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Background: Quantitative in vivo imaging of myelin loss and repair in patients with multiple sclerosis (MS) is essential
to understand the pathogenesis of the disease and to evaluate promyelinating therapies. Selectively binding myelin
in the central nervous system white matter, Pittsburgh compound B ([11C]PiB) can be used as a positron emission
tomography (PET) tracer to explore myelin dynamics in MS.
Methods: Patients with active relapsing-remitting MS (n 5 20) and healthy controls (n 5 8) were included in a longi-
tudinal trial combining PET with [11C]PiB and magnetic resonance imaging. Voxel-wise maps of [11C]PiB distribution
volume ratio, reflecting myelin content, were derived. Three dynamic indices were calculated for each patient: the
global index of myelin content change; the index of demyelination; and the index of remyelination.
Results: At baseline, there was a progressive reduction in [11C]PiB binding from the normal-appearing white matter
to MS lesions, reflecting a decline in myelin content. White matter lesions were characterized by a centripetal
decrease in the tracer binding at the voxel level. During follow-up, high between-patient variability was found for all
indices of myelin content change. Dynamic remyelination was inversely correlated with clinical disability (p 5 0.006
and beta-coefficient 5 –0.67 with the Expanded Disability Status Scale; p 5 0.003 and beta-coefficient 5 –0.68 with
the MS Severity Scale), whereas no significant clinical correlation was found for the demyelination index.
Interpretation: [11C]PiB PET allows quantification of myelin dynamics in MS and enables stratification of patients
depending on their individual remyelination potential, which significantly correlates with clinical disability. This tech-
nique should be considered to assess novel promyelinating drugs.
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As the leading cause of onset of neurological disability

in young adulthood, multiple sclerosis (MS)

presents an enormous social and economic burden in the

Western world.1 MS pathophysiology predominantly

involves autoimmune aggression of central nervous sys-

tem (CNS) myelin sheaths, resulting in inflammatory
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6APHP, Hopital Piti�e-Salpetrière, Paris, France.

Additional supporting information can be found in the online version of this article.

The copyright line for this article was changed on 19 August 2016 after original online publication.

726 VC 2016 The Authors. Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited.

 15318249, 2016, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ana.24620 by U

niversity O
f Siena Sist B

ibliot D
i A

teneo, W
iley O

nline L
ibrary on [17/02/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



demyelinating lesions and subsequent irreversible axonal

degeneration. Considerable efforts have been made over

past decades to develop immunoactive therapies. These

have shown significant effects in reducing the number of

clinical relapses; however, they have failed to demonstrate

any efficacy in reducing or delaying long-term disability

progression.2 We are therefore assisting to a shift in ther-

apeutic objectives from the development of new immune

drugs toward the identification of therapeutic strategies

to promote myelin regeneration, an endogenous process

that is expected to restore secure and rapid conduction as

well as to protect axons from degeneration.3

In animal models, myelin regeneration is a very

effective process that is activated by default in response

to any sort of myelin damage, resulting in efficient

reconstruction of the area of myelin loss.4 To date, little

is known about the dynamics of remyelination in

patients with MS over the course of their disease. Sensi-

tive and specific imaging tools designed to measure mye-

lin in vivo are essential to understand how and why

spontaneous remyelination succeeds or fails in MS, as

well as to quantify the potential effects of new promyeli-

nating therapies.

Advanced magnetic resonance imaging (MRI)

sequences, such as magnetization transfer imaging,

diffusion-weighted imaging, and T2 relaxometry, which

are able to generate quantitative images exploiting physi-

cal properties of the brain parenchyma, have been pro-

posed to gain indirect information about the myelin

compartment in the human brain.5 However, these tech-

niques are not specific for myelin because they are

affected to various extents by intra- and extracellular

water, axons, edema, and inflammatory infiltration. Posi-

tron emission tomography (PET), which allows selective

targets to be marked with radiolabeled compounds, is a

promising alternative for myelin imaging. Following the

pilot demonstration indicating that the stilbene Congo

red derivative 1,4-bis(p-aminostyryl)-2-methoxy benzene,

could be used as a myelin tracer suitable for PET imag-

ing,6 a similar affinity for myelin was reported for other

stilbene derivatives.7–10 These tracers, all previously

known as amyloid markers, were hypothesized to bind to

proteins characterized by a similar conformation con-

tained in amyloid plaques and myelin.11,12 On this basis,

Pittsburgh compound B (PiB), a thioflavin compound

binding to amyloid plaques, was also identified as a

promising myelin tracer suitable for human PET stud-

ies.13 In rodent demyelinating lesions, microPET with

[11C]PiB showed great sensitivity in capturing remyelina-

tion after demyelination.10 Preliminary data obtained

from humans further demonstrated that [11C]PiB PET

was sensitive enough to detect myelin loss in MS

lesions.13 A noninvasive parametric voxel-wise quantifica-

tion procedure based on the extraction of reference

regions using a supervised clustering algorithm showing

higher reproducibility compared to previously used semi-

quantitative methods, has recently been shown to allow

reliable longitudinal evaluation of [11C]PiB binding in

the white matter (WM) of healthy volunteers.14

Here, we report the results of the first longitudinal

study in which PET with [11C]PiB was used to quantify

in vivo myelin loss and regeneration in the WM lesions

of patients with MS and to explore the clinical relevance

of these processes.

Subjects and Methods

Subjects

Twenty patients with relapsing-remitting MS according

to the revised McDonald criteria15 with at least one

gadolinium-enhancing (Gd1) lesion (defined as all vox-

els localized inside a ring-enhancing lesion) with an in-

plane maximum diameter larger than 6 mm on MRI at

study entry (13 women; mean age: 32.3 years; standard

deviation [SD]: 5.6) and an age- and sex-matched group

of 8 healthy volunteers (5 women; mean age: 31.6 years;

SD, 6.3) signed written informed consent to participate

in a clinical imaging protocol approved by the local

ethics committee (Table 1).

Study Design
At inclusion, all patients were clinically assessed and

scored using the Expanded Disability Status Scale16

(EDSS) and the Multiple Sclerosis Severity Scale17

(MSSS), which is designed to provide a measure of dis-

ease severity by adding the element of disease duration to

the EDSS; all patients underwent MRI and PET scan.

The 19 patients who completed the study (1 patient

withdrew from the study after the first PET scan because

of personal reasons) were randomly assigned to two sub-

groups to repeat the whole protocol after either 1 to 2

months (n 5 9) or 3 to 4 months (n 5 10) after inclu-

sion to explore the best time interval in which to capture

and quantify dynamic remyelination and demyelination.

All healthy volunteers underwent a second PET scan 1

month after inclusion. No adverse event was observed

during the study.

Image Acquisition and Analysis

PET IMAGES. Image acquisition, reconstruction, and

quantification were performed as recently described.14

Briefly, PET examinations were performed on a high-

resolution research tomograph (HRRT; CPS Innovations,

Knoxville, TN), which achieves an intraslice spatial
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resolution of �2.5mm full width at half maximum, with

25-cm axial and 31.2-cm transaxial fields of view. The

90-minute emission scan was initiated with a 1-minute

intravenous bolus injection of [11C]PiB (mean 5 358 6

34 MBq). Images were reconstructed using the three-

dimensional (3D) ordinary Poisson ordered subset expec-

tation maximization algorithm with 10 iterations (consid-

ered to represent the appropriate trade-off between image

resolution, quality of the data, and reliability of

results).14 An additional smoothing filter implementing

the point spread function, which has been shown to be

effective in reducing the effect of partial volume in PET

data,18 was applied to the 10-iteration reconstructed

image. All the resulting dynamic PET images consisted

of 25 time interval (time frames) images: six 1-minute

frames for the initial 6 minutes (631), followed by

632-, 433-, 635-, and 3310-minute frames, with a

voxel size of 1.22 3 1.22 3 1.22 mm. Interframe sub-

ject motion correction was applied by realigning each

PET frame to a common reference space by using a pre-

viously described procedure.19 Data were also corrected

for carbon-11 decay. To avoid blood sampling in our

patient cohort, we chose to quantify our PET scans using

a reference region approach. A supervised clustering

method already validated for [11C]PiB was used for the

extraction of the reference region time activity curve

(TAC).14,20,21 Briefly, this method consists of the multi-

ple regression of all PET image voxel TACs on a prede-

fined set of kinetic classes. After regression, all the voxels

associated with the reference class with probability

>90% are combined and the average of their TACs

defines the reference input function. As described in the

validation study performed using healthy controls, three

classes were defined: normal gray matter (GM); high spe-

cific binding GM; and blood pool. The reference class of

choice was normal GM.14,21 Once the reference TAC

was extracted, [11C]PiB binding was calculated by

applying a kinetic operator to the measured dynamic

PET activity during the last 60 minutes of the PET

acquisition. The Logan graphical reference method22 was

then applied at the voxel level on PET scans in native

space and returned parametric maps of [11C]PiB binding

measured as the distribution volume ratio (DVR; defined

as the ratio of the total distribution volume between the

target and the reference region; Fig 1).

MR IMAGES. MR images were collected using a 3 Tesla

Siemens TRIO 32-channel TIM system, and included a

3D T1-weighted magnetization-prepared rapid gradient-

echo (MPRAGE), two-dimensional proton density, T2-

weighted (T2-w) imaging, 3D fluid-attenuated inversion

recovery (FLAIR), and pre- and postgadolinium T1 spin-

echo sequences (Supplementary Table 1).

Native Space Postprocessing. For each patient, T2-w

and T1 spin-echo images were registered onto the corre-

sponding 3D-T1 MPRAGE image using a fully affine

transformation (12 parameters; performed with FLIRT,

FMRIB’s Linear Image Registration Tool, which is part

of FSL, FMRIB’s Software Library; http://fsl.fmrib.ox.ac.

uk/fsl/fslwiki/), and the derived transforms were used to

align lesion masks with the individual 3D-T1 MPRAGE

scans. After performing a “lesion-filling” procedure,23

TABLE 1. Demographic, Clinical, and Radiological Characteristics of Patients and Healthy Controls at Study
Entry

Clinical and Radiological Characteristics Patients Healthy Volunteers

Number 20 8

Age, mean 6 SD 32.31 6 5.71 31.57 6 6.37

Gender, female/male 13/7 5/3

Disease duration, mean 6 SD 7.45 6 5.77 —

EDSS, median (range) 2 (0–6) —

MSSS, median (range) 3.43 (0.45–6.92) —

Treatment at study entry, no. of patients No treatment 5 4
First-line treatment 5 10
Second-line treatment 5 6

—

T2 lesion load, cc, mean 6 SD 109.79 6 73.05 —

Black hole lesion load, cc, mean 6 SD 9.3 6 11.26 —

Gadolinium-enhancing lesions, cc, mean 6 SD 4.46 6 4.02 —

EDSS 5 Expanded Disability Status Scale; MSSS 5 Multiple Sclerosis Severity Scale; SD 5 standard deviation.
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3D-T1 MPRAGE voxels were classified as WM, GM,

and cerebrospinal fluid (CSF) using the SPM8 software

(Statistical Parametric Mapping Version 8; http://www.fil.

ion.ucl.ac.uk/spm/software/spm8/) when the probability

of belonging to each tissue was more than 90%. On each

subject’s 3D-T1 MPRAGE scan, the following regions of

interest (ROIs) were defined by a single experienced

observer (B.B.): (1) GM; (2) normal-appearing WM

(NAWM), defined as the WM outside visible lesions; (3)

perilesional WM, defined as the 2-mm in-plane voxel

rim of NAWM surrounding T2-w lesions; (4) WM

lesions, identified on T2-w scans; (5) black holes, defined

on T1-weighted spin-echo scans as hypointense areas

compared to the NAWM; and (6) Gd1 lesions. In

healthy controls, WM and GM were defined. To further

minimize the impact of the partial volume effect, which

is known to be inversely proportional to the dimension

of any given ROI, only lesions with a minimal diameter

of 2.5mm (corresponding to the approximate resolution

of the HRRT camera) were retained for further analysis.

Standard Space Postprocessing. For each patient, the

3D-T1 MPRAGE scans acquired at baseline and at

follow-up were first registered one onto the other with

linear transformation, using FLIRT. The derived trans-

forms were then deconstructed into two half-way trans-

forms, which placed the two original images onto a

subject-specific half-way space so that they both suffered

the same amount of interpolation-related blurring. The

average image of the two half-way 3D-T1 MPRAGE

scans was then registered onto a standard brain image

(MNI152) using a non-linear transformation (performed

with FNIRT, FMRIB’s Non-Linear Image Registration

Tool, which is also part of FSL, FMRIB’s Software

Library; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). By linking

derived transforms, all the previously generated ROIs

were taken from the original 3D-T1 MPRAGE scans in

native space and placed in standard space.

In controls, 3D-T1 MPRAGE scans in native space

were directly registered on a standard brain image

(MNI152) using a nonlinear transformation performed

with FNIRT, and the derived transforms were used to

place ROIs in standard space.

PET-MRI COREGISTRATION. For all subjects, each

DVR parametric map was linearly registered onto the

corresponding 3D-T1 MPRAGE scan with FLIRT; the

derived transform was first inverted and then used to

FIGURE 1: Representative magnetic resonance imaging (MRI) and positron emission tomography (PET) images from MS
patients. (A–D) T1-weighted MRI (A), T2-weighted MRI (B), Pittsburgh compound B ([11C]PiB) standard uptake value (SUV) map
(C), and [11C]PiB distribution volume ratio (DVR) parametric map (D) of a single patient at study entry. SUV maps are semi-
quantitative measures of the tracer’s uptake obtained by averaging the PET frames acquired between the minutes 30 and 70
of the examination and correcting the values for the tracer’s injected dose and the patient’s weight. DVR maps are quantita-
tive parametric maps obtained with the automatic extraction of a reference region and the subsequent application of the
Logan graphical method. Arrows indicate two typical multiple sclerosis white matter lesions appearing as areas of decreased
uptake both on SUV and DVR images. T2-weighed MRI at study entry (E) and after 3 months (F) and [11C]PiB DVR parametric
map at baseline (G) and at follow-up (H) of a single patient. Arrowheads (G and H) indicate two lesions visible on MRI scans
that appear as regions of decreased DVR values on PET images and point to parts of the lesions where a subtle local increase
in DVR value between the first and second PET scan is visible, suggesting local myelin regeneration developing during follow-
up. Note that the same lesion appears unchanged on T2-weighed images.
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align all ROIs with the DVR parametric map in native

space at both time points.

Then, the previously generated transforms were

linked with one another to align each DVR parametric

map in native space to the standard brain image. They

were then used to take all ROIs to the DVR parametric

maps in standard space.

INDICES OF MYELIN CONTENT CHANGE. The

mean and SD of [11C]PiB binding were computed for

each subject and for each ROI from DVR parametric

maps in native space at baseline.

Demyelinated voxels inside patients’ T2-w lesion

masks at baseline were defined on PET scans at study

entry once registered to standard space, based on local

thresholds in comparison with the PET scans of

healthy controls after correction for the effect that the

distance from the CSF has on local DVR values to

minimize partial volume effects.14 In particular, one

given lesional voxel in patients was defined as demyeli-

nated if its DVR value was �1 SD below the mean

DVR value of all the voxels in healthy controls that

were localized at the same distance from the CSF as

the given voxel (and were therefore potentially affected

to the same extent by partial volume). The percentage

of demyelinated voxels over the total T2-w lesion load

measured at baseline was calculated from each patient’s

individual DVR map at both time points in standard

space.

The difference between the derived percentage at

the second time point and the corresponding percentage

at baseline was defined as the global index of myelin con-

tent change and reflected the subject-specific prevalence of

either myelin loss (positive values) or myelin repair (neg-

ative values) over the follow-up interval. The index of

dynamic demyelination, reflecting ongoing myelin loss,

was defined as the proportion of normally myelinated

voxels at baseline that were classified as demyelinated at

the second time point. The index of dynamic remyelina-

tion, which reflected ongoing myelin repair, was defined

as the proportion of lesional voxels classified as demyeli-

nated at baseline and reached a myelin level within nor-

mal limits at the second time point.

Statistical Analysis

BASELINE GROUP-LEVEL ANALYSIS. To test for dif-

ferences in mean DVR at baseline between patients’

NAWM and GM and healthy volunteers’ WM and GM,

respectively, two multiple linear regressions were used,

with group as the factor of interest and gender and age

as covariates. A mixed-effect linear model was used to

test for differences in mean DVR between NAWM and

PWM, T2-w lesions, Gd1 lesions, and black holes,

which included the subject as the random effect and

age, gender, disease duration, and T2-w lesion load as

covariates. The reduction in mean DVR between two

ROIs was calculated and reported as the percent reduc-

tion in mean DVR.

To investigate the effect of each lesional voxel’s dis-

tance in millimeters to the nearest point on the lesional

border on its corresponding DVR value, a mixed-effect

linear model was used in which the subject was included

as the random effect, and age and gender were included

as covariates.

CLINICAL CORRELATIONS. The correlation between

the PET-derived indices of myelin content change and

clinical scores was calculated using two separate multiple

linear regressions: the first with absolute values of EDSS

and the second with absolute values of MSSS as response

variables, and age, gender, and T2-w lesion load as addi-

tional covariates. Given that three regressions were run

for each of the two clinical variables (one for each of the

three indices of myelin content change), a Bonferroni-

adjusted significance level for these tests has been set at p

5 0.017. To confirm significant results, ordinal regres-

sions were also performed using a proportional-odds

cumulative logit model, where EDSS and MSSS values

were classified in three groups according to disease sever-

ity (mild disability 5 EDSS �1.5 or MSSS �3; moder-

ate disability 5 EDSS 2–3 or MSSS 3–6; severe

disability 5 EDSS >3 or MSSS >6) and entered as

dependent variables, and age, gender, and T2-w lesion

load were included as covariates. An exploratory post-hoc

analysis was also performed using significant models,

repeating regressions after including treatment status at

study entry as an additional covariate.

IDENTIFICATION OF POTENTIAL CONTRIBUTORS

TO THE INDICES OF DYNAMIC DEMYELINATION

AND REMYELINATION. Age, gender, disease duration,

temporal distance between the two PET scans, treatment

at study entry, and volume of T2-w and Gd1 lesion

load were considered potential contributors and were

included as independent variables in two separate multi-

ple linear regressions, in which the indices of dynamic

demyelination and remyelination were entered as

dependent variables.

Unless specified otherwise, results are reported as

significant at p < 0.05. Regression coefficients have been

calculated as the mean change in the dependent variable

for one unit of change in the predictor variable while

holding other predictors in the model constant, and are

reported below as “coefficients.”

ANNALS of Neurology
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FIGURE 2: Gradient in Pittsburgh compound B ([11C]PiB)
binding from normal-appearing WM to the center of
lesions. (A) Box plot diagrams showing the median DVR
(middle line) and range for each ROI at baseline in healthy
controls and patients (from left to right: WM in healthy
controls, normal-appearing WM in patients, perilesional
WM, T2-weighted lesions, black holes, and gadolinium-
enhancing lesions). These box plots show that the lowest
myelin content was detected in the “black holes”, the
hypointense lesions on T1 spin-echo scans that are known
to represent the most severely demyelinated lesions in MS
brains. A paired t test was used in a within-patient analysis
to test for between-region differences in myelin content.
(B) [11C]PiB binding values are negatively correlated with
the distance from the lesional border. Each point in this
scatter plot diagram represents the mean DVR value (y
axis) of all the voxels localized at any given distance in
millimeters from the lesional border (x axis) in any given
patient. Although voxels closer to the lesional border, on
average, present higher myelin content values, those
located far from the lesional border tend to present lower
myelin content values. The correlation between each vox-
el’s distance in millimeters from the lesional border and its
corresponding DVR value, which was tested using a
mixed-effect linear model in which the subject was
included as random effect and age and gender were cova-
riates, was highly significant (p 5 0.00001). DVR 5 distri-
bution volume ratio; MS 5 multiple sclerosis; NAWM 5
normal-appearing white matter; ROI 5 region of interest;
WM 5 white matter. SD 5 standard deviation; T2-w 5 T2-
weighted.

FIGURE 3: Between-patient heterogeneity in the global
index of myelin content change values. (A) Bar chart diagram
displaying the global index of myelin content change value
for each patient, which is defined as the difference in demye-
linated voxels between the second time point and baseline.
This index reflects the individual balance between dynamic
demyelination and dynamic remyelination. Patients with posi-
tive values on the global index of myelin content change,
which indicate a predominant dynamic demyelinating pro-
cess, are displayed in red. Patients with negative values,
characterized by a prevalent dynamic process of remyelina-
tion, are indicated in blue. (B and C) Scatter plot diagrams
and fitting lines representing the correlations between the
global index of myelin content change and clinical scores.
Although only a trend toward a significant correlation was
found between the global index of myelin content change
and EDSS (B), a significant correlation was found between
this index and MSSS (C). EDSS 5 Expanded Disability Status
Scale; MSSS 5 Multiple Sclerosis Severity Scale.
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Results

Nonlesional WM and GM [11C]PiB Binding Does
Not Differ Between MS Patients and Healthy
Controls
In patients, mean DVR for NAWM was 1.25 (SD 5

0.05), whereas mean DVR for GM was 1.09 (SD 5

0.01). In healthy volunteers, mean DVR was 1.25 (SD

5 0.04) for WM and 1.09 (SD 5 0.01) for GM,

respectively. No significant difference in mean DVR was

found between NAWM in patients and WM in healthy

controls (coefficient 5 0.003; p 5 0.893; 95% confi-

dence interval [CI] 5 –0.044 to 0.050) or between GM

in patients and GM in healthy volunteers (coefficient 5

–0.008; p 5 0.081; 95% CI 5 –0.017 to 0.001).

Demyelination at Baseline: A Gradient of
[11C]PiB Binding Decrease From Normal-
Appearing Tissue to the Center of the Lesion
Compared to NAWM in patients, mean DVR values

were significantly lower in perilesional WM (percent

reduction in mean DVR 5 –9.84%; p < 0.0001), T2

lesions (percent reduction in mean DVR 5 –20.24%; p

< 0.0001), Gd1 lesions (percent reduction in mean

DVR 5 –9.52%; p < 0.0001), and black holes (percent

reduction in mean DVR 5 –30.95%; p < 0.0001; Fig

2A; Supplementary Table 2).

In T2-w, black holes, and Gd1 lesions, the mean

percentage of demyelinated voxels over total lesion load

were 53.5% (SD 5 9.1), 68.1% (SD 5 11.7), and

25.9% (SD 5 15.4), respectively.

A negative correlation between the distance of vox-

els from the corresponding lesional border and their

DVR value was found (coefficient 5 –0.002; 95% CI 5

–0.025 to –0.016; p < 0.0001), with lower DVR values

for the center of the lesions and higher DVR values for

the periphery (Fig 2B).

Between-Patient Variability in Myelin Loss and
Regeneration Levels
High between-patient variability was found, with the

global index of myelin content change ranging from –

11.91 to 113.46 across the cohort (Fig 3A). The index

of dynamic demyelination also showed high variability,

ranging between 8.4% and 20.5% (representative images

in Fig 4; detailed values in Supplementary Table 3). A

similar finding was observed for the index of dynamic

remyelination, with variability ranging between 7.8% and

22.6% (Fig 4; Supplementary Table 3). These results

suggest that patients could be classified into two groups:

those showing high myelin regeneration potential and

those with prevalent dynamic demyelination during the

follow-up period (represented as blue and red bars in

Fig 3A).

When the local distribution of dynamically chang-

ing voxels was investigated, 85.5% of dynamically

demyelinating voxels and 81.7% of dynamically remyeli-

nating voxels were localized at the periphery of T2-w

lesions (defined as the 2-mm-thick lesional region inside

the border).

The Extent of Myelin Regeneration Inversely
Correlates With Clinical Disability
Because no patients were included during a clinical

relapse, and because no significant change was detected

in either EDSS or MSSS scores during follow-up, clinical

scores measured at baseline were used for clinical correla-

tions. At baseline, no correlation was found between the

percentage of demyelinated voxels over total T2-w lesion

FIGURE 4: Dynamic myelin loss and regeneration: images
from two patients. In A1 and B1, the myelin content of
lesional voxels in 2 patients at baseline (patient A: male, 33
years old, disease duration 4 years, EDSS 3; patient B:
female, 32 years old, disease duration 3 years, EDSS 0), as
measured by Pittsburgh compound B ([11C]PiB) binding (vox-
els in red correspond to the values in the lower range,
reflecting more severely demyelinated areas), is repre-
sented in red and yellow. In A2 and B2, the longitudinal
follow-up of the same patients is displayed, with the demye-
linating voxels over time reported in red and the remyeli-
nating voxels reported in blue. The dynamically
demyelinating voxels (in red) were defined as normally
myelinated voxels at baseline that were classified as demye-
linated at the second time point. Dynamically remyelinating
voxels (in blue) were those demyelinated voxels at baseline
that reached a myelin level within normal limits at follow-
up. EDSS 5 Expanded Disability Status Scale.
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load and clinical scores (EDSS as dependent variable: p

5 0.111; MSSS as dependent variable: p 5 0.449; Sup-

plementary Table 4).

The effect of the global index of myelin content

change on EDSS only showed a trend toward statistical

significance (p 5 0.045; beta-coefficient 5 0.53; Table

2; significance confirmed with ordinal regression: p 5

0.04). A significant association independent of gender

and T2-w lesion load was found between MSSS and the

global index of myelin content change, with the latter

increasing in more disabled patients (p 5 0.002; beta-

coefficient 5 0.69; Fig 3B,C; Table 3; significance con-

firmed with ordinal regression: p 5 0.043). A significant

association was also detected between MSSS and age,

with younger patients showing greater levels of disability

(p 5 0.009; beta-coefficient 5 –0.54).

Although no significant association was found

between the index of dynamic demyelination and EDSS

(p 5 0.72; Fig 5A; Table 2), there was a trend toward a

significant correlation with MSSS (p 5 0.08, beta-

coefficient 5 0.43; Fig 5C; Table 3). The index of

dynamic remyelination was a significant explanatory fac-

tor for EDSS (p 5 0.006; beta-coefficient 5 –0.67,

independent of age and gender; Table 2; Fig 5B; signifi-

cance confirmed with ordinal regression: p 5 0.001) and

MSSS (p 5 0.003; beta-coefficient 5 –0.68; Fig 5D,

Table 3; significance confirmed with ordinal regression:

p 5 0.028), together with age (p 5 0.01; beta-coefficient

5 –0.51; Table 3), with patients characterized by higher

remyelination potential presenting milder levels of dis-

ability. The results remaining significant after correction

for multiple comparisons are indicated in Tables 2 and 3

(Bonferroni-adjusted significance level 5 0.017).

When significant regressions were repeated includ-

ing treatment status as an additional covariate, the effect

of the index of dynamic remyelination on EDSS and

MSSS (for EDSS: coefficient 5 –0.233; p 5 0.014;

95% CI 5 –0.406 to –0.062; beta-coefficient 5 –0.96;

for MSSS: coefficient 5 –0.314; p 5 0.036; 95% CI 5

–0.601 to –0.026; beta-coefficient 5 –0.796) and the

effect of the global index of myelin content change on

EDSS remained significant (coefficient 5 0.141; p 5

0.027; 95% CI 5 0.020–0.262; beta-coefficient 5

0.952), whereas the effect of the global index of myelin

content change on MSSS lost significance (coefficient 5

0.165; p 5 0.108; 95% CI 5 –0.045 to 0.376; beta-

coefficient 5 0.68). No significant effect on either the

index of dynamic demyelination or the index of dynamic

TABLE 2. Effect of the Global Index of Myelin Content Change, Index of Dynamic Remyelination, and Index
of Dynamic Demyelination on EDSS After Adjustment for Age, Gender, and total T2-Weighted Lesion Load

95% confidence
interval

Dependent Variable:
EDSS Score

Coefficient Lower
bound

Upper
bound

SE t p Beta-
coefficient

Global index of myelin
content change

0.114 0.0029 0.224 0.051 2.20 0.045* 0.529

Age –0.045 –0.174 0.083 0.060 –0.75 0.463 –0.176

Gender –0.390 –1.948 1.167 0.726 –0.54 0.600 –0.128

T2 lesion load 1.15e-05 –1.14e-05 3.43e-05 1.07e-05 1.08 0.300 0.238

Index of remyelination –0.215 –0.359 –0.072 0.067 –3.22 0.006a –0.674

Age –0.054 –0.165 0.058 0.052 –1.03 0.322 –0.207

Gender –0.245 –1.608 1.119 0.636 –0.38 0.706 –0.081

T2 lesion load 5.27e-06 –1.47e-05 2.52e-05 9.30e-06 0.57 0.580 0.109

Index of demyelination 0.043 –0.211 0.297 0.119 0.36 0.722 0.100

Age –0.002 –0.145 0.141 0.067 –0.03 0.978 –0.007

Gender –0.943 –2.642 0.754 0.791 –1.19 0.253 –0.311

T2 lesion load 9.79e-06 –1.86e-05 3.82e-05 1.32e-05 0.74 0.472 0.203

*Tests significant at significance level 5 0.05.
aTests remaining significant after correction for multiple comparisons (Bonferroni-adjusted significance level 5 0.017).
CI 5 confidence interval; EDSS 5 Expanded Disability Status Scale; SE 5 standard error.
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remyelination was found for gender, disease duration,

temporal distance between the two PET scans, volume of

Gd1 lesions, and disease-modifying treatment (Table 5;

Supplementary Material), whereas age was a significant

contributor to the index of dynamic demyelination only,

with older patients showing more-extensive dynamic

demyelination (p 5 0.014; beta-coefficient 5 0.73; Table

5 in the Supplementary Material).

Discussion

In this longitudinal study, for the first time to our

knowledge, we used high-resolution [11C]PiB-PET

images quantified with a novel non-invasive approach to

visualize and measure lesional myelin loss and regenera-

tion developing over a few months in a cohort of

patients with active relapsing-remitting MS. Cross-

sectional analysis at baseline revealed a decrease in

regional [11C]PiB uptake that reflected a gradient in

myelin concentration from normal-appearing to lesional

tissue. Negative and positive changes in [11C]PiB binding

were measured in lesions during the follow-up period,

which are suggestive of dynamic myelin loss and regener-

ation. Finally, strong correlations between the remyelina-

tion index derived from [11C]PiB PET images and

clinical scores were found, supporting the clinical rele-

vance of the remyelination process in patients with MS.

Interestingly, no significant effect of the temporal dis-

tance between the two PET scans (1–2 months or 3–4

months) on the indices of dynamic demyelination and

remyelination was found in this study, which allowed us

to analyze all the patients together.

Cross-sectional Mapping of Demyelinated Areas
on PET Images Reflects the Pathological
Distribution of Myelin Loss
The normal range of [11C]PiB binding values found in

the NAWM of patients with MS may appear contradic-

tory to the changes detected outside visible lesions with

several advanced MRI techniques.5 However, this finding

is in line with histopathological evidence showing that

the pathological abnormalities affecting the NAWM

mainly consist of axonal damage and loss,24 microglial

activation,25 and disorganized nodes of Ranvier,26 but do

not include major demyelination. Accordingly, a compre-

hensive postmortem study combining MRI and histopa-

thology further confirmed that changes in advanced MRI

metrics in the NAWM were accounted for by axonal

degeneration and microglial activation, but not by

demyelination.27

TABLE 3. Effect of the Global Index of Myelin Content Change, Index of Dynamic Remyelination, and Index
of Dynamic Demyelination on MSSS After Adjustment for Age, Gender, and Total T2-Weighted Lesion Load

95% confidence
interval

Dependent Variable:
MSSS Score

Coefficient Lower
bound

Upper
bound

SE t p Beta-
coefficient

Global index of myelin
content change

0.202 0.085 0.318 0.054 3.73 0.002a 0.690

Age –0.189 –0.325 –0.054 0.063 –3.01 0.009a –0.541

Gender –0.497 –2.134 1.139 0.763 –0.65 0.525 –0.120

T2 lesion load 2.80e-06 –2.12e-05 2.68e-05 1.12e-05 0.25 0.806 0.043

Index of remyelination –0.295 –0.468 –0.122 0.081 –3.65 0.003a –0.676

Age –0.181 –0.316 –0.046 0.063 –2.87 0.012a –0.515

Gender –0.548 –2.192 1.097 0.767 –0.71 0.487 –0.132

T2 lesion load –7.14e-06 –3.12e-05 1.69e-05 1.12e-05 –0.64 0.535 –0.109

Index of demyelination 0.251 –0.042 0.545 0.137 1.84 0.088 0.429

Age –0.139 –0.303 0.026 0.077 –1.80 0.093 –0.395

Gender –1.242 –3.201 0.716 0.913 –1.36 0.195 –0.300

T2 lesion load 7.53e-06 –2.52e-05 4.03e-05 1.53e-05 0.49 0.629 0.115
aTests remaining significant after correction for multiple comparisons (Bonferroni-adjusted significance level 5 0.017).
CI 5 confidence interval; MSSS 5 Multiple Sclerosis Severity Scale; SE 5 standard error.
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Mean binding of [11C]PiB was progressively

reduced from NAWM to WM lesions, which, in turn,

were found to be characterized by a centripetal decrease

in [11C]PiB binding at the voxel level. These findings

mirror postmortem evidence showing that the lesion

edge surrounding areas are characterized by a partial

decrease in myelin density with an intermediate level

between discrete lesions and NAWM,28–31 and that the

severity of myelin destruction inside lesions becomes pro-

gressively worse from the periphery to the center.28

As expected, the lowest mean values of [11C]PiB

binding were found in the so-called black holes, charac-

terized by extensive demyelination and axonal loss.32–35

Interestingly, Gd1 lesions showed intermediate [11C]PiB

binding values between NAWM and T2-w lesions, which

could reflect the initial stage of myelin destruction

in lesions that have recently appeared.32 Increased

permeability of the blood–brain barrier to the tracer in

Gd1 lesional tissue could also influence the change in

[11C]PiB uptake found in active lesions. Exploring this

hypothesis would require full modeling of [11C]PiB

kinetics, including the input function measured with

arterial catheterization,36 a procedure that we considered

too invasive for patients with MS.

PET With [11C]PiB Identifies Individual Profiles
in Myelin Regeneration
In our longitudinal analysis, high between-patient vari-

ability was found for all the indices of dynamic myelin

content change, particularly the index of dynamic remye-

lination, reflecting the heterogeneity in remyelination

reported in postmortem cases of MS.37 This result, if

confirmed in larger studies with multiple follow-up time

points, may support the notion of a patient-specific

“remyelination profile,” which determines the extent of

myelin regeneration of each individual in response to a

demyelinating insult.37

Although age had a significant effect on dynamic

demyelination and a borderline impact on dynamic

remyelination, no significant effect on either index was

demonstrated for disease duration. An age-dependent

decrease in remyelination efficiency, possibly resulting

from oligodendrocyte progenitor cells migrating and dif-

ferentiating less efficiently with age in chronic lesions,

has been previously highlighted.38–40 However, the

FIGURE 5: Clinical relevance of remyelination. Scatter plot
diagrams and fitting lines representing the correlations
between EDSS individual scores and the indices of dynamic
demyelination (A) and dynamic remyelination (B) are
reported. Although no significant correlation was found
between the index of dynamic demyelination and EDSS, a
strong inverse correlation was found between the index of
dynamic remyelination and EDSS. Patients with lower dis-
ability were those presenting higher proportions of remyeli-
nating voxels over total lesion load. Scatter plot diagrams
and fitting lines representing the correlations between
MSSS individual scores and the indices of dynamic demye-
lination (C) and dynamic remyelination (D) are also reported.
EDSS 5 Expanded Disability Status Scale; MSSS 5 Multiple
Sclerosis Severity Scale.
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relationship between the efficiency of remyelination, age,

and disease duration is still controversial, and our results

contribute to an ongoing debate regarding the key ques-

tion of whether the remyelination potential remains con-

stant throughout life or is modified by aging and disease

stage.37,41 The majority of voxels dynamically changing

their myelin content in either direction during the

follow-up were localized in the peripheral lesional area in

accordance to both neuropathological and ultra-high-field

MRI studies demonstrating that the lesion edge corre-

sponds to the expanding inflammation where new demy-

elination takes place and to the privileged lesional area

where active remyelination occurs.37,42

Dynamic Myelin Regeneration Correlates With
Disability Scores
In our patient cohort, the index of dynamic remyelina-

tion was strongly associated with clinical scores, suggest-

ing that an efficient remyelination process taking place in

an appropriate time window after a demyelinating insult

is one of the discriminating factors in determining a bet-

ter prognosis in MS, at least during the relapsing phase

of the disease. Experimental studies have established that

remyelination was effective not only during the short-

term recovery of neuronal function, but also, more

importantly, in preventing subsequent axonal degenera-

tion, possibly through mechanisms mediated by axon-

myelin interaction.43 However, the correlation we found

between remyelination and clinical scores may also be

influenced by the development of a fast and severe pro-

cess of axonal degeneration that takes place immediately

after acute demyelination in the subgroup of patients

with a worse prognosis, which precedes a potential

remyelinating process and, in turn, results in a reduced

percentage of remyelinating voxels. The spatial and tem-

poral link between myelin repair and axonal damage and

loss has to be further explored in future longitudinal

studies combining imaging measures specific for myelin

and axonal damage. Results from such studies may also

clarify whether patients with MS can be defined as “good

remyelinators” or “bad remyelinators” throughout their

entire disease course, or whether the balance between

demyelination and remyelination in each individual

changes over time, with one process prevailing over the

other at different stages of disease or in different brain

areas.

In conclusion, this longitudinal pilot study demon-

strates that in vivo imaging of myelin loss and regenera-

tion in MS can be successfully achieved with PET.

However, this should be considered an exploratory study,

because the number of subjects included was limited.

Moreover, although the best available methodology has

been applied in this study to minimize the partial vol-

ume effect, a possible residual effect of this kind cannot

be completely excluded and should be taken into account

in the interpretation of our results. As a chronic demyeli-

nating disease occurring early in life, MS is among the

most appropriate pathologies in which to investigate the

remyelination process over time. Despite the reported

limitations, results from this study support that such a

regenerative process does occur during the relapsing

phase of the disease and might promote neuroprotection

and improve clinical prognosis. This imaging approach

not only provides novel insight for understanding the

pathophysiology of MS, but also provides perspective to

enable stratification of patients based on their remyelina-

tion potential, thereby allowing clinical trials to be short-

ened and enabling measurement of the effects of novel

drugs targeted at promoting myelin regeneration.
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