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Paramagnetism and Relaxation Dynamics in 

Melanin Biomaterials

Maher Al Khatib, Jessica Costa, Maria Camilla Baratto, Riccardo Basosi and Rebecca Pogni* 

Department of Biotechnology, Chemistry and Pharmacy, Via A. Moro 2, 53100 Siena (Italy)

ABSTRACT 

The spectroscopical characterization of melanins is a prior requirement for the efficient tailoring 

of their radical scavenging, UV-Vis radiation absorption, metal chelation and natural pigment 

properties. The Electron Paramagnetic Resonance (EPR), exploiting the common persistent 

paramagnetism of melanins, represents the elective standard for the structural and dynamical 

characterization of their constituting radical species. As much as melanins are mainly 

investigated using X-band (9.5 GHz) CW- EPR, an integration with an alternative application of 

Q-band (34 GHz) in CW and pulse EPR for the discrimination of melanin pigments of different 

composition is here presented. The longitudinal relaxation times measured highlight faster 

relaxation rates for cysteinyldopa melanin, compared to those of the most common dopa melanin 

pigment, suggesting pulse EPR spin-lattice relaxation time measurements as a complementary 

tool for characterization of pigments of interest for biomimetic materials engineering.

INTRODUCTION
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2

Bioinspired materials are designed to mimic the biological, chemical and physical properties of 

extraordinary materials present in nature. The variety with which nature expresses itself can be 

exploited for the realization of biocompatible materials to support the needs and challenges of a 

green-economy logic. In this context melanin pigments have attracted an increasing degree of 

attention due to their potential applications in the realization of optoelectronical and biomedical 

devices.1-11 Melanins are ubiquitous pigments present in nature, which exhibit peculiar adhesive 

properties, a wide UV-vis light absorption spectrum, capability of acting as mixed ionic-

electronic conductors and marked metal ions chelator and free radical scavenging activities. 12–24

Due to the lower immunoresponse in in-vitro tests, melanins have been proposed for electro-

medical devices coatings.8 Furthermore, melanins are commonly known for their characteristic 

black to reddish color span, and the exploitation of their structural and geometrical spatial 

organization has been proven successfully for the realization of structural colors.25–32 In fact, 

melanin’s highly heterogeneous structural and geometrical features at the nano and micro scale 

contribute to most of their characteristic physico-chemical properties, such as the increasing 

absorption trend toward the blue region of the UV-Vis spectrum.33 This high structural 

heterogeneity poses a challenge for the melanin characterization necessary for a controlled 

design and engineering of functional melanin materials.34,35 At the state of the art, the most 

successful characterization of melanin pigments is being achieved using continuous wave (CW) 

electron paramagnetic resonance spectroscopy (EPR), which exploits the characteristic 

persistence of free radical species common to all melanins to extract structural and dynamical 

information (e.g. free radical composition).36–42 EPR investigation, together with the support of 

computational studies, helped to identify 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-

carboxylic acid (DHICA) as the main constituents of the most common melanin form found in 
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nature, eumelanin (also known as dopa-melanin), while cysteinyldopa derived units have been 

found as characteristic components of pheomelanin (also known as cysteinyldopa 

melanin).5,13,43–46 Electrochemical fingerprinting has been used to suggest that natural eumelanin 

pigments contain porphyrin-like proto-molecules composed of DHI/DHICA tetramers, while 

recent computational investigations describe melanins as composed of a mixture of low 

molecular weight oligomers.43,47  

In this paper, the paramagnetic properties of enzymatically produced dopa melanin and 

cysteinyldopa melanin, have been probed by the use of Q-band (34 GHz) pulse EPR and Q- and 

X-band (9 GHz) CW Multifrequency EPR. The use of selective microwave pulses at Q-band 

frequencies was employed to measure the longitudinal relaxation times of these two different 

melanin pigments, providing the evidence that faster relaxation dynamics are present in 

cysteinyldopa melanin and that the EPR pulse technique can represents an useful and 

complementary tool to discriminate between the two different pigments.

EXPERIMENTAL SECTION

Sample preparation. Two different samples were prepared by the oxidative activity of Trametes 

versicolor (T.v.) laccase (12.9 U mg−1) in 100 mM phosphate buffer (pH=7.1) and dopa (6.57 

mg/mL) (1:1000 Lac:dopa molar ratio) for dopa melanin synthesis and 1:2 dopa:cysteine molar 

ratio in acetate buffer 100 mM (pH=4.5) for cysteinyldopa.13 The formation of a markedly 

insoluble black and reddish pigments respectively were obtained. The synthesis was performed 

at room temperature at air under stirring for 16 h. The samples were dried under nitrogen flux 

and collected as dry powders. The powders were inserted within cylindrical Suprasil capillaries 

for EPR Q-band measurements (WG-222T-RB, Cortecnet Europe, France) with ID x OD equal 
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4

to 1.1x1.6 mm. The same samples were used for CW X- and Q-band and pulse Q-band EPR 

measurements. Possible samples hydration cannot be ruled out.

EPR experimental setup.  EPR spectra were measured with a Bruker ELEXSYS E580 Super Q-

FT spectrometer, equipped with ER 5107D2 probehead, CF935 continuous-flow helium cryostat 

(Oxford Instruments), and ITC 502 temperature controller (Oxford Instruments) for CW and 

pulse Q-band EPR measurements. CW X-band spectra and spin quantitation measurements were 

performed using a Bruker ER 049X microwave bridge with 4122SHQE/0208 cavity. The spin 

quantitation was carried out against an internal reference (Bruker) of irradiated solid alanine 

(3mm length, 5mm diameter) sealed under N2 atmosphere, and containing a total of 2.0510-7 

±10% spins, using the SpinCounting program provided in the Xepr software (Bruker).

Q-band pulse experiments. The Echo Detected Field Sweep spectra of the two melanin samples 

were acquired with a π/2--π echo sequence (π/2=42 ns and π=84 ns). A Picket Fence Saturation 

Recovery sequence (PFSR) (Scheme 1) was used for the measurement of longitudinal relaxation 

times. 

Scheme 1. Picket Fence Saturation Recovery sequence. Saturation and detection microwave 

pulses were used to measure longitudinal relaxation times.
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5

The region of the EPR spectra corresponding to the maximum of absorption was irradiated with 

a train of 29 saturating rectangular π/2 microwave pulses (higher grey pulses in Scheme 1), and 

the value of the residual magnetization was sampled with a rectangular pulses π/2--π echo 

detection sequence (red and blue pulses respectively). In order to assess the effective saturation 

recovery, the equilibrium value of the magnetization was acquired running a PFSR experiment 

where the saturating pulses were turned off (lower grey pulses).

RESULTS AND DISCUSSION 

The CW-EPR technique is greatly employed for the characterization of melanin free radical 

species. However, the g-value, intensity and lineshape of the spectrum are the sole observables 

obtained from a CW-EPR spectrum as no hyperfine structure is observed. In the context of 

relaxation time measurements, melanin pigments characterization was carried out in the  

pioneering work by Sarna and Hyde on 1978, while pulse EPR has been long underexploited for 

melanin radicals’ characterization, with the exception of the landmark X-band pulse EPR paper 

of Okazaki et al. dating back to 1985.48,49 

In Figure 1a and 1b, the EPR spectra recorded at increasing microwave power (max power 

value, M0=144.5 mW), for the dopa melanin (giso=2.0036±0.0002, Figure 1a) and cysteinyldopa 

melanin (giso=2.0050±0.0002, Figure 1b) samples are shown. The dopa melanin free radical 

signal (peak to peak signal amplitude, ∆Bpp= 0.5±0.1 mT, at microwave power M=1.46 mW) is 

commonly interpreted as originating from the concomitant presence of carbon centered 
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6

(g~2.0032) and semiquinone (g~2.0045) free radical species, whose respective contributions to 

the EPR signals are function of the hydration level and pH of the sample.50 The free radical 

signal recorded in cysteinyldopa melanins on the other hand, with its higher g value (g~2.0050) 

and broader lineshape (central line peak to peak signal amplitude, ∆Bpp=3.2±0.1 mT, at 

microwave power M=1.46 mW), is attributed to the  presence of semiquinonimine free radical 

species.51,52 

Figure 1. Left panel - (a) X-band (=9.871 GHz) room temperature power saturation curves of 

dopa melanin. (b) X-band (9.877 GHz) room temperature power saturation curves of the 

cysteinyldopa melanin. Right panel – (c) Echo Detected Field Sweep (EDFS) spectra recorded at 

Q-band for dopa melanin and (d) cysteinyldopa melanin samples. The red and blue curves in (c) 

and (d) represent the spectral lineshape of the rectangular π/2 and π pulses respectively used to 

generate the electron spin echo for the EDFS spectra acquisition. 
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7

The intensity increase of the X-band EPR signal for dopa and cysteinyldopa samples reaches a 

maximum and then decreases with higher microwave power levels (Figure S1).  The same trend 

is also evident in the EPR spectra recorded at Q-band (Figure S2). This progress of the EPR 

lines suggests a homogeneous line broadening with the absence of the so-called spin-islands with 

a free radical spin density equal to ~5.84·1013 spins/mm3 for dopa melanin and ~2.20·1013 

spins/mm3 for the cysteinyldopa melanin respectively.41

To investigate the possible use of relaxation time as a novel observable to differentiate melanin 

samples, pulse Q-band EPR (34 GHz) was employed for longitudinal relaxation time (T1) 

determination. The solid state Q-band EPR experiments will be of great help as at this frequency 

the g values and the anisotropies of the different radical species are better solved. Room 

temperature Q-band Echo Detected Field Sweep (EDFS) spectra of the samples were first 

recorded, in order to set the region of spectra to be selected for further investigations (black lines 

in Figure 1c and 1d). Rectangular microwave pulses of π/2=42 ns and π=84 ns (full-width-half-

height linewidth of ~29 MHz and 14 MHz respectively - red and blue lines in Figure 1c and 

1d) were then optimized for the relaxation study sequences further used. The spectral coverage 

of the π/2 and π microwave pulses was centered in correspondence of the maximum of the 

absorption spectra of the dopa melanin and cysteinyldopa melanin. The room temperature phase 

memory time (TM) of the two pigments was measured in place of the transverse relaxation time 

T2 in order to take into account the effect of instantaneous diffusion. The latter can contribute to 

the transverse relaxation process at the relatively low concentrations of paramagnetic centers in 

the samples (lower than 1015 spins/mm3).53 The phase memory time TM was extracted from the 

echo decay curves (Figure S3) using a monoexponential model, 𝑦 = 𝐴𝑒𝑥𝑝(− 𝑡/TM) + 𝑐, yielding 

TM~262 ns for the dopa melanin and TM~228 ns for cysteinyldopa melanin samples.
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Differences in relaxation times were emphasized when the longitudinal relaxation time (T1) 

was measured. T1 measurements were performed with Picket Fence Saturation Recovery (PFSR) 

experiments, to minimize the effect of spectral diffusion.54 The saturation recovery 

measurements were performed in the temperature range 20-110 K (Figure 2). The longitudinal 

relaxation times were extracted from the saturation curves, using the biexponential model 𝑦 = 𝐴𝑓𝑒𝑥𝑝(−𝑡/T1f) + 𝐴𝑠𝑒𝑥𝑝(−𝑡/T1s) + 𝑐, which considered the presence of two concurring 

mechanisms contributing to the longitudinal relaxation process, described by different T1 

parameters, namely T1f and T1s. The T1f component, is representative of the spectral diffusion 

effects, while the T1s component of the actual longitudinal relaxation process.

Figure 2. Q-band PFSR curves acquired at variable temperature for the (a) dopa melanin and (b) 

cysteinyldopa melanin samples. The log10() represents the saturation recovery process of the 

Page 8 of 17

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



9

macroscopic magnetization in the two samples. The level of saturation percentage is indicated as 

. The arrow indicates the increasing temperature.

The saturation curves reported in Figure 2a and 2b, show how the saturated magnetization of 

the melanin pigments is recovered with time from the starting point of total saturation condition, 

i.e. =1, towards the point of saturation recovery, i.e. 0.

Together with the data reported in Table 1, Figure 2 depicts the longitudinal relaxation process 

for the two biomaterials investigated. Faster spin-lattice relaxations were measured for the 

cysteinyldopa melanin over the entire temperature range. The smaller cysteinyldopa T1f and T1s 

values can be attributed to the different nature of its radical species. At 40 K (the lowest common 

temperature investigated for the two pigments), the composed semiquinonimine radical signal of 

the cysteinyldopa melanin recovered the 99% of the equilibrium magnetization level in 

approximately 2.510-2 s. The same recovery of the equilibrium magnetization level was reached 

after approximately 4.510-2 s in the case of dopa melanin.

Table 1. Longitudinal relaxation times. The columns report the T1f and T1s values evaluated for 

the dopa melanin and cysteinyldopa melanin samples 

Dopa melanin Cysteinyldopa melanin

T(K) T1f (µs)a) T1s (µs) a) T1f (µs) a) T1s (µs) a)

20 1.15E+04 6.79E+04 - -

30 1.06E+04 4.90E+04 - -

40 5.42E+03 2.60E+04 6.07E+03 2.09E+04

50 3.93E+03 1.69E+04 4.91E+03 1.69E+04

60 2.95E+03 1.12E+04 2.74E+03 8.31E+03
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10

70 2.09E+03 6.73E+03 1.94E+03 5.68E+03

100 1.53E+03 4.79E+03 7.16E+02 1.90E+03

110 9.70E+02 2.66E+03 4.14E+02 1.09E+03

a) The error on the reported T1f and T1s values obtained with the biexponential decay model, 
was estimated to 3 µs

The presence of cysteinyldopa melanin is commonly detected by higher values of the 

electronic g-factor and by the more complex lineshape resolved by CW EPR. Due to the 

relatively high difference in terms of spin-lattice relaxation times for the two compounds at 

higher temperature (approaching 60% at 100 K), Q-band PFSR measurements can be proposed 

as a complementary tool to classic multifrequency CW EPR for the assessment of the nature of 

new melanin pigments of unknown composition, and as an insightful instrument in melanin 

radical characterization.

Room temperature PFSR experiments were also performed to assess the measurements of 

relaxation times as discriminant feature under common melanins functional conditions  (T = 

298K) (Figure 3).

Figure 3 Q-band room temperature (298 K) PFSR curves recorded for dopa melanin (black) and 

cysteinyldopa melanin (orange). Dopa melanin =33.843 GHz; cysteinyldopa melanin =33.733 

GHz.
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Figure 3 and Table 2 show that cysteinyldopa faster longitudinal relaxation dynamics point 

out the feasibility of running T1 measurement as discriminant feature for melanin 

characterization even when EPR room temperature experiments are considered.

Table 2. Room temperature T1f and T1s values for the dopa and cysteinyldopa melanins. 

Sample T1f (µs)a) T1s (µs)a)

Dopa melanin 61 216

Cysteinyldopa melanin 23 58

a) The error on the reported T1f and T1s values obtained with the biexponential decay model was 
estimated to 3µs

Moreover, the T1 values measured for the dopa melanin produced by laccase (melanin 

pigments are commonly produced either using tyrosinase or by chemical oxidation of the 

substrate –tyrosine or dopa), could be compared with those obtained by Okazaki et all., where 

values of T1~4 ms were recorded for dopa melanins (77 K), indicating consistency in T1 values 

for dopa melanin pigments of different origin. 

CONCLUSIONS

This preliminary combined pulse and Multifrequency EPR investigation on representative 

melanins contributes to fill a gap in the rich literature of EPR characterization of melanin 

pigments.48 The characterization of the relaxation properties will certainly introduce a new tool 

to identify and gain information on the pigments, whose structures heterogeneity in solid state 
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are still object of intensive research, and whose understanding would open up new doors in 

biopigment material design.17

The same pulse EPR experiments could be extended to other conductive polymers like 

polyanilines, where the distribution of relaxation times values could be linked to the different 

polymer chain size, but also to more complex system like the melanin-polyaniline conductive 

biopolymers of technological interest.55–58
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