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Inborn errors of type I IFN immunity in patients
with life-threatening COVID-19
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INTRODUCTION: Clinical outcomes of human
severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) infection range from
silent infection to lethal coronavirus disease
2019 (COVID-19). Epidemiological studies have
identified three risk factors for severe disease:
being male, being elderly, and having other
medical conditions. However, interindividual
clinical variability remains huge in each demo-
graphic category. Discovering the root cause
and detailed molecular, cellular, and tissue- and
body-levelmechanismsunderlyinglife-threatening
COVID-19 is of the utmost biological and medical
importance.

RATIONALE:We established the COVIDHuman
Genetic Effort (www.covidhge.com) to test

the general hypothesis that life-threatening
COVID-19 in some or most patients may be
caused by monogenic inborn errors of immu-
nity to SARS-CoV-2 with incomplete or com-
plete penetrance. We sequenced the exome or
genome of 659 patients of various ancestries
with life-threatening COVID-19 pneumonia
and 534 subjectswith asymptomatic or benign
infection.We tested the specific hypothesis that
inborn errors of Toll-like receptor 3 (TLR3)–
and interferon regulatory factor 7 (IRF7)–
dependent type I interferon (IFN) immunity
that underlie life-threatening influenza pneu-
monia also underlie life-threatening COVID-19
pneumonia.We considered three loci identified
as mutated in patients with life-threatening
influenza: TLR3, IRF7, and IRF9. We also con-

sidered 10 loci mutated in patients with other
viral illnesses but directly connected to the three
core genes conferring influenza susceptibility:
TICAM1/TRIF, UNC93B1, TRAF3, TBK1, IRF3,
and NEMO/IKBKG from the TLR3-dependent
type I IFN induction pathway, and IFNAR1,
IFNAR2, STAT1, and STAT2 from the IRF7-
and IRF9-dependent type I IFN amplification
pathway. Finally, we considered variousmodes
of inheritance at these 13 loci.

RESULTS: We found an enrichment in variants
predicted to be loss-of-function (pLOF), with a
minor allele frequency <0.001, at the 13 can-
didate loci in the 659 patients with life-
threatening COVID-19 pneumonia relative to
the 534 subjects with asymptomatic or benign
infection (P = 0.01). Experimental tests for all
118 rare nonsynonymous variants (including
both pLOFand other variants) of these 13 genes
found in patientswith critical disease identified
23 patients (3.5%), aged 17 to 77 years, carrying
24 deleterious variants of eight genes. These
variants underlie autosomal-recessive (AR) defi-
ciencies (IRF7 and IFNAR1) and autosomal-
dominant (AD) deficiencies (TLR3,UNC93B1,
TICAM1,TBK1, IRF3, IRF7, IFNAR1, and IFNAR2)
in four and 19 patients, respectively. These
patients had never been hospitalized for other
life-threatening viral illness. Plasmacytoid den-
dritic cells from IRF7-deficient patients produced
no type I IFN on infectionwith SARS-CoV-2, and
TLR3−/−, TLR3+/−, IRF7−/−, and IFNAR1−/− fibro-
blasts were susceptible to SARS-CoV-2 infec-
tion in vitro.

CONCLUSION:At least 3.5%of patientswith life-
threatening COVID-19 pneumonia had known
(AR IRF7 and IFNAR1 deficiencies or AD TLR3,
TICAM1, TBK1, and IRF3 deficiencies) or new
(AD UNC93B1, IRF7, IFNAR1, and IFNAR2
deficiencies) genetic defects at eight of the
13 candidate loci involved in the TLR3- and
IRF7-dependent induction and amplification
of type I IFNs. This discovery reveals essential
roles for both the double-strandedRNA sensor
TLR3 and type I IFN cell-intrinsic immunity in
the control of SARS-CoV-2 infection. Type I IFN
administration may be of therapeutic benefit
in selected patients, at least early in the course
of SARS-CoV-2 infection.▪
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Inborn errors of TLR3- and IRF7-dependent type I IFN production and amplification underlie life-
threatening COVID-19 pneumonia. Molecules in red are encoded by core genes, deleterious variants of
which underlie critical influenza pneumonia with incomplete penetrance, and deleterious variants of genes
encoding biochemically related molecules in blue underlie other viral illnesses. Molecules represented in bold
are encoded by genes with variants that also underlie critical COVID-19 pneumonia.
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Clinical outcome upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
ranges from silent infection to lethal coronavirus disease 2019 (COVID-19). We have found an enrichment
in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern Toll-like
receptor 3 (TLR3)– and interferon regulatory factor 7 (IRF7)–dependent type I interferon (IFN) immunity
to influenza virus in 659 patients with life-threatening COVID-19 pneumonia relative to 534 subjects
with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we
experimentally defined LOF variants underlying autosomal-recessive or autosomal-dominant deficiencies
in 23 patients (3.5%) 17 to 77 years of age. We show that human fibroblasts with mutations affecting
this circuit are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN
immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection.

S
evere acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2) has already
claimed at least 1 million lives, has been
detected in at least 20 million people,
and has probably infected at least anoth-

er 200 million. The clinical manifestations
range from silent infection to lethal disease,
with an infection fatality rate of 0.1 to 0.9%.
Three epidemiological factors increase the
risk of severity: (i) increasing age, decade by
decade, after the age of 50, (ii) being male,

and (iii) having various underlying medical
conditions (1). However, even taking these
factors into account, there is immense inter-
individual clinical variability in each demo-
graphic category considered. Following on
from our human genetic studies of other
severe infectious diseases (2, 3), we established
the COVID Human Genetic Effort (https://
www.covidhge.com) to test the general hy-
pothesis that in somepatients, life-threatening
coronavirus disease 2019 (COVID-19) may be

caused by monogenic inborn errors of immu-
nity to SARS-CoV-2 with incomplete or com-
plete penetrance (4). We enrolled 659 patients
(74.5%men and 25.5%women, 13.9% of whom
died) of various ancestries between 1 month
and 99 years of age (Fig. 1A). These patients
were hospitalized for life-threatening pneumo-
nia caused by SARS-CoV-2 (critical COVID-19).
We sequenced their whole genome (N = 364)
or exome (N = 295), and principal component
analysis (PCA) on these data confirmed their
ancestries (Fig. 1B).

Candidate variants at 13 human loci that
govern immunity to influenza virus

We first tested the specific hypothesis that in-
born errors of Toll-like receptor 3 (TLR3)– and
interferon regulatory factor 7 (IRF7)–dependent
type I interferon (IFN) immunity, which un-
derlie life-threatening influenza pneumonia,
may also underlie life-threatening COVID-19
pneumonia (5) (Fig. 2). We considered three
loci previously shown to bemutated in patients
with critical influenza pneumonia: TLR3 (6),
IRF7 (7), and IRF9 (8). We also considered
10 loci mutated in patients with other viral
illnesses but directly connected to the three
core genes conferring influenza susceptibility:
TICAM1/TRIF (9), UNC93B1 (10), TRAF3 (11),
TBK1 (12), IRF3 (13), andNEMO/IKBKG (14) in
theTLR3-dependent type I IFN induction path-
way, and IFNAR1 (15), IFNAR2 (16), STAT1
(17), and STAT2 (18) in the IRF7- and IRF9-
dependent type I IFN amplification pathway.
We collected both monoallelic and biallelic
nonsynonymous variants with a minor allele
frequency (MAF) <0.001 at all 13 loci. Twelve
of the 13 candidate loci are autosomal, whereas
NEMO is X-linked. For the latter gene, we con-
sidered only a recessive model (19). Autosomal-
dominant (AD) inheritancehas not beenproven
for six of the 12 autosomal loci (UNC93B1, IRF7,
IFNAR1, IFNAR2, STAT2, and IRF9). Never-
theless, we considered heterozygous variants
because none of the patients enrolled had
been hospitalized for critical viral infections
before COVID-19, raising the possibility that
any underlying genetic defects that theymight
have display a lower penetrance for influenza
and other viral illnesses than for COVID-19,
which is triggered by a more virulent virus.

Enrichment of variants predicted to be LOF
at the influenza susceptibility loci

We found four unrelated patients with bial-
lelic variants of IRF7 or IFNAR1 (Table 1 and
table S1). We also found 113 patients carrying
113 monoallelic variants at 12 loci: TLR3 (N = 7
patients/7 variants), UNC93B1 (N = 10/9),
TICAM1 (N = 17/15), TRAF3 (N = 6/6), TBK1
(N = 12/11), IRF3 (N = 5/5), IRF7 (N = 20/13),
IFNAR1 (N = 14/13), IFNAR2 (N = 17/15), STAT1
(N = 4/4), STAT2 (N = 11/11), and IRF9 (N =
4/4). We detected no copy number variation
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Fig. 1. Demographic and genetic data for the COVID-19 cohort. (A) Age and sex distribution of patients with life-threatening COVID-19. (B) PCA of patient (with or
without LOF variants in the 13 candidate genes) and control cohorts (patients with mild or asymptomatic disease and individuals from the 1000 Genomes Project).
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for these 13 genes. Unexpectedly, one of these
variants has been reported in patients with
life-threatening influenza pneumonia (TLR3
p.Pro554Ser) (6, 20) and another was shown
to be both deleterious and dominant-negative

(IFNAR1 p.Pro335del) (21). Nine of the 118
biallelic ormonoallelic variantswere predicted
to be LOF (pLOF), whereas the remaining 109
were missense or in-frame indels (table S1). In
a sample of 534 controls with asymptomatic

ormild SARS-CoV-2 infection, we found only
one heterozygous pLOF variation with aMAF
<0.001 at the 13 loci (IRF7 p.Leu99fs). A PCA-
adjusted burden test on the 12 autosomal
loci revealed significant enrichment in pLOF
variants in patients relative to controls [P =
0.01; odds ratio (OR) = 8.28; 95% confidence
interval (CI) = 1.04 to 65.64] under anADmode
of inheritance. The same analysis performed
on synonymous variants with a MAF <0.001
was not significant (P = 0.19), indicating that
our ethnicity-adjusted burden test was well
calibrated.

Experimentally deleterious alleles at the
influenza susceptibility loci in 3.5%
of patients

We tested these 118 variants experimentally in
ad hoc overexpression systems. We found that
24 variants of eight genes were deleterious
(including all the pLOF variants) because they
were loss-of-expression, LOF, or severely hypo-
morphic: TLR3 (N = 4 variants), UNC93B1
(N = 1), TICAM1 (N = 3), TBK1 (N = 2), IRF3
(N = 2), IRF7 (N = 8), IFNAR1 (N = 3), and
IFNAR2 (N = 1) (table S1, Fig. 3, and figs. S1 to
S8). Consistently, heterozygous LOF variants
of IRF3 and IRF7 were reported in single pa-
tients with life-threatening influenza pneumo-
nia (22, 23). The remaining 94 variants were
biochemically neutral. Twenty-three patients
carried these 24 deleterious variants, resulting
in four autosomal-recessive (AR) deficiencies
(homozygosity or compound heterozygosity
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Table 1. Disease-causing variants identified in patients with life-threatening COVID-19.

Gene Inheritance Genetic form Genotype Gender Age [years] Ancestry/residence Outcome

TLR3 AD Known p.Ser339fs/WT M 40 Spain Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

TLR3 AD Known p.Pro554Ser/WT M 68 Italy Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

TLR3 AD Known p.Trp769*/WT M 77 Italy Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

TLR3 AD Known p.Met870Val/WT M 56 Colombia/Spain Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

UNC93B1 AD New p.Glu96*/WT M 48 Venezuela/Spain Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

TICAM1 AD Known p.Thr4Ile/WT M 49 Italy Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

TICAM1 AD Known p.Ser60Cys/WT F 61 Vietnam/France Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

TICAM1 AD Known p.Gln392Lys/WT F 71 Italy Deceased
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

TBK1 AD Known p.Phe24Ser/WT F 46 Venezuela/Spain Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

TBK1 AD Known p.Arg308*/WT M 17 Turkey Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IRF3 AD Known p.Glu49del/WT F 23 Bolivia/Spain Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IRF3 AD Known p.Asn146Lys/WT F 60 Italy Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IRF7 AR Known p.Pro364fs/p.Pro364fs F 49 Italy/Belgium Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IRF7 AR Known p.Met371Val/p.Asp117Asn M 50 Turkey Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IRF7 AD New p.Arg7fs/WT M 60 Italy Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IRF7 AD New p.Gln185*/WT M 44 France Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IRF7 AD New p.Pro246fs/WT M 41 Spain Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IRF7 AD New p.Arg369Gln/WT M 69 Italy Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IRF7 AD New p.Phe95Ser/WT M 37 Turkey Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IFNAR1 AR Known p.Trp73Cys/Trp73Cys M 38 Turkey Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IFNAR1 AR Known p.Ser422Arg/Ser422Arg M 26 Pakistan/Saudi Arabia Deceased
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IFNAR1 AD New p.Pro335del/WT F 23 China/Italy Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .

IFNAR2 AD New p.Glu140fs/WT F 54 Belgium Survived
.. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .. ... ... .. ... .. ... ... .. ... ... .
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Fig. 3. Impact of TLR3, TICAM1, TBK1, IRF3, IRF7, IFNAR1, and IFNAR2
variants on type I IFN signaling. (A) TLR3-deficient P2.1 fibrosarcoma cells
were stably transfected with plasmids expressing WT or mutant forms of TLR3,
and IFNL1 mRNA levels were determined by reverse transcription quantitative
PCR. IFNL1 mRNA levels were expressed relative to the housekeeping gene GUS
and then normalized. IFNL1 was undetectable in unstimulated cells. The differences
between variants andWT were tested using one-way ANOVA (*P < 0.05). (B) TICAM1-
deficient SV40-Fib cells were transiently transfected with WT or mutant forms of
TICAM1, together with an IFN-b luciferase reporter and a constitutively expressed
reporter. Normalized luciferase induction was measured 24 hours after
transfection. The differences between variants and WT were tested using one-way
ANOVA (*P < 0.05). (C) HEK293T cells were transiently transfected with WT
and mutant forms of TBK1, together with an IFN-b luciferase reporter and a
constitutively expressed reporter. Normalized luciferase activity was measured
24 hours after transfection. The differences between variants and WT were tested
using one-way ANOVA (*P < 0.05). (D) IRF3-deficient HEK293T cells were
transiently transfected with WT and mutant forms of IRF3, together with an IFN-b

luciferase reporter and a constitutively expressed reporter. Cells were either
left untreated or infected with Sendai virus for 24 hours before the normalized
measurement of luciferase activity. The differences between variants and WT were
evaluated using two-way ANOVA (*P < 0.05). (E) HEK293T cells were transiently
transfected with WT and mutant forms of IRF7, together with an IFN-b luciferase
reporter and a constitutively expressed reporter. Cells were either left untreated
or infected with Sendai virus for 24 hours before the normalized measurement of
luciferase activity. The differences between variants and WT were tested using
two-way ANOVA (*P < 0.05). (F andG) IFNAR1- or IFNAR2-deficient SV40-Fib cells
were transiently transfected with WT or mutant forms of IFNAR1 for 36 hours,
and either left untreated or stimulated with IFN-a2 or IFN-g. Fluorescence-activated
cell sorting (FACS) staining with anti-p-STAT1 antibody and the z-score of the MFI
were assessed. Asterisks indicate variants with MFI <50% of WT. Variants in red were
identified in COVID-19 patients. Variants in blue are known deleterious variants and
served as negative controls. EV, empty vector; LT, lipofectamine. Three technical
repeats were performed for (A) to (E). Means and SD are shown in the columns and
horizontal bars when appropriate.
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for IRF7; homozygosity for IFNAR1) and 19 AD
deficiencies. These 23 patients did not carry
candidate variants at the other 417 loci known to
underlie inborn errors of immunity (table S2)
(24–26). These findings suggest that at least
23 (3.5%) unrelated patients of the 659 patients
tested suffered from a deficiency at one of eight
loci among the 13 tested: four patients with a
known AR disorder (IRF7 or IFNAR1) (7, 15),
11 with a known AD disorder (TLR3, TICAM1,
TBK1, or IRF3) (6, 9, 12, 13, 20), and eight with
a previously unknown AD genetic disorder
(UNC93B1, IRF7, IFNAR1, or IFNAR2).

Impaired TLR3- and IRF7-dependent type I
immunity in patient cells in vitro
We tested cells from patients with selected
genotypes and showed that PHA-driven T cell
blasts (PHA-T cells) from patients with AR
or AD IRF7 deficiency had low levels of IRF7
expression (Fig. 4A). We then isolated circulat-
ing plasmacytoid dendritic cells (pDCs) from
a patient with AR IRF7 deficiency (fig. S9A)
(7). These cells were present in normal pro-
portions (fig. S9B), but they did not produce
any detectable type I or III IFNs in response to
SARS-CoV-2, as analyzed by cytometric bead

array (CBA), enzyme-linked immunosorbent
assay (ELISA), and RNA sequencing (RNA-
seq) (Fig. 4, B and C). We also showed that
PHA-T cells from a patient with AR IFN-a/b
receptor 1 (IFNAR1) deficiency had impaired
IFNAR1 expression and responses to IFN-a2 or
IFN-b, and that the patient’s SV40-transformed
fibroblast (SV40-Fib) cells did not respond to
IFN-a2 or IFN-b (Fig. 5). We then infected
TLR3−/−, TLR3+/−, IRF7−/− SV40-Fib cells, and
IRF7−/− SV40-Fib cells rescued with wild-type
(WT) IRF7; IFNAR1−/− SV40-Fib cells, and
IFNAR1−/− SV40-Fib cells rescued with WT
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Fig. 4. Type I IFN responses in patient cells defective for IRF7. (A) Levels
of the IRF7 protein in PHA-T cells from two patients with AR IRF7 deficiency
(P1 and P3), one patient with AD IRF7 deficiency (P2), and four healthy donors
(C1 to C4). Cells were either left untreated or stimulated with IFN-a2 for
24 hours, and protein levels were measured by Western blotting. MX1 was used
as a positive control for IFN-a2 treatment. (B) pDCs isolated from an AR IRF7-
deficient patient (P1) and a healthy donor (C1) were either left untreated or

infected with influenza A virus (IAV) or SARS-CoV-2, and RNA-seq was performed.
Genes with expression >2.5-fold higher or lower in C1 after infection are plotted
as the fold change in expression. Red dots are type I IFN genes; blue dots are type III
IFN genes. (C) pDCs isolated from healthy donor C and IRF7-deficient patient
(P1) were either left untreated (Medium) or infected with IAV or SARS-CoV-2,
and the production of IFN-a2 and IFN-l1 was measured by CBA and ELISA,
respectively, on the supernatant. ND, not detected.
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IFNAR1, all of which were previously trans-
duced with angiotensin-converting enzyme 2
(ACE2) and transmembrane protease, serine 2
(TMPRSS2). SARS-CoV-2 infection levels were
higher inmutant cells than in cells fromhealthy
donors, and transduction ofWT IRF7 or IFNAR1
rescued their defects (Fig. 6). Collectively, these
findings showed that AR IRF7 deficiency im-
paired the production of type I IFN by pDCs
stimulated with SARS-CoV-2, whereas AR and
AD deficiencies of TLR3 or AR deficiency of
IFNAR1 impaired fibroblast-intrinsic type I
IFN immunity to SARS-CoV2. They also sug-
gest that heterozygosity for LOF variations at
the other five mutated loci also underlie life-
threatening COVID-19.

Impaired production of type I IFNs in
patients in vivo

We tested whether these genotypes impaired
the production of type I IFN in vivo during the
course of SARS-CoV-2 infection. We measured
the levels of the 13 types of IFN-a in the blood
of patients during the acute phase of COVID-19.
We found that 10 of the 23 patients with
mutations for whom samples were available
(one with AR IRF7 deficiency, four with AD
IRF7 deficiency, one with AD TLR3 deficiency,
two with AD TBK1 deficiency, one with AR
IFNAR1 deficiency, and one with AD TICAM1
deficiency) had serum IFN-a levels <1 pg/ml

(Fig. 7). By contrast, previously published co-
horts of patients hospitalizedwith unexplained,
severe COVID-19 had various serum IFN-a
levels, significantly higher than our 10 patients
[one-way analysis of variance (ANOVA), P =
1.4 × 10−7; Fig. 7] (27, 28). Another 29 patients
from our cohort displaying auto-antibodies
(auto-Abs) against type I IFNs, reported in
an accompanying paper, had undetectable
levels of serum IFN-a (29). Moreover, none of
the 23 patients with LOF mutations of the
eight genes had detectable auto-Abs against
type I IFNs (29), strongly suggesting that the
two mechanisms of disease are similar but
independent. Excluding patients with auto-
Abs against type I IFN from the burden test
of pLOF variants at the 12 autosomal loci
strengthened the association signal (P = 0.007;
OR = 8.97; 95% CI = 1.13 to 71.09).

Inborn errors of TLR3- and IRF7-dependent
type I immunity underlie critical COVID-19

Collectively, our data suggest that at least 23 of
the 659 patients with life-threatening COVID-19
pneumonia studied had known (six disorders)
or new (four disorders) genetic defects at eight
loci involved in the TLR3- and IRF7-dependent
induction and amplification of type I IFNs.
This discovery reveals the essential role of
both the double-stranded RNA sensor TLR3
and type I IFN cell-intrinsic immunity in the

control of SARS-CoV-2 infection in the lungs,
consistent with their previously documented
roles in pulmonary immunity to influenza
virus (5–8). These genotypes were silent until
infectionwith SARS-CoV-2. Themost thought-
provoking examples are the AR deficiencies
of IRF7 and IFNAR1. AR IRF7 deficiency was
diagnosed in two individuals aged 49 and
50 years, and AR IFNAR1 deficiency was diag-
nosed in two individuals aged 26 and 38 years,
and none of the four patients had a prior
history of life-threatening infections (Table 1).
One patient with IRF7 deficiency was tested
and was seropositive for several common vi-
ruses, including various influenza A and B vi-
ruses (figs. S10 and S11). These genetic defects
therefore display incomplete penetrance for
influenza respiratory distress and only man-
ifested clinically upon infection with the more
virulent SARS-CoV-2.

Conclusion

The AR form of IFNAR1 deficiency highlights
the importance of type I IFN production rela-
tive to type III IFN production, which is also
impaired by defects of TLR3, IRF7, and IRF9
(5). This conclusion is also supported by our
accompanying report of neutralizing auto-Abs
against type I IFNs, but not type III IFNs, in
other patients with life-threatening COVID-19
pneumonia (29). Inborn errors of TLR3- and
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IRF7-dependent type I IFN immunity at eight
loci were found in asmany as 23 patients (3.5%)
of various ages (17 to 77 years) and ancestries
(various nationalities from Asia, Europe, Latin
America, and the Middle East) and in patients
of both sexes (Table 1). Our findings suggest
that there may be mutations in other type I
IFN–related genes in other patients with life-
threatening COVID-19 pneumonia. They also
suggest that the administration of type I IFN
may be of therapeutic benefit in selected
patients, at least early in the course of SARS-
CoV-2 infection.

Methods
Patients

We included in this study 659 patients with
life-threatening COVID-19 pneumonia, defined
as patients with pneumonia who developed
critical disease, whether pulmonarywithmech-
anical ventilation (CPAP, BIPAP, intubation,
hi-flow oxygen), septic shock, or with any other
organ damage requiring admission to the
intensive care unit. Patients who developed
Kawasaki-like syndrome were excluded. The
age of the patients ranged from 0.1 to 99 years,
with a mean age of 51.8 years (SD 15.9 years),
and 25.5% of the patients were female. As con-
trols, we enrolled 534 individuals infected
with SARS-CoV-2 based on a positive poly-
merase chain reaction (PCR) and/or serologi-
cal test and/or the presence of typical symptoms
such as anosmia or ageusia after exposure to
a confirmed COVID-19 case, who remained
asymptomatic or developed mild, self-healing,
ambulatory disease.

Next-generation sequencing

GenomicDNAwas extracted fromwhole blood.
For the 1193 patients and controls included,
the whole exome (N = 687) or whole genome
(N = 506) was sequenced. We used the Ge-
nome Analysis Software Kit (GATK) (version
3.4-46 or 4) best-practice pipeline to analyze
our whole-exome–sequencing data (30). We
aligned the reads obtained with the human
reference genome (hg19) using the maximum
exact matches algorithm in Burrows–Wheeler
Aligner software (31). PCR duplicates were re-
moved with Picard tools (http://broadinstitute.
github.io/picard/). TheGATKbase quality score
recalibrator was applied to correct sequencing
artifacts.
All of the variants were manually curated

using Integrative Genomics Viewer (IGV) and
confirmed to affect the main functional pro-
tein isoform by checking the protein sequence
before inclusion in further analyzes. The main
functional protein isoforms were TLR3 (NM_
003265), UNC93B1 (NM_030930.4), TICAM1
(NM_182919), TRAF3 (NM_145725.2), TBK1
(NM_013254.4), IRF3 (NM_001571), IRF7 (NM_
001572.5), IFNAR1 (NM_000629.3), IFNAR2
(NM_001289125.3), STAT1 (NM_007315.4), STAT2
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(NM_005419.4), and IRF9 (NM_006084.5).
The analysis of IKBKG was customized to un-
mask the duplicated region in IKBKG using a
specific pipeline previously described (32). We
searched the next-generation–sequencing data
for deletions in the 13 genes of interest using
both the HMZDelFinder (33) and CANOES
(34) algorithms.

Statistical analysis

We performed an enrichment analysis on our
cohort of 659 patients with life-threatening
COVID-19 pneumonia and 534 SARS-CoV2–
infected controls, focusing on 12 autosomal
IFN-related genes. We considered variants
that were pLOF with a MAF <0.001 (gnomAD
version 2.1.1) after experimentally demonstrat-
ing that all of the pLOF variants seen in the
cases were actually LOF. We compared the
proportion of individuals carrying at least
one pLOF variant of the 12 autosomal genes
in cases and controls by means of logistic re-
gression with the likelihood ratio test. We ac-

counted for the ethnic heterogeneity of the
cohorts by including the first three principal
components of the PCA in the logistic regres-
sion model. PC adjustment is a common and
efficient strategy for accounting for different
ancestries of patients and controls in the study
of rare variants (35–38). We checked that our
adjusted burden test was well calibrated by
also performing an analysis of enrichment in
rare (MAF <0.001) synonymous variants of the
12 genes. PCA was performed with Plink ver-
sion 1.9 software on whole-exome– and whole-
genome–sequencing data and the 1000 Genomes
(1kG) Project phase 3 public database as a
reference, using 27,480 exonic variants with a
MAF >0.01 and a call rate >0.99. The OR was
also estimated by logistic regression and ad-
justed for ethnic heterogeneity.

Reporter assays

Cell lines or SV40-Fib cells with known defects
were transiently or stably transfected with
WT, mutant variants, IFN-b- or ISRE-firefly

luciferase reporter, and pRL-TK-Renilla lucif-
erase reporter. Reporter activity wasmeasured
with the Dual-Luciferase Reporter Assay Sys-
tem (Promega) according to themanufacturer’s
instructions. Firefly luciferase activity was nor-
malized against Renilla luciferase activity and
expressed as a fold change. TRAF3-deficient
human embryonic kidney (HEK) 293T cells
were kindly provided by M. Romanelli (39).

pDC activation by SARS-CoV-2 and
cytokine production

pDCs from an IRF7−/− patient and a healthy
donor matched for age and sex were cultured
in the presence of medium alone, influenza
virus (A/PR/8/34, 2 mg/ml; Charles River Lab-
oratories), or the SARS-CoV-2 primary strain
220_95 (GISAID accession ID: EPI_ISL_469284)
at a multiplicity of infection (MOI) of 2. After
12 hours of culture, pDC supernatant was
collected for cytokine quantification. IFN-a2
levels were measured using CBA analyzis (BD
Biosciences) in accordance with the manu-
facturer’s protocol using a 20 pg/ml detection
limit. IFN-l1 secretion was measured in an
ELISA (R&D Systems, DuoSet DY7246), in ac-
cordance with the manufacturer’s instructions.

SARS-CoV-2 infection in patient SV40-Fib

To make patient-derived fibroblasts permis-
sive to SARS-CoV-2 infection, we delivered
human ACE2 and TMPRSS2 cDNA to cells by
lentivirus transductionusing amodifiedSCRPSY
vector (GenBank ID: KT368137.1). SARS-CoV-2
strain USA-WA1/2020 was obtained from BEI
Resources.ACE2/TMPRSS2-transducedcellswere
either left untreated or treated with 500 U/ml
IFN-b (11415-1, PBL Assay Science) 4 hours be-
fore infection. Cells were infected with SARS-
CoV-2 (MOI = 0.5) for 1 hour at 37°C. After
24 hours of infection, cells were fixed and
taken out of the BSL3 for staining.
After fixation, cells were stained with SARS-

CoV-2 and ACE2 primary antibodies (0.5 and
1 mg/ml, respectively). Primary antibodies were
as follows: for SARS-CoV-2, humanmonoclonal
anti-spike-SARS-CoV-2 C121 antibody (40), and
for ACE2,mousemonoclonal Alexa Fluor 488–
conjugated antibody (FAB9332G-100UG,R&DSys-
tems). Imageswere acquiredwith an ImageXpress
Micro XLS microscope (Molecular Devices)
using the 4× objective. MetaXpress software
(Molecular Devices) was used to obtain single-
cell mean fluorescence intensity (MFI) values.
Data analysis on single-cell MFI values was

done in the R environment (version 4.0.2).
ACE2/TMPRSS2-transduced cells were classi-
fied as ACE2 positive when the ACE2 log MFI
was superior to the log mean MFI of mock-
transduced cells plus 2.5 SDs. We excluded
all wells with <150 ACE2-positive cells before
SARS-CoV-2 scoring. ACE2-expressing cells
were classified SARS-CoV-2 positive when the
fluorescence intensity value was superior to
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Fig. 7. In vivo type I
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SARS-CoV-2 infections.
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were measured by
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out LOF variants indi-
cates COVID-19 patients
with neutralizing anti-IFN-
a auto-Abs in our
accompanying report
(29). P values indicated
were evaluated using
one-way ANOVA.
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the MFI of mock-infected cells plus 4 SDs.
The median SARS-CoV-2 MFI and percentage
SARS-CoV-2–positive cells were calculated for
each well (independent infection).

Single-molecule array (Simoa) IFN-a
digital ELISA

Serum IFN-a concentrations were deter-
mined using Simoa technology, with reagents
and procedures obtained from Quanterix Cor-
poration (Quanterix SimoaTM IFNa Reagent
Kit, Lexington, MA, USA). According to the
manufacturer’s instructions, the working dilu-
tions were 1:2 for all sera in working volumes
of 170 ml.
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