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Abstract

Artificial Intelligence (AI)–generated images represent a significant threat in various fields, such as security, privacy, media foren-
sics and content moderation. In this paper, a novel approach for the detection of StyleGAN2–generated human faces is presented,
leveraging a Transfer Learning strategy to improve the classification performance of the models. A modified version of the state–
of–the–art semantic segmentation model DeepLabV3+, using either a ResNet50 or a MobileNetV3 Large as feature extraction
backbones, is used to create both a face segmentation model and the synthetic image detector. To achieve this goal, the models are
at first trained for face segmentation in a multi–class classification task on a widely used semantic segmentation dataset, achieving
remarkable results for both configurations. Then, the pre–trained models are retrained on a collection of real and generated images,
gathered from different sources to solve a binary classification task, namely to detect synthetic (i.e. generated) images, thus carrying
out two different transfer learning strategies. The results indicate that this targeted methodology significantly improves the detec-
tion rates compared to analyzing the face as a whole, and underlines the importance of advanced image recognition technologies
when tackling the challenge of detecting generated faces.
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1. Introduction

With the emergence of many state–of–the–art generative models for human face generation, such as NVIDIA’s
StyleGAN [1] or Stable Diffusion [2], a vast number of synthetic images have proliferated over the internet, particu-
larly in social media. This, along with the fact that many of the fake images are nearly indistinguishable to the human
eye from the real ones, poses a concerning threat to trustworthiness in online environments. The ability to recognize
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generated images from real photos has thus become a critical concern in various fields such as media forensics, se-
curity and content moderation. Despite having been addressed in the literature [3, 4] with positive results, there is
still room to expand on this topic in terms of analyzing facial features singularly to improve classification results.
In particular, most of the models in literature are based on Convolutional Neural Networks (CNNs, [5]), a class of
deep learning models specifically designed for analyzing image and video data [6, 7]: CNNs are able to learn spatial
hierarchies of features by means of multiple convolutional, pooling, and fully connected layers. From the seminal
works in [8, 9], CNNs have revolutionized various fields, including computer vision [10, 11, 12], medical image
analysis [13, 14, 15, 16, 17], and autonomous driving [18, 19, 20, 21]. In addition to image classification, CNNs
have been successfully applied to different tasks such as object detection, semantic segmentation [22, 23, 24], and
image generation [25, 26]. In this context, the ability to accurately separate real and AI–generated images became
very important after the quick advancement of generative technologies, like the ones based on Generative Adversarial
Networks (GANs [25]): these models are remarkably useful in many tasks such as synthetic data generation, in which
they facilitated the spread of hyper–realistic facial images, not easily distinguishable to the untrained human eye from
genuine photos. Among the most influential GAN–based models, which have significantly contributed to this trend,
are those in the StyleGAN [1, 27, 28] and BigGAN [29] families; each of these pushed the boundaries of image quality
and resolution. StyleGAN2 model [27], for instance, refined the architecture to eliminate some artifacts and further
enhance image quality. BigGAN [29], on the other hand, is known for generating high–fidelity images at substantially
larger scales than previous GANs. These advancements have made it increasingly difficult to distinguish computer–
generated faces from real human images, intensifying the need for robust detection mechanisms. There have been
various recent studies contributing with multiple methodologies to address the task of detecting such images. For
instance, [30] introduces a specialized dataset called OpenForensics, designed with face–wise rich annotations use-
ful for training models capable of performing multi–face forgery detection and segmentation in in–the–wild scenes,
providing potentials for research in both deepfake prevention and general human face detection. Furthermore, [31]
introduced other datasets and methods which incorporate facial landmarks to locate edited facial components, thus
promoting more granular and interpretable face verification technologies. Similarly, [32] approaches deepfake detec-
tion as a fine–grained classification problem, focusing on discriminative facial subtle features to enhance detection
across various datasets and image manipulations. These methods significantly improve robustness and generalization
in deepfake data detection. In [33], the authors address the challenge of GAN–generated faces with a novel architec-
ture called Gram–Net, based on global image texture features for enhanced detection, thus highlighting the importance
of texture as a reliable indicator of image authenticity. Moreover, [34] introduced DETER, an approach that leverages
the analysis of layer–by–layer neuron activation patterns to detect AI–generated images, proving itself robust against
a variety of fake faces generated by GANs, as well as against common adversarial attacks, thus setting a new baseline
for fake detection technologies.

This study proposes to tackle this problem by focusing independently on different parts of the generated face, so
as to obtain a classification based on human–understandable extracted features. To achieve this goal, a multiple step
approach, based on DeepLabV3+ [22] model, is introduced: in a preliminary phase, the whole model is trained from
scratch (i.e., DeepLabV3+ parameters are re–initialized) directly on the binary classification task, using DeepLabV3+
as a backbone purely as a feature extraction model. To asses the classification capabilities of the model, a transfer
learning [35, 36] approach was exploited as well, to improve performance in terms of learning times and evaluation
metrics. The implementation details and code are available online in a public GitHub repository1. As a matter of fact,
thanks to its state–of–the–art semantic segmentation capabilities, a transfer learning approach on DeepLabV3+ was
exploited in the study: hence, it was used to locate various salient parts of the face, e.g., eyes, ears or nose, in order to
have a latent useful representation of the facial areas. In this context, the model was pre–trained on a specific semantic
segmentation dataset in a multi–class classification task, and then exploited in the binary classification task, in which
two transfer learning settings were explored, by re–training the whole model as well as keeping most of the layers
non–trainable with the exception of the head layers.

The rest of the paper is structured as follows: Section 2 describes the employed methodologies, including the
dataset description for both the image segmentation and binary classification tasks, as well as the model architecture
and learning procedure. Section 3 shows the experimental setup chosen for the study, with specific reference to data

1 https://github.com/mtanf/gng
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generated images from real photos has thus become a critical concern in various fields such as media forensics, se-
curity and content moderation. Despite having been addressed in the literature [3, 4] with positive results, there is
still room to expand on this topic in terms of analyzing facial features singularly to improve classification results.
In particular, most of the models in literature are based on Convolutional Neural Networks (CNNs, [5]), a class of
deep learning models specifically designed for analyzing image and video data [6, 7]: CNNs are able to learn spatial
hierarchies of features by means of multiple convolutional, pooling, and fully connected layers. From the seminal
works in [8, 9], CNNs have revolutionized various fields, including computer vision [10, 11, 12], medical image
analysis [13, 14, 15, 16, 17], and autonomous driving [18, 19, 20, 21]. In addition to image classification, CNNs
have been successfully applied to different tasks such as object detection, semantic segmentation [22, 23, 24], and
image generation [25, 26]. In this context, the ability to accurately separate real and AI–generated images became
very important after the quick advancement of generative technologies, like the ones based on Generative Adversarial
Networks (GANs [25]): these models are remarkably useful in many tasks such as synthetic data generation, in which
they facilitated the spread of hyper–realistic facial images, not easily distinguishable to the untrained human eye from
genuine photos. Among the most influential GAN–based models, which have significantly contributed to this trend,
are those in the StyleGAN [1, 27, 28] and BigGAN [29] families; each of these pushed the boundaries of image quality
and resolution. StyleGAN2 model [27], for instance, refined the architecture to eliminate some artifacts and further
enhance image quality. BigGAN [29], on the other hand, is known for generating high–fidelity images at substantially
larger scales than previous GANs. These advancements have made it increasingly difficult to distinguish computer–
generated faces from real human images, intensifying the need for robust detection mechanisms. There have been
various recent studies contributing with multiple methodologies to address the task of detecting such images. For
instance, [30] introduces a specialized dataset called OpenForensics, designed with face–wise rich annotations use-
ful for training models capable of performing multi–face forgery detection and segmentation in in–the–wild scenes,
providing potentials for research in both deepfake prevention and general human face detection. Furthermore, [31]
introduced other datasets and methods which incorporate facial landmarks to locate edited facial components, thus
promoting more granular and interpretable face verification technologies. Similarly, [32] approaches deepfake detec-
tion as a fine–grained classification problem, focusing on discriminative facial subtle features to enhance detection
across various datasets and image manipulations. These methods significantly improve robustness and generalization
in deepfake data detection. In [33], the authors address the challenge of GAN–generated faces with a novel architec-
ture called Gram–Net, based on global image texture features for enhanced detection, thus highlighting the importance
of texture as a reliable indicator of image authenticity. Moreover, [34] introduced DETER, an approach that leverages
the analysis of layer–by–layer neuron activation patterns to detect AI–generated images, proving itself robust against
a variety of fake faces generated by GANs, as well as against common adversarial attacks, thus setting a new baseline
for fake detection technologies.

This study proposes to tackle this problem by focusing independently on different parts of the generated face, so
as to obtain a classification based on human–understandable extracted features. To achieve this goal, a multiple step
approach, based on DeepLabV3+ [22] model, is introduced: in a preliminary phase, the whole model is trained from
scratch (i.e., DeepLabV3+ parameters are re–initialized) directly on the binary classification task, using DeepLabV3+
as a backbone purely as a feature extraction model. To asses the classification capabilities of the model, a transfer
learning [35, 36] approach was exploited as well, to improve performance in terms of learning times and evaluation
metrics. The implementation details and code are available online in a public GitHub repository1. As a matter of fact,
thanks to its state–of–the–art semantic segmentation capabilities, a transfer learning approach on DeepLabV3+ was
exploited in the study: hence, it was used to locate various salient parts of the face, e.g., eyes, ears or nose, in order to
have a latent useful representation of the facial areas. In this context, the model was pre–trained on a specific semantic
segmentation dataset in a multi–class classification task, and then exploited in the binary classification task, in which
two transfer learning settings were explored, by re–training the whole model as well as keeping most of the layers
non–trainable with the exception of the head layers.

The rest of the paper is structured as follows: Section 2 describes the employed methodologies, including the
dataset description for both the image segmentation and binary classification tasks, as well as the model architecture
and learning procedure. Section 3 shows the experimental setup chosen for the study, with specific reference to data

1 https://github.com/mtanf/gng
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setting, model selection, and evaluation. Section 4 presents the results and discusses the performance of the model.
Finally, Section 5 draws some conclusions on current research and explains future perspectives.

2. Materials and Methods

In this section, the data and the experimental methodology used in this work are described: Section 2.1 presents an
overview of DeepLabV3+ model, used in all the learning settings, while Section 2.2 proposes a precise description of
the datasets for both the multi–class and the binary classification tasks.

2.1. DeepLabV3+

DeepLabV3+ is the latest model belonging to the DeepLab [23] family, a widely used class of convolutional neural
network (CNN) models for semantic segmentation, developed by Google Research. A key characteristic of this family
of models is the usage of Atrous Spatial Pyramid Pooling (ASPP) [23]. This technique, introduced for DeepLabv2,
combines Atrous convolutions and Spatial Pyramid Pooling operations to allow the capture of meaningful information
at multiple scales, making it particularly suited for semantic segmentation tasks. In atrous convolution, the kernels of
the layer are expanded by introducing gaps between filter layers. This leads to an increase of the receptive field of the
neurons in the layer, without increasing the number of parameters, also capturing features at multiple scales. Spatial
Pyramid Pooling (SPP) [37] is a pooling strategy capable of generating fixed length representations of images of
varying size. In SPP, the input feature maps are divided into sub–regions at different scales. Each sub–region is then
pooled independently for feature extraction and, lastly, the pooled features are concatenated. The SPP layer allows
the network to efficiently capture both local and global spatial information and be resistant to variations in object
positioning and size. DeepLabv3+ [22] extends the DeepLabv3 model [23] by using an Encoder–Decoder structure:
the backbone encoder model extracts rich semantic information by applying dilated convolution at multiple scales,
which is then used by the decoder to determine detailed boundaries for objects in the image.

2.2. Dataset Description

The complete version of Mut1ny [38] was exploited to train the DeepLabV3+ segmentation module. The dataset
contains 70621 images labelled at the pixel level. It includes facial images spanning various ethnicities, ages, and
genders, thus making it a balanced dataset widely used in literature [39, 40, 41]. Additionally, it features a diverse array
of facial poses and camera angles, ensuring comprehensive coverage from all angles. The 14 head/face segmentation
classes, each representing different facial features and attributes, are reported in Fig. 1. In the generated (i.e. fake)
images’ detection task, an ensemble of datasets was constructed, by retrieving real images from publicly available
datasets, and by generating fake facial images using state–of–the–art ML models. Some of the datasets included in
the ArtiFact [42] — a large collection of real and synthetic images, including various categories like people, animals,
places, vehicles, and more — were used to retrieve real (i.e. not generated) images: in particular, images were extracted
from CelebA–HQ [43] and FF–HQ dataset. The final dataset used for the learning procedure comprises 100,000
real and 200,000 synthetic facial images (the real images include 70,000 from the FF–HQ dataset and 30,000 from
CelebA–HQ dataset). On the other hand, a set of generative models, including Diffusion GANs [44], Stable Diffusion
models, StyleGAN1, StyleGAN2 [27], StyleGAN3 [28], Palette, and ProjectedGAN, [45] were used for the generation
of the positive samples.

3. Experimental Setup

This section defines the experimental setup chosen for the study, with specific reference to data preprocessing,
model selection, and evaluation. In the semantic segmentation learning procedure, augmentation techniques were ap-
plied on training data. In particular, images were randomly rotated within a range of ±15 degrees to simulate variations
in head pose, as well as translated horizontally and vertically up to 10% of their total width and height, respectively,
to account for misalignment. A shear transformation of up to 0.2 radians was applied, altering the geometry of images
to simulate a change in perspective. Moreover, random zooming of images by up to 20% to mimic distance variations
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Fig. 1: Examples of segmentation masks in Mut1ny dataset. Each color in the segmentation mask corresponds to a specific facial element, as
denoted in the legend on the left.

from the camera was applied, and then images were randomly flipped horizontally to simulate different orientations.
Finally, a “nearest” method was used to fill in new pixels created by rotations or width/height shifts, preserving the
local pixel similarity. The proposed architecture is depicted in Fig. 2. In the this version of the model, a ResNet50 [47]
and a MobileNetV3Large [48] were used as feature extractors, in place of the original Xception [49] backbone. Values
of dilation rates of 1, 4, 8, and 16 were used in the ASPP module, to obtain a good balance between capturing large
context and fine details. Moreover, the ASPP layer was modified to increase the kernel size (from the standard 3×3
dimension), along with the dilation rate, obtaining kernels of shape 3, 5, 7, and 11, in order to improve the gathering
of contextual information at this stage of the network.

To train the segmentation model, a Sparse Categorical Cross–Entropy loss was used, while the deepfake classifier
network was trained with a Binary Cross–Entropy loss. For both problems, a set of class weights have been calculated,
based on the numerosity of each class in the dataset, to handle class inbalance issues. This is especially significant in
the semantic segmentation task, due to the presence of classes (such as teeth and glasses) which encompass a small
number of pixels. Adam optimizer was used in the learning procedure, with an initial learning rate of 0.001.

Moreover, a transfer learning (TL) [35, 36] strategy was also implemented. The weights of the network trained on
the segmentation task are used as starting point for the training of the deepfake detector network. This was done since
the face landmark segmentation task should have some degree of correlation with the deepfake classification problem,
since current generation GAN models are not always consistent with regard to the coherence of facial feature position
and shapes [50, 51]. The primary benefits of the TL approach should be reduced training times, less samples required
in the learning procedure, and possibly, improved performance. These advantages are particularly significant for deep
networks, since they usually need huge amounts of data and extensive training periods to achieve optimal performance.

Evaluation metrics in the considered generated images’ detection task are the ones usually employed for binary
classification problems, in which the performance of the model is measured in terms of accuracy, precision, recall and
F1–Score, as defined in Eq. (1).

Accuracy =
T P + T N

T P + T N + FP + FN
Precision =

T P
T P + FP

(1)

Recall =
T P

T P + FN
F1–Score =

2T P
2T P + FP + FN



 Marco Tanfoni  et al. / Procedia Computer Science 246 (2024) 4160–4168 4163
Tanfoni, Ceroni et al. / Procedia Computer Science 00 (2024) 000–000 3

setting, model selection, and evaluation. Section 4 presents the results and discusses the performance of the model.
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Fig. 2: Network architecture. This model is used for both the semantic segmentation and fake detection tasks. In both the face segmentation task
and the baseline fake detection experiment, the network is fully trainable and initialized with the ImageNet [46] parameters. On the other hand, in
the transfer learning experiments for the fake detection problem, the models are initialized with the parameters from the face segmentation task,
and then two strategies — depending on the retrainability of the backbone model together with the head layers — are carried out.

In particular, the different outcomes of predictions made by a generic model compared to the actual ground truth
are described by using true positives, true negatives, false positives, and false negatives. A true positive (TP) occurs
when the model accurately identifies an instance as belonging to the positive class, whereas a true negative (TN)
occurs when it correctly identifies an instance as belonging to the negative class. In contrast, a false positive (FP)
occurs when the model erroneously classifies a negative instance as positive, and a false negative (FN) occurs when
it incorrectly labels a positive instance as negative. These distinctions are significant in the evaluation procedure of
classification models, giving insight into their accuracy, reliability, and information for potential improvement. It is
worth noting that the F1–Score can be interpreted as a weighted average of the precision and recall, thus providing a
more balanced measure in cases of unbalanced datasets.

4. Results and Discussion

Table 1 reports a summary of the DeepLabV3+ based face segmentators on the Mut1ny test set images, for both
ResNet50 and MobileNetV3 Large backbone setups. Both feature extraction backbones deliver satisfactory results
and, indeed, the performance gap between the ResNet50 and the MobileNetV3 backbones is relatively small, despite
the latter having approximately one–third of the parameters compared to the former.

Some results of the application of the trained face segmentation modules applied to both real and generated images
are depicted in Fig. 3. It is remarkable how, despite different light and focus conditions, the model proves to be precise
on the segmentation task, even for partially occluded faces like the first one. The robustness of the model underscores
its adaptability to multiple real–world scenarios where conditions are not always ideal, thus creating opportunities for
deployment in fields such as public security systems and mobile applications, also considering the lightweight nature
of the MobileNetV3 Large backbone.

Table 2 reports the results in the binary fake detection classification task for all the considered settings.
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Table 1: Summary of DeepLabV3+ segmentation models performance. The feature extraction backbone architecture used is reported, together with
the total number of trainable parameters and the pixel accuracy of the trained model on the test section of the complete Mut1ny dataset.

Backbone Number of parameters Accuracy

ResNet50 15,411,966 0.9539
MobileNetV3 Large 5,815,646 0.9484

Fig. 3: From the left: input images and segmentation masks obtained from the trained segmentation model, on three real images and three
StyleGAN2–generated images, retrieved from www.thispersondoesnotexist.com.

Table 2: Fake detection performance on StyleGAN2–generated images in the test set. The column TL refers to the transfer learning strategy used
in the learning procedure: “—” means that no transfer learning is applied, Last means that only the backbone feature extractor and final layers are
trainable, while the rest of the sub–model is set as non–trainable, All means that all the model parameters are re–trainable, using the pre–trained
parameters only for the initialization of the whole model. Both transfer learning strategies improve the performance of the classifier, for both the
feature extractor backbones, showing the feasibility of the approach.

Backbone TL Accuracy Precision Recall F1

— 0.8704 0.8751 0.9397 0.9062
ResNet50 Last 0.9176 0.9376 0.9387 0.9382

All 0.9342 0.9509 0.9504 0.9507

— 0.8690 0.9073 0.8950 0.9011
MobileNetV3 Large Last 0.8840 0.9842 0.8395 0.9061

All 0.9504 0.9623 0.9634 0.9628

The results indicate that pre–training the deepfake classifier on the segmentation task can enhance the model’s
ability to adapt to the subtle differences between synthetic and real facial features. This is in line with the expecta-
tions from the literature on transfer learning, and underlines the effectiveness of this approach for improving detection
rates. Furthermore, the low–level understanding of facial features granted by the segmentation model allows for more
detailed analyses and interpretation of model–specific incongruities in generated images. This could also help paving
the way for employment in the image–forgery field, that is, manipulating real images to deceive viewers, typically
associated with malicious activities, with potential consequences in fields like journalism, personal privacy and legal
proceedings. The adaptability of the model across the considered different architectures also demonstrates the versatil-
ity of the approach, suggesting that it could also be applied to other setups. In particular, the transfer learning strategy
had a remarkable effect for both the backbone models over the non–transfer learning cases, with an improvement in
performance of about 8% for the MobileNet submodule and of about 7% in the ResNet submodule, when the pre–
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trained models are used only as parameters initializers. That is, starting from a favorable situation in the parameters
initialization, the models can adapt the hidden representation of the samples to the task they are trained for. This result
is in accordance with known literature [10], that highlights how large models, as the ones used in the study as segmen-
tation submodule, benefit from transfer learning. With respect to the final classification performance, the results are
in line with the literature regarding StyleGAN2–generated images detection, as reported in [4], even considering the
heterogeneity of approaches and evaluation methods there reported. However, it is worth noting that, to the authors’
knowledge, using transfer learning from segmentation models to generated images detection is a novel approach,
which could possibly enhance current methodologies, so as to obtain ever higher detection rates. Additionally, the
original Xception backbone featured in the DeepLabV3+ architecture has been tested. Although this provided slightly
better segmentation performance, this improvement came at the cost of about 12 times the number of parameters
(∼75M vs. ∼6M with the MobileNet backbone), thus greatly extending training time and reducing practical feasibility
for many applications.

Interestingly enough, although MobileNetV3 Large segmentation capabilities are not as remarkable as the ones of
the ResNet50 submodule, it performed overall better in the fake detection task: a key aspect of the two aformentioned
models is the difference in the number of trainable parameters, since ResNet50 has more than three times the number
of parameters compared to MobilenetV3, which may favour one over the other in some practical applications.

5. Conclusion

This paper introduces a novel approach for the detection of AI–generated human faces, which leverages a Transfer
Learning schema to improve the classification performance of the models, integrating a pre–trained segmentation
model capable of identifying various facial landmarks. Three experiments were performed, training the model from
scratch, and by using two transfer learning policies in which the same architecture was pre–trained specifically for a
segmentation task, and then used in the fake detection task, thus adopting either a partial or a full transfer learning
approach. The latter has shown not only to improve the fake detection performance, but also to produce interesting and
human interpretable insights, by deploying ad–hoc interpretability or explainability methods to provide information
on the most crucial features for the classification, thus also pushing the boundaries towards more reliable artificial
intelligence in sensitive areas such as digital forensics and media integrity.

Possible limitations of the proposed approach include the fact that FFHQ, which represents a large fraction of the
real faces dataset used in the work is also the training dataset for StyleGAN networks, adding possible biases to the
method. Moreover, the synthetic faces dataset consists of images generated only with StyleGAN2, thus leaving the
generalization to other generator networks an open problem. Lastly, since the TL scheme used here can be applied to
other architectures, exploring other models beyond DeepLabV3+ might yield to potentially higher performance.

It is a matter of future research to expand the dataset diversity, including other collections of both AI–generated
and real human images, also obtained from the latest generative models. Furthermore, given the lightweight nature
of MobileNetV3 and the relatively comparable performance with respect to the ResNet50, the DeepLabV3+ model
with this backbone feature extractor could also be employed in real–time data stream and on devices with lower
computational power, thus extending its applicability to other contexts, such as surveillance and content moderation.
Finally, implementing explainability tools such as SHAP [52] or Grad–cam [53] to show the most important facial
features, or even to guide the training procedure, will be useful to highlight weak points of a certain generator and
consequently obtain better performance.
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trained models are used only as parameters initializers. That is, starting from a favorable situation in the parameters
initialization, the models can adapt the hidden representation of the samples to the task they are trained for. This result
is in accordance with known literature [10], that highlights how large models, as the ones used in the study as segmen-
tation submodule, benefit from transfer learning. With respect to the final classification performance, the results are
in line with the literature regarding StyleGAN2–generated images detection, as reported in [4], even considering the
heterogeneity of approaches and evaluation methods there reported. However, it is worth noting that, to the authors’
knowledge, using transfer learning from segmentation models to generated images detection is a novel approach,
which could possibly enhance current methodologies, so as to obtain ever higher detection rates. Additionally, the
original Xception backbone featured in the DeepLabV3+ architecture has been tested. Although this provided slightly
better segmentation performance, this improvement came at the cost of about 12 times the number of parameters
(∼75M vs. ∼6M with the MobileNet backbone), thus greatly extending training time and reducing practical feasibility
for many applications.

Interestingly enough, although MobileNetV3 Large segmentation capabilities are not as remarkable as the ones of
the ResNet50 submodule, it performed overall better in the fake detection task: a key aspect of the two aformentioned
models is the difference in the number of trainable parameters, since ResNet50 has more than three times the number
of parameters compared to MobilenetV3, which may favour one over the other in some practical applications.

5. Conclusion

This paper introduces a novel approach for the detection of AI–generated human faces, which leverages a Transfer
Learning schema to improve the classification performance of the models, integrating a pre–trained segmentation
model capable of identifying various facial landmarks. Three experiments were performed, training the model from
scratch, and by using two transfer learning policies in which the same architecture was pre–trained specifically for a
segmentation task, and then used in the fake detection task, thus adopting either a partial or a full transfer learning
approach. The latter has shown not only to improve the fake detection performance, but also to produce interesting and
human interpretable insights, by deploying ad–hoc interpretability or explainability methods to provide information
on the most crucial features for the classification, thus also pushing the boundaries towards more reliable artificial
intelligence in sensitive areas such as digital forensics and media integrity.

Possible limitations of the proposed approach include the fact that FFHQ, which represents a large fraction of the
real faces dataset used in the work is also the training dataset for StyleGAN networks, adding possible biases to the
method. Moreover, the synthetic faces dataset consists of images generated only with StyleGAN2, thus leaving the
generalization to other generator networks an open problem. Lastly, since the TL scheme used here can be applied to
other architectures, exploring other models beyond DeepLabV3+ might yield to potentially higher performance.

It is a matter of future research to expand the dataset diversity, including other collections of both AI–generated
and real human images, also obtained from the latest generative models. Furthermore, given the lightweight nature
of MobileNetV3 and the relatively comparable performance with respect to the ResNet50, the DeepLabV3+ model
with this backbone feature extractor could also be employed in real–time data stream and on devices with lower
computational power, thus extending its applicability to other contexts, such as surveillance and content moderation.
Finally, implementing explainability tools such as SHAP [52] or Grad–cam [53] to show the most important facial
features, or even to guide the training procedure, will be useful to highlight weak points of a certain generator and
consequently obtain better performance.
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