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Mechanotransduction is the process that enables the conversion of mechanical cues into biochemical signaling.
While all our cells are well known to be sensitive to such stimuli, the details of the systemic interaction between
mechanical input and inflammation are not well integrated. Often, indeed, they are considered and studied in
relatively compartmentalized areas, and we therefore argue here that to understand the relationship of me-
chanical stimuli with inflammation — with a high translational potential - it is crucial to offer and analyze a unified
view of mechanotransduction. We therefore present here pathway representation, recollected with the standard

systems biology markup language (SBML) and explored with network biology approaches, offering RAC1 as an
exemplar and emerging molecule with potential for medical translation.

1. Introduction

Mechanotransduction is the event that consists of the conversion of
mechanical into biochemical signal(s). Mechanotransduction is operated
by a variety of cells and in a number of crucial events: from early em-
bryonic development (epithelial mesenchymal transition, EMT type I'),
to wound healing (EMT type II%) to the spread of metastases (EMT type
%) all all with a medically relevant counterpart in: experimental
regenerative medicine;*> dermatology for scarring and burning,® or-
thopedics for bone repair;” mechano-pharmacology;>° and more rarely
in a specific anti-inflammatory key.'® Given this landscape, our ambition
in this work is to trace the biological pathway that represents the
transformation of mechanical cues into biochemical signals, with a spe-
cific focus on the intersection of this path with inflammation, i.e. the
innate immune response, this being a less walked path, despite the
fundamental role of inflammation in a variety of health-related con-
ditions'''* and the potential for mechanical cues to modulate the im-
mune response.’ !5

* Corresponding author.
E-mail address: christine.nardini@cnr.it (C. Nardini).
1 These authors contributed equally to this work.
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Although numerous pieces of information are available in the litera-
ture, their integration is relatively limited.'® This hampers the develop-
ment of a systemic overview that is crucial to fully capture the potential
and limitations of using mechanical stimuli to modulate inflammation,
showing how some reactions, traditionally associated to mechano-
transduction, produce in fact reactant traditionally associated to in-
flammatory pathways, thus blurring definitions and enhancing
interoperability.

In fact, the identification of inflammatory markers as early actuators
of mechanotransduction can offer insight into the potential of mechani-
cal stimuli to directly impact on such markers and, similarly, the relation
of anti-inflammatory targets with mechanotransduction can enable the
design of mechanical therapies to strengthen the effects of pharmaco-
logical drugs.

One very effective frame to explore these interactions is the collection
of information in a pathway, which exploits the network formalism. This
allows to capture, rather than simplify, the complexity of a system,
enabling the representation of multiple connections (edges of the
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network, biological reactions) among entities (nodes of the network,
biological molecules).

This concept underpins the design of in silico pathways, enabling not
only a faithful representation of the complexity of biological interactions,
but also the exploitation of computational tools proper to the network
theory (systems biology). This approach finally enables the identification
of mathematically relevant nodes, whose biological importance has
already been assessed.!”

Therefore, building on our earlier work,'® we have here curated a
state-of-the-art representation of the pathway of mechanotransduction in
relation to inflammation. This map is represented in a standardized format
to ensure exportability, verifiability and expansion using the Systems
Biology Markup Language (SBML'?) and represents our main contribution:
this carefully curated work offers, to the best of our knowledge -having
screened the literature and popular and well curated repositories (Reac-
tome,?° Navicell,?! KEGG,?? Biomodels®®)-, the most complete, integrated
and up-to-date collection of inflammatory pathways affected by mechanical
cues. This is far from trivial, as it is known that in complex system some
properties (named emergent) can be uncovered only when the system is
studied in its entirety, rather than in simplified subsystems. In practice, this
offers the possibility to identify molecules of potential medical interest that
cannot be highlighted when exploring state-of-the-art inflammatory path-
ways representations (here, the innate immune response in Reactome).

As an exemplar result, in our analysis, RAC1, a non-preeminent target
of anti-inflammatory therapies, emerges as an important molecule in the
innate immune response, shall the system be subjected to mechanical
forces, opening to further exploration of its therapeutic impact. This
result is therefore a well-educated hypothesis on the opportunity for
biomedical research to explore further the effectiveness of mechanical
cues in modulating RAC1 activity, whose relevance in a number of dis-
eases is well known.?*

Our work also presents other types of analysis to offer a glimpse on
the flexibility of use of such maps, including for instance indications and/
or warnings on the differential functions that can be activated depending
on the type of mechanical stimulus considered (diffusion analysis). This
type of information can for example inform the testing and design of
biomedical devices.

Overall, this mechanotransduction map represents a flexible resource
to efficiently explore the translational potential of mechanical cues in
medical applications. In the following, the terms network, pathway and
map are used interchangeably.

Finally, it is worth mentioning that the careful process we followed to
construct the map is based on manual curation, which implies lengthy
preparation time. Given the state of advancement of Al, future work
should consider large language models (LLM) as a potential means to
accelerate such production. Certainly, such advances are conditioned by
the training sets available, which are represented by manually curated
results like the one presented in this work. In other words, therefore,
future and faster advances are necessarily related to the ongoing pro-
duction of carefully curated work.

2. Material and methods
2.1. Construction of the mechanotransduction SBML pathway

The mechano core map'® has been updated with new entities from 12
recent (2015-2023) comprehensive review articles®! 1525733 and five
research articles specifically related to the role of the aryl hydrocarbon
receptor (AhR34’38), which, in addition to its recognized role as a sensor
for endo- and xeno-biotics, has recently been recognized as having a role
in the transduction of mechanical signals, particularly those associated
with endothelial fluid shear stress and directional migration. Publica-
tions have been manually selected using the keywords “mechano-
transduction”, “mechanical stimuli”, and “mechanical force”.

The map construction was done by manual curation translating nat-
ural language descriptions of molecules and reactions from the literature,
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into the standardized graphical representation of molecules (nodes) and
reactions (edges) in the Systems Biology Graphical Notation (SBGN>°) —
i.e. the collection of biologically relevant biochemical entities (nucleic
acids, simple chemicals, macromolecules, etc.) and reactions (produc-
tion, inhibition, modulation, etc.), collectively called components, using
CellDesigner.4.3,** which further operates the translation into SBML.

This representation is static, i.e. no kinetic parameters have been
included in the representation, following Reactome,?’ Navicell?! and
KEGG?? standard pathways representation. All components were upda-
ted with the standard MIRIAM (Minimal Information Requested in the
Annotation of Models following-up on previously defined and accepted
standards*') using the National Genter for Biotechnology Information
(NCBI*?) gene IDs for genes and transcripts, Universal Protein Knowl-
edgebase (UniProt43) ID for proteins and Chemical Entities of Biological
Interest (ChEBI**) ID for small molecules, within the SBML bgbiol:is label.
Entities with more than one ID were added to the bgbiol:hasPart element
according to SBML rules.*> Multiple proteins or genes with physical
interaction are known as complexes, while multiple entities without
physical interaction are known as sets. Sets are further divided in:
DefinedSet (very general way of grouping molecules based on the fact that
they share some common property, and often represent real complexes)
and CandidateSet (way of grouping molecules when information is
incomplete and one of several candidate physical entities is responsible
for a particular task, indicating potential alternatives). This latter attri-
bute were added to the note, to be fully compliant with Reactome.?
Whenever literature was ambiguous a consensus discussion was held to
identify the best representation/definition, and described in the notes to
guarantee maximum traceability, transparency and reproducibility (see
also Supplementary Materials for additional details).

When available, i.e. when sufficiently described, the specific nature of
the stimulus has also been detailed, overall the map contains eight
different stimuli including -beyond the generic (inflammation) and exper-
imental inflammatory stimuli (lipopolysaccharide LPS stress)- mechanical
force, shear stress, stretch, stiffness, tension, and hydrostatic pressure. Finally,
the literature pertains to experiments conducted on multiple organisms.
This information is stored in the CellDesigner layer attribute. Two versions
of this map are available in the Supplementary Materials: Mechano-
transductionSBMLPathway 17.10.24 (pure SBML Level 2 Version 4)
and MechanotransductionSBMLPathway celldesigner_17.10.24 (CellDe-
signer file).

2.2. Construction of three mechano-inflammatory networks

The SBML format enables systems biology approaches to the study of
mechanotransduction. In particular, pathways represented as complex
networks can be manipulated (union, intersection to name a few). To
perform these tasks we used Cytoscape®® (Version: 3.10.1) with the
cy3sbml app*” to import the SBML file.

We first expanded the core mechanotrasduction network described
above to include well known sub-pathways, i.e. we searched Reactome
with the molecules identified in the explored literature for their corre-
sponding (sub)pathway (P38, WNT, TGFB to name a few, see Table 1 for
the full list). If a sub-pathway was present, it was attached to the core, via
a union operation, given the recognized high quality of the Reactome
project, to efficiently expand the neighborhood of our mechano-
transduction map with existing and well assessed knowledge. We name
this expanded network Mechano-Union.

We also defined a second network, by integrating the Mechano-Union
to the Reactome Innate immune system (R-HSA-168249), this represents
the expansion of the innate immune response to include also mechanical
stimuli, in line with the idea of a greater inflammatory pathway'® able to
account for physical transduction. We name this network
Mechano-Innate.

Finally, our third network was obtained by simply importing the
Reactome Innate immune system pathway to use it as a baseline for com-
parison of network analyses (section 2.2). We name this network Innate.
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Table 1
Subpathways of the Mechanotransduction pathway.

SNo  Reactome Pathway ID  Reactome Pathway Name

1 R-HSA-171007 Pp38MAPK events

2 R-HSA-195721 Signaling by WNT

3 R-HSA-983705 Calcineurin activates NFAT

4 R-HSA-2028269 Signaling by hippo

5 R-HSA-8878166 Transcriptional regulation by RUNX2
6 R-HSA-9006936 Signaling by TGFB family members

7 R-HSA-9013149 RAC1 GTPase cycle

8 R-HSA-5603029 1kBA variant leads to EDA-ID

9 R-HSA-75893 TNF signaling

10 R-HSA-1980143 Signaling by NOTCH1

11 R-HSA-1489509 DAG and IP3 signaling

12 R-HSA-166016 Toll like receptor 4 (TLR4) cascade
13 R-HSA-112409 RAF-independent MAPK13 activation
14 R-HSA-9818026 NFE2L2 regulating inflammation associated genes
15 R-HSA-8939211 ESR-mediated signaling

16 R-HSA-6783589 Interleukin-6 family signaling

17 R-HSA-194138 VEGFA-VEGFR2 pathway

All three Cytoscape networks are available as Supplementary material
(MechanoUnion.cyjs used in Section Diffusion and Mechanolnnate.cyjs,
Innate.cyjs used in Section Topological Analysis), and a detailed example
of construction is given in the Supplementary Material file.

2.3. Diffusion analysis

Network propagation or diffusion analysis was done using the Diffu-
sion App of Cytoscape*® and applied to the Mechano-Union map. Briefly,
this analysis enables us to follow information fluxes (i.e. thermal energy
accumulated on nodes) over time. In a translational perspective, this
allows to explore how signals flow in the network, i.e. what are the final
actuators of initial stimuli. For this reason, the analysis was run by setting
an amount of energy solely on the node representing the stimulus of
interest (one by one), and collecting the amount of energy that reached
the nodes of the network at the end of the simulation, after heat had been
transferred to the nodes encountered.*® Results consist of a ranked list of
the network nodes, with nodes having collected the highest amount of
information/energy, ranking higher.

This type of output is well suited to perform an enrichment analysis which
enables the identification of biological functions that are statistically
significantly associated to the nodes that preserve energy: in other words,
this allows the identification of the biological functions elicited by the
stimulus.*” This was done with R software version 4.0.4 and RStudio
version 1.4.1106 by function gsea®® in the Bioconductor Package cluster-
Profiler, and using the Hallmark™® gene sets as functional references. Re-
sults’ significance is corrected also by the number of tests (i.e. eight stimuli),
to comply with the multiple hypothesis testing issue. Given that Hallmark
gene sets and Reactome pathways do not use the same standard notation,
we performed an automatic names conversion on all SBML pathways before
importing them in Cytoscape.“® Briefly, the MIRIAM identifier (see Section
1, Construction of the Mechanotransduction SBML Pathway) was converted
with the biomaRt R package (version 2.46.3)°! into the corresponding gene
name. In particular we used the “hsapiens_gene_ensembl” reference, and
within this set the “uniprot gnid”, “entrezgene_id” and ‘“external -
gene_name”, columns to extract the corresponding MIRIAM identifiers
(Uniprot*® and NCBI* for proteins, and for genes and transcripts, respec-
tively) along with the name of the related gene.

This was applied automatically to simple molecules (i.e. not to sets) to
19 SBML files (the Mechano-Innate pathway, the 17 pathways in Table 1,
and the Reactome Innate immune system (R-HSA-168249)).

2.4. Network topological analysis

Topological network analysis was run in Cytoscape*® on the Mecha-
no-Innate and the Innate networks, the rationale being to assess what

Mechanobiology in Medicine 3 (2025) 100112

differences emerge, shall we consider “classical” immune response
(Innate network) or also the mechanotransduction phenomenon
(Mechano-Innate network) as an activator of immunity.

Preprocessing involved the removal, given their ubiquity, of the small
molecules which include: H,0, ATP, ADP, GTP, GDP, H*, Na* and Ca®*,
as their high connectivity biases the topological analysis, ranking them
excessively high in topological network analyses. Further the corre-
sponding cytoscape.JSON files were exported and the topological anal-
ysis was run with Python 3.8 and the NetworkX>? package to create
directed graphs, a manipulation necessary to convert the JSON files that
have species' nodes connected to reaction nodes, into a network where
species are represented in nodes and reactions in edges. This was ach-
ieved as follows: species nodes with identical names (i.e. phosphorylated
and non-phosphorylated version of the same molecules as well as, genes,
transcripts and protein of the same molecule, to avoid their over-
representation in topological terms) were merged and new edges be-
tween species nodes connected via the same reaction node were created,
to preserve the biological pathway's structure. Finally, on these struc-
tures, topological analysis was applied to compute four centrality mea-
sures: closeness indicate how close a node is to all other nodes; betweenness
indicates the highest number of shortest paths (number of edges con-
necting two nodes); degree indicates the number of connected nodes and
eigenvalue centrality gives a measure of the connections to nodes that
have high connections.

Finally, we compared, for the molecules shared between the two
networks, the centrality measures. We retained the nodes whose differ-
ences were the highest (across all four measures, as a proxy for robust-
ness), since they represent molecules whose impact on immunity changes
most, shall we consider mechanical stimuli as relevant in triggering an
immune response. Therefore, this analysis lets emerge the molecules
whose centrality changes most when considering mechanotransduction
as an integral part of innate immunity, thus identifying molecules whose
relevance might be overlooked as inflammatory targets, while they may
become relevant when the system is perturbed by mechanical stimuli.

3. Results and discussion
3.1. Mechanotransduction map

The SBML file is available in the Biomodels®® repository, with all
future extensions and updates being there available, with ID
MODEL2406110001 (https://www.ebi.ac.uk/biomodels/MODEL2
406110001).

3.2. Diffusion analysis

The diffusion analysis allows us to gain insight into the steady state
(i.e. late) effect of a network perturbation, in our case the different types
of mechanical stimuli. In particular, a given amount of energy (heat) is let
to flow over time (simulation steps) across the network. According to the
specific wiring of the network a reduced amount of the original energy
(consumption) is being transported towards connected nodes, while
avoiding nodes that are not reached before the exhaustion of this energy.

Results come in the form of a list of all network molecules and their
accompanying heat (Supplementary Material, Table S1 Diffusion). This
type of information is appropriate for an enrichment analysis, and in
particular, hot molecules represent high ranking genes (or associated
proteins) that can be processed by gene set enrichment analysis*® (see
Methods) to identify which functions are majorly (and possibly differ-
entially) affected by the stimuli. Fig. 1 shows the results of the enrich-
ment analysis (See also Table S2 Supplementary Material), indicating
that in general all stimuli are statistically significantly enriched for in-
flammatory (p.e. TNFA signaling via NFKB, TGF beta signaling, IL6 JAK
STAT3 signaling, IL2 STATS5 signaling etc.) and proliferative (WNT BETA
catenin signaling, Epithelial Mesenchymal Transition, G2M Checkpoint
etc.) functions, explicitly listed in the rows of the dot plot in Fig. 1. These
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Fig. 1. Enrichment analysis (by GSEA) of the network genes ranked by heat, upon diffusion analysis. The functions on the vertical axis correspond to enriched
Hallmark functions, while the horizontal axis reports the elicited stimulus. The size of the dots is inversely proportional to the statistical significance of the enrichment.

Table 2
Immuno-mechano complexes.
Node Complex Name Group
2x DDX58 ligand:2x DDX58:2xATP [cytosol] Pathogens

Activated TAK complexes [cytosol]

STING:TBK1:IRF3 [cytoplasmic vesicle membrane]

TAK1 complex [cytosol]

UBE2N:UBE2V1 [cytosol]

WRC:IRSp53/58:RAC1:GTP:PIP3 [plasma membrane]

CHUK:p-S177,5181-IKBKB:IKBKG [cytosol]

Clustered IgG-Ag:p-FCGRs [plasma membrane]

Clustered IgG-Ag:p-FCGRs:p-6Y-SYK [plasma membrane]

dsDNA:ZBP1:pS-172-TBK1 [cytosol]

IKBKG:p-5176,5180-CHUK:p-S177,5S181-IKBKB [cytosol]

Mother filament:branching complex:daughter filament [cytosol]

NLRP4:DTX4:dsDNA:ZBP1:pS-172-TBK1 [cytosol]

NLRP4:DTX4:STING:p-S172-TBK1:IRF3 [cytoplasmic vesicle membrane]

p-S,2T-IRAK4:0ligo-MyD88:TIRAP:activated TLR receptor [plasma membrane]

DAGs [plasma membrane] Lipids
PI(3,4,5)P3 [plasma membrane]

PI(4,5)P2 [plasma membrane]

PPi [cytosol]

DAP12 Receptors:p-DAP12:p-6Y-SYK [plasma membrane] DAP12
p-5Y-LAT:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG:VAV:BTK:PIP3 [plasma membrane]

p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG [plasma membrane]

NFKB1(1-433), NFKB2(1-454):RELA [cytosol] NFKB
NFKB1:MAP3K8:TNIP2 [cytosol]

p-S$32,36-1kB-alpha:NF-kB complex [cytosol]

Active NIK:p-S176,180-IKKA dimer [cytosol]

Clustered p:LYN:p-FCERL:IgE:allergen:p-6Y-SYK [plasma membrane] FCERI
p-4S,T404-IRF3,p-S477,5479-IRF7 [cytosol]

Allergen:p-LYN:p-FCERLIGE aggregate [plasma membrane]

p-5Y-LAT:p-SHC1:GRB2:SOS1:GADS:p-Y113,Y128,Y145-SLP-76:PLCG1:VAV [plasma membrane]

K63polyUb [cytosol] Innate immune
Activated TLR4:TRIF:K63polyUb-TRAF3:K63polyUb-TANK:p-TBK1/p-IKBKE [endosome membrane]

CALM1:4xCa2+ [cytosol] CALM1
RAC1:GDP [plasma membrane] RAC1
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functions are broadly in line with the wound healing process (or EMT
type 1I°®) which proceeds across an early and transient inflammatory
phase and evolves towards regeneration (requiring proliferation) and
further remodeling.

It is nevertheless interesting to observe that, beyond these common
functions, some specific patterns can be observed. Not surprisingly,
inflammation and LPS, at this granularity of modeling, indicate a rela-
tively uniform activation of all the functions identified. Conversely, me-
chanical force, which represents the indistinct mechanical stimulus that
was modeled in our previous work'® shows a visible enrichment on the
tumor associated mTOR pathway,>” this is in line with the literature that
was adopted for that reconstruction, which turned out to have a partic-
ular emphasis on EMT type III. This bias was among the motivations to
update our network with the current work.

Finally, regarding the specific types of mechanical forces included in
our model, we can observe few peculiar patterns. The first is concerned
with hydrostatic pressure which elicits more specifically apical junctions
(formation), a results that, if experimentally validated, could expand the
information reported from the original literature.>® The second regards
shear stress, where the activity concerned with the GM2 checkpoint appears
to be the most enriched. Interestingly we can also observe that mechanical
stretch appears to elicit the same overall functions but with lower signif-
icance, suggesting, in this sense, a milder efficacy of this type of stimulus.

3.3. Topological analysis

Topological analysis allows the identification of important nodes,
where importance is defined based on the ability of such nodes to connect
the network. The most assessed metrics to compute this importance
include the degree, betweenness, and stress centrality and the eigenvalue. In
our analysis we computed all statistics to obtain a list of molecules whose
importance is dramatically different when computing it in the Innate
only or in the Mechano-Innate. We here discuss the role of these mole-
cules and do so after selecting the more robust, i.e. the molecules that
change their importance across all four measures (full list and metrics in
Table S3, Supplementary Material).

The full list of these thirty-four nodes (named immuno-mechano
complexes) is available in Table S4 of the Supplementary Material, where
we also list their description as retrieved from Reactome by manual
curation, and further grouped in six main areas of activity, in Table 2. The
first group pertains directly (and generically) to the response to patho-
gens. The second has to do with membrane lipids, this is not surprising, as
it is well known that mechanical transduction consists of the activation of
receptors by physical stress of the membrane and/or the extracellular
matrix. Similarly we observe that the third group has to do with well-
known key molecules including Nuclear Factor kappa-light-chain-
enhancer of activated B cells NF-xB,”® Transmembrane Immune Signaling
Adaptor (TYROBP) known as DAP12°® and interferons (IFNa, IFNB).
Finally, we highlight RAC1 and CALM1, two specific molecules, whose
biological role is known to be crucial in the regulation of ion signaling.
While CALM1 mechano-mediated effects are less explored and so is its
role as drug target,”” RAC1 (with RhoA) is a well-known key player in
mechanotransduction.”®>® Its relevance in inflammation is also known,
and the modulation of RAC1 in numerous diseases from allergies®® to
cancer®! is recognized.

From a topological standpoint, the relevance of these molecules ap-
pears to be coherently increased across all measures of centrality (in the
plasma membrane and in the cytosol, respectively, see Supplementary
Material Table S3). This indicates that these molecules, when considering
the effect of a mechanical stimulus on the inflammatory state of the
system, have the potential to connect to other molecules (eigenvalue,
closeness and degree) with an efficiency (betweenness), that is higher
than what has been recognized so far, when inflammation was reduced to
its more classical innate immune response definition.

What we offer with our investigation is therefore the recommenda-
tion to explore the potential of constraining RAC1 (and CALM1) activity
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with mechanical stimuli, as this and similar approaches (see for instance
the modulation of Ca®* ion channels by magnetic stimuli®®), can effi-
ciently complement pharmacological research and drug design.
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