0 .

Fig. 6 depicts the regimes reached for different values of 𝑤0, when
for the circuit configuration in normalized units of measure is

𝑅 = 1 , 𝐿 = 2 , 𝐶 = 1 , 𝑚1 = −2 , 𝑚3 =
1
3
.

The admissible values of 𝑤0 are infinite, since 𝑤0 ∈ R, and, indeed,
the exhibited attractors count not isolated fixed points, as well as not
isolated limit cycles as shown in Fig. 6. The circuit, then, displays
‘‘extreme multistability,’’ in the sense that it has an infinite number of
coexisting not isolated attractors of various nature.

It is worth stressing that this infinite structure of attractors has been
spotted thanks to the reduced order model (18) that is parametric in
the initial configuration of the circuit. Then, the existence of a first
integral of the motion and the corresponding capability of describing
the dynamics in terms of trajectories evolving onto invariant manifolds
are powerful tools for the analysis of these kind of circuits. The implica-
tions of the peculiar results found in this example will be investigated in
the next section for the entire class of circuits with ideal memelements
featuring first integrals of the motions.

3.3. Coexistence of attractors and extreme multistability reloaded

According to the theory developed so far, the behavior of a circuit
with an ideal memristor is completely described by a reduced order
dynamics, that describes how it evolves, as it is seen from the mem-
ristor point of view. Notably, the reduced order model is a nonlinear
non-homogeneous differential equation of the state variable of the
memristor, and it turns out to be just the first integral of the trajectory.
The forcing input is a constant signal depending exclusively on the
initial conditions of the circuit, and it is crucial in defining the actual
motion exhibited by the system in the state space. In fact, it strongly
affects the dynamics, as it is capable of changing the number and
the nature of the attractors revealed by the circuit regime. In this
7

perspective, the forcing input acts as a tuning parameter, but it is 𝑖
Fig. 7. The elementary circuit illustrated in Section 3.4.

more precise to consider it just as the index of the actual first integral.
Indeed, different initial conditions can cast the circuit on the same first
integral, but this latter can be made of several distinct trajectories,
and, therefore, the one actually exhibited by the system depends on
the starting point.

The behaviors associated to the each first integral are distinct,
because the related forcing input alters the layer where the solutions
of the reduced order dynamics are confined to lie. Moreover, each first
integral is a unique composition of trajectories with their own nature.
For instance, as already observed in the previous examples, the same
system can reveal a steady state, when initialized on a certain first
integral, and a limit cycle when it is started on a different one, but
this situation can occur even within the same first integral. Hence, the
possible regime, and so the attractor, reached by the complete circuit
is strictly dependent on the initial conditions, which define not only
the first integral of the motion, but also the exact trajectory over it.
Therefore, the number of the possible attractors, which exist under
the same circuit configuration, is tied to the regimes reached by the
reduced order non-homogeneous differential equation as the constant
forcing input 𝑤0 varies. See also Sections 3.1 and 3.2, where this
scenario has already been underlined.

When the system has an infinite continuum of attractors, they can
be scanned just by varying the initial conditions, and, since they are not
bound to share the same nature, one can pass from a type to another
as the initialization is varied, provided that the first integral index is
changed, as well. This scenario is exactly what is called ‘‘bifurcation
without parameters’’ [16,32], and it is the main ingredient for the
‘‘extreme multistability’’ recipe. Indeed, this latter is nothing more
than a situation, where in neighboring first integrals reside different,
and possibly complicated, attractors, such as chaotic attractors with
different scroll structures.

Then, the coexistence of multiple attractors in a broad class of
circuits with ideal memelements is a structural property, and not a
special case. In particular, the infinite continuum of attractors, which
forms the extreme multistability exhibited by several examples in the
literature, depends only on the nature of the nonlinear characteristic
of the memelements, that, nonetheless, provides such a situation under
very mild conditions.

In the next section an example will be used to illustrate the struc-
ture of the first integrals of a circuit with a memristor, and how the
dynamics is affected by the stable and unstable solutions on them.

3.4. Example: Resistor, capacitor, and 𝜑-memristor mesh

Consider a simplified version of the circuit studied in Section 2.1,
i.e., a mesh featuring a resistor, a capacitor, and an ideal flux-controlled
memristor as depicted in Fig. 7. Let 𝑖 be the mesh current, and assume
the passive sign convention for the voltages. The sought circuit 𝛴
consists of the series of a resistor with resistance 𝑅 and a capacitor
with capacitance 𝐶. Taking 𝑖𝛴 = 𝑖 and 𝑣𝛴 = 𝑣𝑀 to follow the same
rocedure used so far, the corresponding input–output model assumes
he form
𝛴 = 𝐶𝑣𝐶 = 𝐶(−𝑣𝛴 − 𝑣𝑅) = −𝐶(𝑣𝛴 + 𝑅𝑖𝛴 )
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which boils down to

𝑖𝛴 = − 𝐶
𝐶𝑅 + 1

𝑣𝛴 .

he model of the ideal flux-controlled memristor with memconduc-
ance 𝐺𝑚𝑐 (⋅) reads

𝜑𝑀 = 𝑣𝑀
𝑖𝑀 = 𝐺𝑚𝑐 (𝜑𝑀 )𝑣𝑀

, (19)

here 𝜑𝑀 is the memristor’s flux and 𝑖𝑀 = 𝑖. Therefore, 𝑦 = 𝑣𝛴 and
= 𝑖𝛴 , which imply that

() = −𝐶𝑅 + 1
𝐶

=
𝑅 + 1

𝐶


=
𝑃 ()
𝑄()

.

Notice that the relative degree of 𝐿() is zero, and so circuit 𝛴 can
finely work with a charge-controlled memristor too.

We also assume that the memconductance 𝐺𝑚𝑐 (⋅) is an integrable
function, and we denote its integral as 𝐻𝑚𝑐(⋅), so that

𝐻𝑚𝑐 (𝜑𝑀 ) = 𝑑
𝑑𝑡

𝐻𝑚𝑐 (𝜑𝑀 ) =
𝜕𝐻𝑚𝑐 (𝜑𝑀 )

𝜕𝜑𝑀

𝑑𝜑𝑀
𝑑𝑡

= 𝐺𝑚𝑐(𝜑𝑀 )𝑣𝑀 = 𝑖 .

The first integral (15) becomes

𝑥 − 𝑅𝐻𝑚𝑐(𝑥) −
1
𝐶
𝐻𝑚𝑐 (𝑥) = 𝑤0 , (20)

where 𝑥 = 𝜑𝑀 . Notice that 𝑥 = 𝜑𝑀 = 𝑣𝑀 = 𝑣𝛴 and 𝑅𝐻𝑚𝑐 (𝜑𝑀 ) =
𝑅𝑖 = 𝑣𝑅. So it follows that (20) boils down to

𝑣𝐶 − 1
𝐶
𝐻𝑚𝑐 (𝜑𝑀 ) = 𝑤0 (21)

for some constant 𝑤0 whose actual value can be computed from the
circuit initial conditions as

𝑤0 = 𝑣𝐶 (0) −
1
𝐶
𝐻𝑚𝑐 (𝜑𝑀 (0)) .

It is worth stressing that the first integral (20) is a geometric locus,
where the system state is bound to remain after the initialization.

The existence of the first integral has important consequences for
the circuit dynamics, because the natural state variables are not inde-
pendent, but they are tied together. For instance, in this case, the value
of 𝑣𝐶 depends on that of 𝜑𝑀 , given the circuit initialization represented
by 𝑤0, i.e., the trajectories move along 1-dimensional manifolds in R2.

ence, to describe the circuit behavior it is sufficient to study the
volution of 𝜑𝑀 . In order to reduce the complete dynamics to that of
𝑀 only, derive 𝑣𝑀 from the Kirchhoff voltage law and use it into the
econd constitutive equation of the memristor to obtain

= 𝐺𝑚𝑐 (𝜑𝑀 )(−𝑣𝐶 − 𝑅𝑖) .

ence, excluding the special case 1+𝑅𝐺𝑚𝑐 (𝜑𝑀 ) = 0 where the solution
s forced at 𝑣𝐶 = 0, in general it holds true that

= −
𝐺𝑚𝑐 (𝜑𝑀 )

1 + 𝑅𝐺𝑚𝑐 (𝜑𝑀 )
𝑣𝐶 . (22)

Then, the first constitutive equation of the memristor becomes

𝜑𝑀 = −𝑣𝐶 − 𝑅𝑖 = −𝑣𝐶 +
𝑅𝐺𝑚𝑐 (𝜑𝑀 )
1 + 𝑅𝐺(𝜑𝑀 )

𝑣𝐶 = −
𝐻𝑚𝑐(𝜑𝑀 ) + 𝐶𝑤0

𝐶
(

1 + 𝑅𝐺𝑚𝑐(𝜑𝑀 )
) .

Hence, from the evolution of 𝜑𝑀 alone, we get the complete behavior
of the circuit thanks to (21).

The existence of the first integral provides remarkable simplifica-
tions in the analysis of the dynamics, which has been reduced to just a
single first-order differential equation. To begin with, observe that any
value 𝜑, satisfying 𝐻𝑚𝑐 (𝜑)∕𝐶+𝑤0 = 𝑣𝐶 = 0, also implies that 𝑑

𝑑𝑡𝜑𝑀 = 0.
herefore, the circuit has as many equilibrium points, as the solutions
f this condition for 𝑤0 spanning the real axis. Then, the fixed points
lways have the form (𝜑𝑀 = 𝜑, 𝑣𝐶 = 0) for any proper value of 𝜑,

which implies that, depending on the nature of 𝐻𝑚𝑐 (𝜑), they can be
not isolated.
8

The analysis of the system trajectories turns out simplified as well.
Remember, that in the state space (𝜑𝑀 , 𝑣𝐶 ) the trajectories are bound
to stay on their first integral, i.e. they satisfy 𝑣𝐶 = 𝐻𝑚𝑐 (𝜑𝑀 )∕𝐶 + 𝑤0,
where 𝑤0 is fixed by the initial conditions of the circuit. Then, the first
integral is a curve swept according to the sign of 𝜑𝑀 , or equivalently
the sign of
𝐻𝑚𝑐 (𝜑𝑀 ) + 𝐶𝑤0
1 + 𝑅𝐺𝑚𝑐(𝜑𝑀 )

. (23)

When the sign of (23) is positive, the trajectory moves along the first
integral in the direction of the negative values of 𝜑𝑀 , and towards the
positive ones otherwise.

Notice that depending on the form of 𝐻𝑚𝑐 (⋅) and on the value of
0, the graph of curve (20) may pass through one or more equilibrium
oints, which will divide it into branches. Therefore, a first integral
an be a single trajectory as well as the ensemble of several trajectory
onnected by fixed point, i.e., heteroclinic orbits [39]. Since the ending
oint of each branch can be different or it could even be at the infinity,
he regime exhibited by the circuit not only depends on the first integral
here it has been initialized, but also on the specific point on it.

To fix the ideas, assume that

𝑚𝑐 (𝜑𝑀 ) = 𝑚1𝜑𝑀 + 𝑚3𝜑
3
𝑀 , (24)

𝐺𝑚𝑐 (𝜑𝑀 ) = 𝑚1 + 3𝑚3𝜑
2
𝑀 . (25)

Since the initial conditions 𝜑𝑀 (0) and 𝑣𝐶 (0) can be any real value, also
he first integral constant does so, i.e. 𝑤0 ∈ R. Therefore, the fixed

points are represented by the couples (𝜑𝑀 = 𝜑, 𝑣𝐶 = 0), where 𝜑
satisfies

𝑚1𝜑 + 𝑚3𝜑
3 + 𝐶𝑤0 = 0

as 𝑤0 sweeps all the real values. Roughly speaking, the equilibrium
points are given by the intersections of a cubic function of 𝜑 with
the axis 𝑣𝐶 = 0. It is straightforward to check that 𝜑 ∈ R, which
mplies that all the axis 𝑣𝐶 = 0 is made of not isolated fixed points.
oreover, it is worth observing that any first integral is the ensemble

f different trajectories. Indeed, assume the circuit is initialized so
hat 𝑣𝐶 (0) − 𝐻𝑚𝑐 (𝜑𝑀 (0))∕𝐶 = 𝑤0. Then, the system state evolves on
𝐶 − 𝐻𝑚𝑐(𝜑𝑀 )∕𝐶 = 𝑤0, whose intersections with the axis 𝑣𝐶 = 0 are

fixed points (one or three), while the branches obtained by these cuts
are curves (two or four branches), where the state evolves according to
the sign of

𝑚1𝜑𝑀 + 𝑚3𝜑3
𝑀 + 𝐶𝑤0

1 + 𝑚1𝑅 + 3𝑚3𝑅𝜑2
𝑀

.

otice that, if 𝑅 > 0, 𝑚3 > 0 and
1
𝑅

< 𝑚1 < 0 ,

then, the previous condition reduces to evaluate the sign of

𝑚1𝜑𝑀 + 𝑚3𝜑
3
𝑀 + 𝐶𝑤0 ,

that is clearly related to the first integral (21).
Fig. 8 depicts the layered structure of the trajectories in the plane

(𝜑𝑀 , 𝑣𝐶 ), highlighting some first integrals and assuming that the circuit
is configured according to the following parameters in normalized units
of measure:

𝑅 = 0.5 , 𝐶 = 2 , 𝑚1 = −1 , 𝑚3 = 1∕3 . (26)

The trajectories above the axis 𝑣𝐶 = 0 are swept from the right to the
left, while the state move in the opposite direction on those below.
Observe that the fixed points on 𝑣𝐶 = 0, whose coordinate 𝜑𝑀 belongs
o (−∞,−1) ∪ (1,∞), are ‘‘transversally’’ stable, because the trajectories
pproach them asymptotically following the first integrals. It is worth
tressing that this feature is an orbital stability property, because any
erturbation ‘‘transverse’’ to the first integral curve is never absorbed
ack. The equilibrium points with 𝜑𝑀 ∈ (−1, 1), instead, are ‘‘transver-

sally’’ unstable, because two branches of the first integral diverge from
them.
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Fig. 8. Trajectories portrait of the circuit illustrated in Section 3.4 and depicted in
Fig. 7. The ‘‘s’’-shaped gray curves are examples of first integrals. Their intersections
with the horizontal axis 𝑣𝐶 = 0 provide the fixed points. Since the solutions move
from right to left on the upper semi-plane, and from left to right otherwise, the fixed
points on the green branches are always approached in an attractive manner, while
those on the red ones are unstable to local perturbations. The red diamonds represent
the starting points of the portrayed trajectories. The purple solutions are heteroclinic
orbits. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

4. Energetic characterization of ideal memristors

In this section we investigate the energetic behavior of circuits
with an ideal memristor in the light of the previous discussion on
their first integral. Such an insight turns out necessary, because the
structural existence of a first integral makes the circuits with ideal
memristors very close to Hamiltonian systems (see, .g., [40]), where the
first integral is usually caused by a conservation law, often related to
the energy. So, we believe a further investigation of what is conserved
in an ideal memristor circuit is important as much as its energetic
characterization.

To this aim, consider the circuit of Section 3.4 as an example.
First, observe that according to the standard definition the resistor
is passive, while the capacitor is reactive. About the memristor, in-
stead, the situation is more complicated. Indeed, parameters (26) make
memconductance (25) negative for 𝜑𝑀 ∈ (−1, 1), so that the second
constitutive equation of memristor model (19) implies

𝑖𝑀𝑣𝑀 = 𝐺𝑚𝑐 (𝜑𝑀 )𝑣2𝑀 , (27)

which describes energy absorption when 𝜑𝑀 ∈ (−∞,−1) ∪ (1,∞),
and energy generation for 𝜑𝑀 ∈ (−1, 1). An element featuring such a
behavior is often referred to as ‘‘locally active,’’ and its implementation
requires an embedded generator. Then, it is important to ascertain
which kind of relationship the memristor can set up with the other
elements, and if there is evidence of a phenomenon such as energy
storage.

Let us consider the following experiments. For starters, initialize
the circuit in (𝜑𝑀 , 𝑣𝐶 ) = (1, 0). Since it is a fixed point, the circuit
will exhibit a steady state response. Then, let us perturb this initial
condition increasing 𝜑𝑀 over 1 by a small quantity, but remaining onto
the first integral passing for that same equilibrium point. Denote the
new initial condition as A, see Fig. 8. According to the circuit dynamics,
the solution evolves along its first integral, and the dynamics of 𝑣𝐶 is
such that the system proceeds backwards to the previous fixed point.
So, this perturbation along the first integral of the motion caused the
displacement to be reabsorbed into the original steady state. However,
if the perturbation along the same first integral starts from a 𝜑 lower
9

𝑀

than 1, namely B in the figure, even for arbitrary small displacements,
the solution evolves towards the steady state marked as B*. Notice that
the different behavior is due the initialization on two distinct branches
of the first integral, which have different ending points. In particular,
the second branch from B to B* is a heteroclinic orbit.

Consider now a similar experiment, but performed around the fixed
point in (𝜑𝑀 , 𝑣𝐶 ) = (0, 0). As before, let us perturb the equilibrium along
the first integral using two different displacements, one for each side of
the steady state. The corresponding starting points are marked in Fig. 8
as C and D. When the circuit is initialized in C, it moves towards lower
values of 𝜑𝑀 and it eventually lands in (−1.732, 0). Conversely, when
the initial condition is set in D, the solution moves for higher values
and it finally reaches (1.732, 0). Hence, the exhibited behavior is very
different depending on the side the perturbation is applied to.

The above experiments underline that the first integral is in general
split into branches separated by fixed points characterized by non triv-
ial stability features, as for the ‘‘saddle’’ and the ‘‘unstable’’ equilibria
above. Some of these branches, for instance, are heteroclinic orbits.
Then, as already highlighted, the first integral is not a ‘‘single entity’’
with a unique dynamical characterization, but, rather, several kinds
of trajectories can be embedded into it, each one featuring a different
behavior.

To investigate the energetic properties of the circuit, let us consider
the powers exchanged by the resistor, the capacitor and the memristor
during the previous experiments. Taking into account equation (22),
the powers (in normalized units of measure) of the three elements along
the branches mentioned before are given by

𝑖𝑣𝑅 = 𝑅𝑖2 =
𝑅𝐺2(𝜑𝑀 )

(1 + 𝑅𝐺(𝜑𝑀 ))2
𝑣2𝐶 ,

𝑖𝑣𝐶 = −
𝐺(𝜑𝑀 )

1 + 𝑅𝐺(𝜑𝑀 )
𝑣2𝐶 ,

𝑖𝑣𝑀 = −𝑖𝑣𝐶 − 𝑖𝑣𝑅 =
𝐺(𝜑𝑀 )

(1 + 𝑅𝐺(𝜑𝑀 ))2
𝑣2𝐶 .

Figs. 9A and 9B depict those powers during the evolutions starting,
respectively, from A and B. In the first case, all the energy is provided
by the capacitor, whose load depends on the initialization. The resistor
and the memristor consume that energy until a steady state is reached,
so the memristor acts exactly as a resistance. In the second case,
instead, the capacitor has almost no energy stored, and the initial
dynamics is sustained by the memristor, which provides energy to both
the resistor and the capacitor, that stores it for the last part of the
trajectory, when the memristor helps the resistor to dissipate it. Since
the energetic balance of the capacitor is zero, all the energy is generated
by the memristor, and it is dissipated by the resistor and the memristor
itself.

Figs. 9C and 9D show the evolution of the powers, while the circuit
follows the two different branches of the same first integral starting
from C or D. As one can notice, the power profiles of the three elements
are the same in both the cases. That is, indeed, expected, because 𝐺 is
even and the two branches are odd. What is important here, it is that
two identical energetic behaviors bring the circuit into two different
final steady states, starting (close) from the same initial condition. As
in the case of Fig. 9B, the initially stored energy is almost zero and so
the dynamics is sustained only by the memristor, that at the beginning
acts as a power source, while later it switches to a passive behavior.

Finally, consider also the following experiments. Denote as C* the
fixed point the circuit converges to when initialized at C. Then, perform
two perturbations involving a change of first integral, i.e., assume that
the perturbed system is started once from point E= (−1.732,−0.666)
and another time from F= (−1.732, 0.666), as depicted in Fig. 8. Then,
the state reaches two very different steady states, namely (2.196, 0) and
(−2.196, 0), with the energetic diagrams reported in Figs. 9E and 9F,
respectively. From the analysis of Section 3.4, in the first case the
trajectory is bound to move from the left to right towards higher values
of 𝜑 spanning the interval where, according to (27), the power of the
𝑀
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Fig. 9. Energetic behavior of the circuit depicted in Fig. 1, according to the analysis of Section 4. The six scenarios, from A to F, are related to the trajectories with the same label
as reported in Fig. 8. Positive values of the power correspond to consumption, while the negative ones to the generation. While the resistor only consume energy, the capacitor
and the memristor can perform as both passive and active elements. Notice that ‘‘symmetric’’ trajectories provide equal portraits of the energy. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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memristor is negative, i.e., it is generated. In the second case, instead,
the locally active region (−1, 1) is never crossed, because the orbit
volves towards lower values of 𝜑𝑀 , and so the memristor acts as a

resistor.
The above experiments highlight some important features. As

known, depending on its characteristic function (i.e. memristance
or memductance) the memristor can be locally active. Notably, the
considered circuit always ends in a state associated with no energy
left, i.e. the memristor can only provide energy that vanishes as the
time passes by, because all the trajectories will eventually land into the
fixed points at 𝑣𝐶 = 0. Nevertheless, this feature is not specific of the
memristor itself, but it emerges from the nature of the first integrals for
the considered circuit. Indeed, in this state space they are cubic shaped
functions divided in branches by the intersection with the axis 𝑣𝐶 = 0,

hich consists of an infinite number of non isolated fixed points. By
he previous analysis of Section 3.4, it is straightforward to verify that
ach trajectory finally reaches one of these fixed points, and, therefore,
hat all the starting energy is somehow dissipated, even if there can
e a ‘‘local’’ injection from the memristor. This is particularly clear,
hen the capacitor augments its energy thanks to the power supplied
y the memristor. However, such a scenario is strictly dependent on
he circuit, and, in general, more various energetic situations have to
e expected, even those where the final regime is powered only by the
emristor.

For the sake of completeness, consider the circuit depicted in Fig. 1
nd studied in Section 2.1. As illustrated in Figs. 2 and 3, depending on
he initialization of the first integral, the circuit dynamics can approach
steady state or a periodic solution. In the second case, since the circuit
as a resistor which dissipates energy, some energy is necessary to
ustain the periodic regime. The capacitor and the inductor are not
ble to indefinitely power the circuit because they can store only a
inite though arbitrary quantity of energy fixed at the initialization.
herefore, the regime is necessarily sustained by the memristor, thus
urning out to be an important device in the design of oscillating and
ultistable circuits.

The richness of behaviors illustrated so far shows that what actually
ives the energetic characterization is not the memristor itself, but
10

ather the dynamics on the first integrals. How the voltage and current a
f the memristor vary along the first integral is, indeed, what defines
ts active or passive role, and such a feature depends on the nature of
he branch where the orbit evolves. In this respect, it is worth stressing
hat the first integral is properly referred to the trajectory, and it does
ot describe a potential energy, as in many Hamiltonian systems. In the
ame way, it turns out that the ‘‘memory’’ of the memristor does not
orrespond to a storing property of the energy, but, rather, it emerges
rom its own state variable, which provides an ‘‘integral effect’’ on the
nput despite this has no specific energetic implications.

. First integrals in circuits with generalized memdevices of
igher order

In this section we introduce a class of ideal memdevices, which
xtends the ideal memristors in the direction of increasing the order
f their internal dynamics. We call them ‘‘ideal,’’ because, as we will
how hereafter, they are able to generate first integrals of the motion.
s it will be clear later, these devices turn out useful also for addressing

he problem of the loss of ideality in a generalized framework.
We denote as Ideal Generalized Memdevice an electronic element that

s described in proper units of measure by a model of the form:

𝑀−1
0 ()𝑥 = 𝑦

𝑢 = 𝑁−1
0 ()𝐻(𝑥)

, (28)

here 𝐻(⋅) is a sufficiently smooth function, and 𝑀0(⋅) and 𝑁0(⋅) are
olynomial rational functions, which admit the following structure:

0() =
𝛷𝑀 ()
𝛹𝑀 ()

, 𝑁0() =
𝛷𝑁 ()
𝛹𝑁 ()

. (29)

We assume that both 𝑀0() and 𝑁0() are causal, but possibly not
trictly (which makes 𝑀−1

0 () and 𝑁−1
0 () possibly non strictly anti-

ausal), i.e. deg𝛷𝑀 ≤ deg𝛹𝑀 + 1 and deg𝛷𝑁 ≤ deg𝛹𝑁 + 1. Moreover,
e assume that the numerator and the denominator of 𝑀0(⋅) and 𝑁0(⋅)
re coprime (that implies 𝛷𝑀 (0) ≠ 0 and 𝛷𝑁 (0) ≠ 0), and for the sake
f the simplicity we also enforce two technical conditions

𝑀 (0) ≠ 0 , 𝛹𝑁 (0) ≠ 0 .

Notice that, for proper configurations of the parameters of 𝑀0()

nd 𝑁0(), model (28) comprises all the ideal memelements along with
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mild assumptions on the regularity of their nonlinear characteristic
functions. For instance, the ideal memristor emerges from 𝑀0() = −1

nd 𝑁0() = −1, which turn model (28) into

𝑥 = 𝑦

𝑢 = 𝐻(𝑥) =
𝜕𝐻(𝑥)
𝜕𝑥

𝑥 = 𝐺(𝑥)𝑦
.

In this case the regularity assumption boils down to the integrability
of the characteristic function 𝐺(⋅). The ideal 𝜑-controlled memcapac-
itor, instead, comes from choosing 𝑀0() = −1 and 𝑁0() = −2

(see [34]):
⎧

⎪

⎨

⎪

⎩

𝑥 = 𝑦

𝜉 = 𝐻(𝑥) =
𝜕𝐻(𝑥)
𝜕𝑥

𝑥 = 𝐺(𝑥)𝑦
𝑢 = 𝜉

.

Finally, the ideal 𝜌-controlled meminductor is obtained from 𝑀0() =
−2 and 𝑁0() = −1 (e.g., see again [34]):

⎧

⎪

⎨

⎪

⎩

𝜉 = 𝑦
𝑥 = 𝜉

𝑢 = 𝐻(𝑥) =
𝜕𝐻(𝑥)
𝜕𝑥

𝑥 = 𝐺(𝑥)𝜉
.

Let us now connect the ideal generalized memdevice (28) to the
usual circuit 𝛴. Then, the complete system turns out described by the
nonlinear differential equation

𝑦 = 𝐿()𝑢 = 𝐿()𝑁−1
0 ()𝐻

(

𝑀0()𝑦
)

that can be more conveniently formulated as

𝑦 −
𝑃 ()
𝑄()

𝑁−1
0 ()𝐻

(

𝑀0()𝑦
)

= 0 .

Then, transform it applying to both the sides the operator 𝛷𝑁 ()𝑄()

𝑁 ()𝑄()𝑦 −𝛹𝑁 ()𝑃 ()𝐻
(

𝑀0()𝑦
)

= 0

and, finally, integrate with −1, thus obtaining

𝛷𝑁 ()𝑄()−1𝑦 − 𝛹𝑁 ()𝑃 ()𝐻
(

𝑀0()−1𝑦
)

= 𝑤0 ,

where 𝑤0 is a constant. If we define

𝑧 = −1𝑦 ,

then the above equation can be rewritten as

𝛷𝑁 ()𝑄()𝑧 − 𝛹𝑁 ()𝑃 ()𝐻
(

𝛷𝑀 ()𝛹−1
𝑀 ()𝑧

)

= 𝑤0 , (30)

which is a first integral, as well as a nonlinear non-homogeneous
differential equation representing the dynamics of the whole circuit
seen from the point of view of 𝑧. Therefore, the memdevices of the
proposed form (28) are able to induce for the same class of circuit 𝛴
the existence of first integrals of the motion.

To disclose the nature of 𝑧 further, denote

𝑅0() =
𝛹𝑁 ()
𝛷𝑁 ()

, (31)

0() =
𝛷𝑀 ()
𝛹𝑀 ()

, (32)

𝑈 () = 1
𝛷𝑁 ()𝑄()

, (33)

o that its dynamics reads

− 𝐿()
(

𝑅0()𝐻
(

𝑆0()𝑧
)

)

= 𝑈 (0)𝑤0 ,

hich represents a feedback system subject to the external forcing input
(0)𝑤0, where the feed-forward branch can be characterized by the
riginal linear subsystem 𝐿() representing 𝛴, and the feedback loop
s implemented by the nonlinear dynamic filter 𝑅0()𝐻

(

𝑆0()𝑧
)

, as
depicted in Fig. 10.

Remark 1. As in the case of the ideal memristor, the first integral
induced by the proposed ideal memdevice (28) is defined on a variable
𝑧, which is the integral of the output 𝑦 of the memdevice along the state
11

space trajectory. (
Fig. 10. Schematics of the structure investigated in Section 5.

. Loss of ideality

The first integral studied in Section 3 is a structural feature of
ircuits with an ideal memristor, and it can be extended to more general
ases as explained in Section 3.1 and Section 5. In this section we
nvestigate what happens when the ‘‘ideality’’ is lost, intending this as
he destruction of the layered structure induced by the first integral of
he motion. To this aim, we will develop a non-ideal device capable
f collapsing onto an ideal generalized memdevice, when two tuning
oefficients 𝜀 and 𝛿 tend to zero. As it will be shown, when the non-
deal circuit is close enough to its ideal counterpart, its behavior retains
s an hidden dynamics the ideal behavior, simplifying its analysis.

The loss of ideality mechanism that will be proposed later is moti-
ated by the following examples.

.1. Motivating example: Leaky integral

Let us consider a memdevice described by the following equations:

( + 𝜀)𝑥 = 𝑦
𝑢 = 𝐺(𝑥)𝑦

. (34)

hen 𝜀 = 0, it coincides with an ideal memristor model, and so 𝜀
easures how close they are. Model (34) does not describe an ideal
emristor anymore, because it implements a defective integral. We

ssume 𝜀 > 0, which implies that 𝑥 opposes the integration itself, avoid-
ng a pathological unnatural divergence. We refer to such a process as
‘leaky integral model.’’ As before, function 𝐺(⋅) is assumed integrable
ith respect to 𝑥, i.e. 𝐺(𝑥) = 𝜕

𝜕𝑥𝐻(𝑥) for a proper function 𝐻(⋅). Then,
bserve that this time

𝐻(𝑥) = 𝐺(𝑥)𝑥 = −𝜀𝐺(𝑥)𝑥 + 𝐺(𝑥)𝑦 ,

hich leads first to

(𝑥)𝑦 = 𝐻(𝑥) + 𝜀𝐺(𝑥)𝑥

nd eventually to

= ( + 𝜀)𝐻(𝑥) + 𝜀
(

𝐺(𝑥)𝑥 −𝐻(𝑥)
)

.

Let us now connect the non-ideal memdevice (34) to the circuit 𝛴
escribed by 𝑦 = 𝐿()𝑢 = (𝑃 ()∕𝑄())𝑢, thus obtaining the overall
ynamics

− 𝐿()( + 𝜀)𝐻(𝑥) − 𝜀𝐿()
(

𝐺(𝑥)𝑥 −𝐻(𝑥)
)

= 0 .

direct comparison with the ideal memristor case (11) confirms the
onvergence towards that case when 𝜀 → 0. Then, apply the operator
 + 𝜀)−1 to both the sides, thus obtaining

 + 𝜀)−1𝑦 − 𝐿()𝐻(𝑥) − 𝜀𝐿()( + 𝜀)−1
(

𝐺(𝑥)𝑥 −𝐻(𝑥)
)

= 𝑣 ,

here 𝑣(𝑡) satisfies
 + 𝜀)𝑣(𝑡) = 0 ∀𝑡 .
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Notice that 𝑣 must be a solution of the differential equation

𝑣 = −𝜀𝑣 .

For the sake of the notation, denote as 𝛥 the nonlinear operator

𝛥(𝑥) = 𝐺(𝑥)𝑥 −𝐻(𝑥) .

Then, observing that ( + 𝜀)−1𝑦 = 𝑥, we have that

𝑥 − 𝐿()𝐻(𝑥) − 𝜀( + 𝜀)−1𝐿()𝛥(𝑥) = 𝑣 .

The above equation can be rewritten in the form

𝑥 = 𝐿() (𝐻(𝑥) + 𝜉) , (35)

𝜉 = 𝜀
 + 𝜀

𝜂 + 𝑣 , (36)

𝜂 = 𝛥(𝑥) , (37)

which is convenient to analyze the structure of the complete system.
Notice that 𝑥 is generated as the output of 𝐿() by means of two
feedback loops. The first one is due to the nonlinear operator 𝐻 , while
he second has a more complex genesis, because according to (36)
nd (37) it is born from the exogenous input 𝑣 and a linear filtering

(parametric in 𝜀) of 𝜂, that is a nonlinear transformation of 𝑥 itself. It
is also worth observing that

𝜉 = −𝜀(𝜉 − 𝜂) ,

where we have exploited that ( + 𝜀)𝑣 = 0. Observe that, when all the
state variables are bounded, there is a relationship between 𝜀 and the
dynamics of 𝜉, because the smaller 𝜀, the slower 𝜉.

Let us now investigate the relationship between the leaky integral
case and the standard formulation (15). To this aim, rewrite (35) as

𝑄()𝑥 − 𝑃 ()𝐻(𝑥) = 𝑄()𝜉 = 𝑤 .

Thus, a direct comparison with (15) reveals that the left hand side is
just the dynamic structure generating the first integral, while, on the
right hand side, the constant input 𝑤0 has been replaced by a more
general signal 𝑤, which depends on 𝜉 and so on 𝑣 and 𝑥 itself.

Remark 2. The dynamics of the first integral is still an important part
of the system, which affects its evolution. Nonetheless, since it is not
driven by a constant input any more, it may turn out very hard to spot
it out from the simple observation of the trajectories. When 𝜀 → 0, 𝜉
onverges to a constant value and so does 𝑤. Otherwise, the footprint of
he first integral emerges only if its relative strength overwhelms that
f 𝑤.

In order to illustrate the practical meaning of the above remark,
ereafter, we consider the same circuit 𝛴 as in the example of Sec-
ion 3.2, where the memristor has been replaced by the leaky memde-
ice

𝑥 = −𝜀𝑥 + 𝑣𝑀
𝑖𝑀 = 𝐺(𝑥)𝑣𝑀

.

he complete circuit, then, is described by the following system:

𝑣𝐶 = − 1
𝐶

( 1
𝑅
𝑣𝐶 + 𝑖𝐿 + 𝐺(𝑥)𝑣𝐶

)

𝑖𝐿 = 1
𝐿
𝑣𝐶

𝑥 = −𝜀𝑥 + 𝑣𝐶

.

The numerical simulations, generated using the same configuration
as in Section 3.2, are reported in Figs. 11A, 11B, 11C, and 11D for
different values of 𝜀, showing how the trajectories tend to act similarly
to the ideal case when 𝜀 is sufficiently small. In particular, starting
from initial conditions placed on different first integrals related to the
case 𝜀 = 0, the trajectories are drawn onto very slow transients which
retain the same shape of the attractors found in the ideal scenario. This
property justifies the analysis of the ideal case as a reference framework
12

for non-ideal scenarios.
6.2. Motivating example: Nonlinear reminder

A second different case of loss of ideality is considered, and the
corresponding non-ideal memdevice is modeled as follows:
{

𝑥 = 𝑦
𝑢 = 𝐺(𝑥)𝑦 + 𝛿𝑇 (𝑦)

, (38)

where 𝑇 ∶ R → R is a generic sufficiently smooth function, and 𝛿
s a tuning parameter with the same role previously played by 𝜀 in
odel (34). The main difference with respect to the ideal case is the
resence of the term 𝑇 (𝑦), that can be regarded as a nonlinear static
lement enhancing the action of an ideal memristor. For instance, if
e are talking of a flux-controlled memristor, memdevice (38) can be

nterpreted as the parallel of an ideal 𝜑-memristor and a nonlinear re-
istor with admittance 𝛿𝑇 as in [41]. In the case of a charge-controlled
emristor, instead, the memdevice represents the series of 𝑞-controlled
emristor and a nonlinear resistor with resistance 𝛿𝑇 .

In general, this additional effect can be seen as the extension to
he combination of circuit 𝛴 with a nonlinear device, whose effects
re visible from the same port where the memristor is connected to.
oughly speaking, if 𝛴 is nonlinear, but it can be modeled as a linear
ircuit with a nonlinear element, the ‘‘reminder’’, insisting directly at
east on one of the terminals where it is connected to the memristor,
hen model (38) can be applied.

The interconnection between memdevice (38) and the linear one-
ort circuit 𝛴 reads, under the usual assumptions,

− 𝐿()
(

𝐺(𝑥)𝑦 + 𝛿𝑇 (𝑦)
)

= 𝑦 − 𝐿()𝐻(𝑥) + 𝛿𝐿()𝑇 (𝑥) = 0 .

irst, apply on both the sides the operator 𝑄()

()𝑦 − 𝑃 ()𝐻(𝑥) + 𝛿𝑃 ()𝑇 (𝑥) = 0

nd, then, integrate the whole equation applying −1 on both sides

()𝑥 − 𝑃 ()𝐻(𝑥) + 𝛿−1𝑃 ()𝑇 (𝑥) = 𝑤0 , (39)

here it has been exploited that −1𝑦 = 𝑥. Notice that, in general,
his equation is not a first integral, because it does not involve only
he state coordinates 𝑛𝑥,… ,𝑥, 𝑥. Indeed, 𝑃 (0) ≠ 0 and the time
ntegral of a nonlinear function 𝑇 (𝑥) is not expected to depend only
n the variables 𝑥 and 𝑥. Nonetheless, when 𝛿 → 0 equation (39)
onverges to (15), which is a proper first integral. This latter is still
art of the system behavior when 𝛿 ≠ 0, even if the non constant term
0 − 𝛿−1𝑃 ()𝑇 (𝑥) can lead it beyond this evidence. Therefore, the

oss of ideality does not completely erase the dynamic features once
iven by the first integrals structure. Nonetheless, as in a slow-fast
ystem, they emerge clear only when 𝛿 is sufficiently small.

Finally, observe that (39) can be rewritten as

− 𝐿()
(

𝐻(𝑥) + 𝛿−1𝑇 (𝑥)
)

= 𝑄(0)𝑤0 ,

hich, again, describes a forced system with two distinct feedback
oops, one featuring the static nonlinear operator 𝐻 , and another
eaturing the dynamic nonlinear operator −1𝑇 (𝑥).

.3. Generalized model for the loss of ideality

Based on the illustrative examples of Sections 6.1 and 6.2, we
evelop a structured model for the loss of ideality based on the ideal
eneralized memdevice class (28) introduced in Section 5. In our work,
he ‘‘loss of ideality’’ is born from breaking a first integrals structure
ith a driving feedback. In general, many other concepts can be
nvisioned around the term ‘‘ideality,’’ but here we investigate it only
or what concerns the existence of the first integrals, since they have
een revealed crucial for generating coexistence of attractors.

We propose the following non-ideal memdevice model:

𝑀−1
𝜀 ()𝑥 = 𝑦

−1 , (40)

𝑢 = 𝑁𝜀 ()𝐻(𝑥) + 𝛿𝑇 (𝑦)
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Fig. 11. Starting from the same initial conditions (green diamonds), the trajectories of the circuit illustrated in Section 6.1 are portrayed for different values of the parameter 𝜀.
In the cases A and B, after a transient (gray lines), all the orbit reach the same limit cycle. The red circles, laying almost exactly on the circle, denote the final points of the
numerical simulations. In the cases C and D, instead, after a transient the trajectories spend a very long time close to structures which resemble limit cycles, but they are not. In
fact, a drift that makes those trajectories moving away from those almost cyclic structures is present, but it is as less evident as 𝜀 grows smaller. Observe that sometimes in cases
C and D the trajectory almost lands on a single point that is a remnant of an equilibrium of the ideal dynamics (that is recovered for 𝜀 = 0. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
where

𝑀𝜀() =
𝛷𝑀 ()

𝛹𝑀 () + 𝜀𝛶𝑀 ()
,

𝑁𝜀() =
𝛷𝑁 ()

𝛹𝑁 () + 𝜀𝛶𝑁 ()
.

We also assume

𝛷𝑀 (0) ≠ 0 , 𝛷𝑁 (0) ≠ 0 , 𝛶𝑀 (0) ≠ 0 , 𝛶𝑁 (0) ≠ 0

to avoid cancellations, and

deg𝛷𝑀,𝑁 ≤ deg𝛹𝑀,𝑁 + 1

to guarantee the causality of 𝑀𝜀 and 𝑁𝜀. For the sake of the simplicity
we also enforce the condition

deg𝛶𝑀,𝑁 ≤ deg𝛹𝑀,𝑁

to avoid that the degree of the denominators of 𝑀𝜀 and 𝑁𝜀 may change
for 𝜀 = 0. Notably, when 𝜀 → 0, 𝑀𝜀 and 𝑁𝜀 get the same form of the
𝑀0 and 𝑁0 already seen in (29).

Then, connect the memdevice to the usual circuit 𝛴, thus obtaining

𝑦 = 𝐿()𝑢 = 𝐿()
(

𝑁−1
𝜀 ()𝐻(𝑥) + 𝛿𝑇 (𝑦)

)

.

The application of the operator 𝑄()𝛷𝑁 () to both the sides brings to

𝛷𝑁 ()𝑄()𝑦 =
(

𝛹𝑁 () + 𝜀𝛶𝑁 ()
)

𝑃 ()𝐻(𝑥) + 𝛿𝛷𝑁 ()𝑃 ()𝑇 (𝑦) .

Rearranging the above equation leads to

𝛷 ()𝑄()𝑦 −𝛹 ()𝑃 ()𝐻(𝑀 ()𝑦)
13

𝑁 𝑁 𝜀
= 𝜀𝛶𝑁 ()𝑃 ()𝐻(𝑀𝜀()𝑦) + 𝛿𝛷𝑁 ()𝑃 ()𝑇 (𝑦) . (41)

In general, the terms 𝛹𝑁 ()𝑃 ()𝐻(𝑀𝜀()𝑦),
𝛶𝑁 ()𝑃 ()𝐻(𝑀𝜀()𝑦), and 𝛷𝑁 ()𝑃 ()𝑇 (𝑦) are not functions of 𝑦

and other higher order derivatives of 𝑦, and, therefore, a first integral
cannot be found using the procedure of Section 3. Nonetheless, denote
𝑧 = −1𝑦 and let us integrate the above Eq. (41):

𝛷𝑁 ()𝑄()𝑧 − 𝛹𝑁 ()𝑃 ()𝐻(𝑀𝜀()𝑧)

= 𝜀−1𝛶𝑁 ()𝑃 ()𝐻(𝑀𝜀()𝑧) + 𝛿−1𝛷𝑁 ()𝑃 ()𝑇 (𝑧) +𝑤0 . (42)

As noticed, this is not a first integral, but the comparison with (30)
highlights that it still retains the same layered structure, even though
it is spoiled by additional terms depending on the parameters 𝜀 and 𝛿.
Anyway, when both 𝜀 → 0 and 𝛿 → 0, the first integral seen in the ideal
case (30) lives again. Hence, also in this situation we can interpret the
dynamics of the system as trajectories, which move across a structure
made of first integrals under the additive effects of a forcing signal.

For the sake of a better understanding, let us introduce the following
linear filters

𝑈 () = 1
𝛷𝑁 ()𝑄()

,

𝑅𝜀() = 𝑀𝜀() =
𝛷𝑀 ()

𝛹𝑀 () + 𝜀𝛶𝑀 ()
,

𝑆𝜀() = −1𝑁−1
𝜀 () =

𝛹𝑁 () + 𝜀𝛶𝑁 ()
𝛷𝑁 ()

,
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Fig. 12. Schematics of the structure describing the dynamics of system (43), that models a non-ideal generalized memdevice (40) connected to the linear circuit 𝛴 introduced in
Section 3.
so that (42) can be rewritten in the form

𝑧 − 𝐿()
(

𝑆𝜀()𝐻
(

𝑅𝜀()𝑧
)

− 𝛿−1𝑇
(

𝑧
)

)

= 𝑈 (0)𝑤0 . (43)

Notice that, when 𝜀 → 0, 𝑅𝜀 and 𝑆𝜀 collapse into the 𝑅0 and 𝑆0 seen in
Eqs. (31) and (32). The above equation (43) highlights that the dynam-
ics exhibited by the integral of the motion seen from the perspective
of 𝑦 has the form of a forced feedback system. The driving input is
𝑈 (0)𝑤0, which depends on the initial conditions of the circuits, while
the feedback counts two distinct loops weighted by the parameters 𝜀
nd 𝛿. The nature of such feedback loops is complex. Indeed, they are
he series of a linear filter (𝑅𝜀() or ), a nonlinear static operator

(𝐻(⋅) or 𝑇 (⋅)), and another linear filter (𝑆𝜀() or 𝛿−1). See Fig. 12 for
a block diagram description.

6.4. Final remarks

Model (40) is capable to induce first integrals in the dynamics of
the circuit 𝛴 it is connected to, when 𝜀 = 0 and 𝛿 = 0. Such a
layered structure is lost as soon as at least one of these two parameters
is different from zero. Nevertheless, the spoils of the previous first
integrals still affect the trajectories, and their influence is as stronger
as the parameters are close to zero.

An interesting situation happens when the dynamics of the feedback
loops in (43) is particularly slow with respect to the variable 𝑧. Such a
condition is equivalent to say that the terms 𝜀−1𝛶𝑁 ()𝑃 ()𝐻(𝑀𝜀()
𝑧) and 𝛿−1𝛷𝑁 ()𝑃 ()𝑇 (𝑧) in (43) provide small contributions,
which can be regarded as negligible perturbations of 𝑤0. Hence, the
system behaves close to the first integral dynamics, which comes back
in evidence. For instance, if the contribution from the feedback loops
dynamics has the form of a monotone drift, then, the visible effect
is to slowly change the dynamics from an apparent first integral to
another, so much that in a short time frame the observed behavior is
indistinguishable from that of a fixed first integral, similarly to what
happens in the circuit of Fig. 11.

Model (40) extends the class of the ideal generalized memde-
vices (28), providing an articulate but smooth mechanism to spoil
their first integrals structure, and it is a candidate for describing real
memristive devices.
14
7. Conclusions

In this paper we have investigated the ability of ideal memristors
to generate first integrals of the dynamics, when connected to a broad
class of circuits featuring linear elements. Extensions to the multiple
memristors case, to other ideal memelements, and to the presence of
voltage and current sources as well as nonlinear electronic elements
can be readily derived using the same approach. The main property
connected to the first integrals is that the whole dynamics of the
circuit can be described by a reduced order model parameterized by
the initial configuration, which acts as a forcing input. This simplifies
the analysis, but overall it reveals that the first integrals set up a layered
structure of invariant manifolds in the state space of the circuit, where
each leaf is induced by the choice of the circuit initial conditions.
This feature turns out to be a powerful tool to investigate the system
dynamics, and it can be fruitfully exploited to disclose the nature of
the so called ‘‘extreme multistability,’’ i.e. the incredible number of
coexisting attractors, which can populate the state space of a circuit
with ideal memristors. Notably, the initial conditions, which determine
the appearance of each attractor, structurally act as an external input
driving a nonlinear feedback system. Reasoning on this interpretation,
we have designed a new class of ideal devices, which are capable of
inducing the same first integrals structure, and on this premise we have
developed a mechanism for the loss of the ideality, whose task is to
spoil the layered state space. Notably, even when the first integrals are
no longer present, their legacy still affects the circuit dynamics, even if
it may be hard to spot their evidence. It is believed that the generality
of the introduced non-ideal memdevices may help in modeling real
implementations of memristive elements.
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