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Abstract— We propose a Universal Defence against backdoor
attacks based on Clustering and Centroids Analysis (CCA-UD).
The goal of the defence is to reveal whether a Deep Neural
Network model is subject to a backdoor attack by inspecting
the training dataset. CCA-UD first clusters the samples of the
training set by means of density-based clustering. Then, it applies
a novel strategy to detect the presence of poisoned clusters.
The proposed strategy is based on a general misclassification
behaviour observed when the features of a representative example
of the analysed cluster are added to benign samples. The
capability of inducing a misclassification error is a general
characteristic of poisoned samples, hence the proposed defence is
attack-agnostic. This marks a significant difference with respect
to existing defences, that, either can defend against only some
types of backdoor attacks, or are effective only when some
conditions on the poisoning ratio or the kind of triggering
signal used by the attacker are satisfied. Experiments carried
out on several classification tasks and network architectures,
considering different types of backdoor attacks (with either clean
or corrupted labels), and triggering signals, including both global
and local triggering signals, as well as sample-specific and source-
specific triggers, reveal that the proposed method is very effective
to defend against backdoor attacks in all the cases, always
outperforming the state of the art techniques.

Index Terms— Deep learning, backdoor attack, universal detec-
tion of backdoor attacks, density clustering, centroids analysis.

I. INTRODUCTION

DEEP Neural Networks (DNNs) are widely utilised in
many areas such as image classification, natural language

processing, and pattern recognition, due to their outstand-
ing performance over a wide range of domains. However,
DNNs are vulnerable to both attacks carried out at test time,
like the creation of adversarial examples [1] and training
time [2]. These vulnerabilities limit the application of DNNs in
security-sensitive scenarios, like autonomous vehicle, medical
diagnosis, anomaly detection, video-surveillance and many
others. One of the most serious threats comes from backdoor
attacks [3], [4], [5], [6], according to which a portion of the
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training dataset is poisoned to induce the model to learn a
malevolent behaviour. At test time, the backdoored model
works as expected on normal data, however, the hidden
backdoor and the malevolent behaviour are activated when the
network is fed with an input containing a so-called triggering
signal, only known to the attacker.

Backdoor attacks can be categorised into two classes:
corrupted-label and clean-label attacks [7]. In the first case,
the attacker can modify the labels of the poisoned samples,
while in the latter case, the attacker does not have this capa-
bility. Hence, in a clean-label backdoor attack, the poisoned
samples are correctly labelled, i.e., the content of a poisoned
sample is consistent with its label. For this reason, clean-label
attacks [8], [9] are more stealthy and harder to be-detected
than corrupted-label attacks.

Many methods have been proposed to defend against back-
door attacks. Following the taxonomy introduced in [7], the
defences can be categorised into three different classes based
on the knowledge available to the defender and the level at
which they operate: sample-level, model-level, and training-
dataset-level defences. Sample-level defences are applied after
the model has been deployed in an operative environment,
and rely on the inspection of the input sample to reveal the
possible presence of a triggering signal. With model-level
defences, instead, the network is inspected before its deploy-
ment to detect the possible presence of a backdoor. Finally,
defences working at the training-dataset-level assume that the
defender can access and inspect the dataset used to train
the network to look for suspicious (poisoned) samples. The
CCA-UD defence introduced in this paper belongs to this last
category.

A. Related Works

Most of the defence methods working at the training-data-
set level rely on clustering and on the analysis of the feature
representations or activation patterns. One of the earliest and
most popular approach is the Activation Clustering (AC)
method [10]. By focusing on corrupted-label attacks, the AC
method analyses the feature representation of the samples of
each class of the training dataset, and clusters them, in a
reduced dimensionality space, via the K -means (K = 2)
algorithm [11]. Under the hypothesis that a benign class tends
to form a homogeneous cluster in the feature space, and by
noticing that when K -means is forced to identify two clusters
in the presence of only one homogeneous cluster, it tends to
split it into two equally-sized clusters, the data samples of a
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class are judged to be poisoned on the basis of the relative
size of the two clusters identified by K -means. If the size
of the two clusters is similar, the class is considered to be
benign, otherwise, the class is judged to be poisoned. Finally,
AC labels the samples of the smallest cluster as poisoned
samples. The method works under the assumption that the
fraction of poisoned samples (hereafter referred to as the
poisoning ratio) in a poisoned class is lower than the number of
benign samples. On the other hand, given that K -means does
not work well in the presence of clusters with very unbalanced
sizes [12], AC does not perform well when the poisoning ratio
is very small, as it often happens in practice with corrupted-
label attacks, thus limiting the applicability of AC.

Xiang et al. [13] presented the Cluster Impurity (CI)
method, which works under the assumption that the trig-
gering signal used by the attacker can be removed by an
average filter. Specifically, given the training samples of one
class, CI analyses their feature representation and groups the
samples into K clusters by exploiting the Gaussian Mixture
Model (GMM) algorithm [14]. The number of clusters K is
determined by the Bayesian Information Criterion (BIC) [15].
To determine whether one cluster includes poisoned samples
or not, CI average filters all the cluster samples and observes
if the classification of these samples change. Thanks to this
intuition, CI can still work when the number of poisoned
samples in the poisoned class is larger than the number of
benign samples. For the same reason, CI only works against
corrupted-label attacks, given that in a clean-label setting the
prediction made by the network on the filtered samples would
not change. Moreover, the applicability of CI is limited to
specific kinds of triggering signals, that is, triggers with high-
frequency components, that can be removed via a low pass
filter (like an average filter).

In 2021, Tang et al. [16] proposed a so-called Statistical
Contamination Analyser (SCAn), that relies on the Expectation
Maximisation (EM) algorithm to decompose the representation
of an image/object into an identity and a variation part.
They argue that while the representations of samples from
different (benign) classes have different identities, they share
the same intra-variation distribution. Based on this intuition,
SCAn estimates the intra-variation from a benign dataset,
and uses it to define a statistical hypothesis test to judge
whether a given class is contaminated (H1) or not (H0). If H1
occurs, SCAn splits the representations into two groups via
Linear Discriminant Analysis (LDA). A limitation of SCAn
is that it fails to defend against sample-specific attacks, as
shown in [17], likely due to a different intra-variability for the
poisoned class when sample-specific triggers are considered.

To overcome the limitation of [16] and [17] proposed a sys-
tem, named Beatrix, to detect poisoned samples via anomaly
detection. Similarly to [16] and [17] exploits the availability of
a small amount of benign data. In particular, it computes the
Gram matrix to derive class statistics from the benign samples.
The deviation of the feature points of the input sample from
the Gramian feature representation for the class is measured
to detect the anomalies induced by the poisoned samples.
However, since the entries of Gram matrix can be viewed as
the inner product of two vectors, it suffers from the curse of

dimensionality, and so when the feature dimensionality is large
the performance of Beatrix drops.1

While there are other defences working at the training-
dataset level, most of them assume that the defender has some
additional, often unrealistic, knowledge about the backdoor
attack. For instance, the method introduced in [18], and
its strengthened version described in [19], exploit singular
value decomposition (SVD) [20] to reveal the anomalous
samples contained in the training dataset, assuming that an
upper-bound of the fraction of poisoned samples is known.
Shan et al. [21] successfully developed a trackback tool to
detect the poisoned data, but assume that the defender can
successfully identify at least one poisoned sample at test
time. Moreover, some defences only target a specific kind of
backdoor attack. For instance, [22] aims at defending against
clean-label backdoor attacks by exploiting feature collision.
Recently, [23] and [24] proposed two methodologies to train
a backdoor-free model from a poisoned dataset, exploiting
randomised smoothing [25] and adversarial training [26]. The
same goal is accomplished in [27] where a training method-
ology is proposed to learn deconfounded representations for
reliable classification, by relying on the minimization of
the mutual information between the to-be-trained model and
backdoored model (obtained by training for some epochs on
the poisoned dataset). Finally, [28] utilises self-attention to
purify the backdoored model, exploiting the relationship in
the structural information between shallow and deep layers
characterising benign models.

B. Contribution

In view of the limitations, in terms of general applicability
of the defences proposed so far, we introduce a universal
training-dataset-level defence, named CCA-UD, which can
reveal the presence of poisoned data in the training dataset
regardless of the approach used to embed the backdoor
(corrupted- or clean-label), the size and the shape of the
triggering signal, the use of fixed, sample- or class-specific
triggers, and the percentage of poisoned samples. To obtain
such a noticeable result, we observe that clustering alone is not
sufficient to tell apart poisoned and benign samples. In fact,
due to intra-class variability, also benign classes may (and,
in fact, are) split in various clusters. In this case, however,
the clusters are all benign, i.e., containing benign samples,
and hence have to be detected as such. As a matter of fact,
most previous defences based on clustering recognise this fact
and analyse the clusters in some way to distinguish benign
and poisoned samples, however, they do so by targeting a
specific backdoor attack, or a specific class of attacks, thus
failing to achieve a universal defence capable of detecting
the presence of poisoned samples for all the vast variety of
attacks proposed so far. On the contrary, CCA-UD relies on
the general observation that samples belonging to a poisoned
cluster have some common features that, when added to benign
samples, cause a misclassification error. With these ideas in
mind, the novel contribution of CCA-UD can be summarised

1Our experiments reveal that Beatrix fails when the dimensionality of the
feature representation is large, i.e., > 9000).
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as follows: i) adoption of a clustering algorithm, namely
Density-based Spatial Clustering of Application with Noise
(DBSCAN) [29], capable of isolating poisoned samples from
benign ones; and ii) introduction of a new active strategy to
check if the residual features of the various clusters induce
a general misclassification behaviour when they are added to
the features of benign samples.

CCA-UD is applied immediately after the model has been
trained and aims at detecting if the training data contains
poisoned samples causing the generation of a backdoor into
the trained model. Similarly to SCAn [16] and Beatrix [17],
it assumes that the defender has access to a small set of benign
samples for each class in the input domain of the model, while
AC and CI do not require this knowledge).

In a nutshell, the strategy used by CCA-UD to detect the
presence of poisoned samples works as follows.

For every class in the training set, we apply clustering in the
latent feature spaces, splitting each class into multiple clusters.
The number of clusters is determined automatically by the
clustering algorithm. If clustering works as expected, benign
and poisoned samples are grouped into different clusters.
To decide whether a cluster is poisoned or not, we first recover
an average representation of the cluster by computing the
cluster’s centroid. For a poisoned cluster, the centroid will
likely contain the representation of the triggering signal in the
feature space. Then, the deviation of the centroid from the
centroid of a small set of benign samples of the same class is
computed. The deviation vector computed in this way is finally
added to the feature representations of the benign samples of
the other classes. If such an addition causes a misclassification
of (a large portion of) the benign samples, the corresponding
cluster is judged to be poisoned.

We have tested the validity and universality of CCA-UD,
by evaluating its performance against many different backdoor
attacks carried out against DNN-based classifiers, considering
different classification tasks, namely, MNIST, traffic sign,
fashion clothes, CIFAR10 and YouTubeFace, two poisoning
strategies, i.e., corrupted- and clean-label poisoning, and sev-
eral triggering signals, namely two global patterns - a ramp
and a sinusoidal signal - a square local pattern, and also
source-specific and sample-specific triggers. Our experiments
show that CCA-UD provides an effective defence against
backdoor attacks in all scenarios, outperforming the state-of-
the-art methods.

The rest of the paper is organised as follows: in Section II,
we provide the basic notation used in the paper and the
background. In Section III, we introduce our defence threat
model and present the CCA-UD defence. Section IV describes
the experimental methodology we followed to evaluate the
performance of the proposed defence, and Section V shows the
corresponding results of the experiments. Finally, we conclude
our paper in Section VI.

II. NOTATION AND BACKGROUND

In a backdoor attack, the attacker, say Eve, aims at embed-
ding a backdoor into a model by poisoning some samples of
the training set. Specifically, we assume that the task addressed
by the model targeted by the attack is a classification task. Let

t denote the target class of the attack. Eve corrupts part of the
training set, in such a way that, at test time, the backdoored
model works normally on benign data, but misclassifies the
input sample to the target class t , if the triggering signal υ is
present within it.

Let us denote the clean training dataset by Dtr =
⋃

i Dtr,i ,
where Dtr,i is the set of samples belonging to class i , i =

1, . . . , l, and l denotes the number of classes. Then, each class
set is defined as Dtr,i = {(x j , i), j = 1, . . . , |Dtr,i |}, where the
pair (x j , i) indicates the j-th sample of class i and its label.
Similarly, we use the notation Dts and Dts,i for the test dataset.
Eve corrupts Dtr by merging it with a poisoned set D p

=

{(x̃ j , t), j = 1, . . . , |D p
|}, where x̃ j denotes the j-th poisoned

sample, containing the trigger υ, labeled as belonging to class
t . The poisoned dataset is indicated as Dα

tr = Dtr ∪ D p (with
α defined later). Then, for the class targeted by the attack we
have Dα

tr,t = Dtr,t ∪ D p, while for the other classes, we have
Dα

tr,i = Dtr,i (i ̸= t). The fraction α = |D p
|/|Dtr,t ∪ D p

|

indicates the poisoning ratio used by the attacker to corrupt
the training set.

As we said, D p can be generated by either corrupting the
labels of the poisoned samples or not. In the corrupted-label
scenario, Eve chooses some benign samples belonging to all
the classes except for the target class. Then, she poisons each
sample-label pair with a poisoning function P , obtaining the
poisoned samples (x̃ j , ỹ j = t) = P(x j , y j ̸= t). The symbol
x̃ j is the poisoned sample including the triggering signal υ.
In the clean-label case, Eve cannot corrupt the labels, so she
chooses some benign samples belonging to the target class and
generates the poisoned samples as (x̃ j , ỹ j = t) = P(x j , y j =

t). In contrast with the corrupted-label case, now P() embeds
υ into x j to generate x̃ j , but keeps the label intact.

Arguably, defending against corrupted-label attacks is eas-
ier, since mislabeled samples can be more easily identified
upon inspection of the training dataset, observing the incon-
sistency between the content of the samples and their labels.
In contrast, clean-label attacks are more stealthy and more
difficult to detect. However, clean-label attacks are more
difficult to implement since they require that a larger portion
of the dataset is corrupted [5], [30].

We denote the DNN model trained on Dα
tr by Fα . Specifi-

cally, we use f α
1 to indicate the function that maps the input

sample into the latent space. In this paper, we assume that f α
1

includes a final ReLu layer [31], so that its output is a non-
negative vector. Hence, f α

1 (x) is the feature representation
of x , and f α

2 is used to denote the classification function.
Formally, Fα(x) = f α

2 ( f α
1 (x)). Finally, the dimension of the

feature representation is denoted by d .
Table I summarises the main notation used in the paper.

A. Density-based Clustering

In this paragraph, we describe the Density-based Spa-
tial Clustering of Application with Noise (DBSCAN) [29]
algorithm used by CCA-UD. DBSCAN splits a set of points
into K clusters and possibly few outliers, where K is auto-
matically determined by counting the areas with high sample
density. Specifically, given a point ‘A’ of the set, DBSCAN
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TABLE I
LIST OF SYMBOLS

counts the number of neighbours (including ‘A’ itself) within
a distance ϵ from ‘A’. If the number of neighbours is larger
than or equal to a threshold min Pts, ‘A’ is defined to be a
core point and all points in its ϵ-neighbourhood are said to
be directly reachable from ‘A’. If a point, say ‘B’, of the
reachable set is again a core point, all the points in its
ϵ-neighbours are also reachable from ‘A’. Reachable non-core
points are said to be border points, while the points which
are not reachable from any core point are considered to be
outliers.

To define a cluster, DBSCAN also introduces the notion of
density-connectedness. We say that two points ‘A’ and ‘B’
are density-connected if there is a point ‘C’, from which
both ‘A’ and ‘B’ are reachable (hence ‘C’ must be a core
point). A clusters is defined as a group of points satisfying
the following two properties: i) the points within a cluster are
mutually density-connected; ii) any point directly-reachable
from some point of the cluster, it is part of the cluster.
The intuition behind DBSCAN is to define the clusters as
dense regions separated by border points. The number of
dense regions found in the set automatically determines the
number of clusters K . More information about the exact
way the clusters are found and the (in-)dependence of
DBSCAN on the initial point ‘A’ used to start the defini-
tion of core and reachable points, are given in the original
paper [29].

The performance of DBSCAN is determined by the choice
of the parameters involved in its definition, that is min Pts and
ϵ, whose setting depends on the problem at hand. The setting
of these parameters in CCA-UD is discussed in Section IV-C,
while their impact of the performance on CCA-UD is eval-
uated in the ablation study reported in the supplementary
material.

We choose to adopt a density-based clustering method as
the backbone of CCA-UD, since density-based clustering is
known to work well also in the presence of clusters with
unbalanced size [32], and because it provides an automatic
way to determine the number of clusters.2

2DBSCAN is one of most popular density-based clustering algorithms,
other choices, like OPTICS [33] and HDBSCAN [34]) would work as well.

Fig. 1. Threat model.

III. THE PROPOSED UNIVERSAL DEFENCE

A. Defence Threat Model

The threat model considered in this work is illustrated in
Fig. 1. The attacker Eve interferes with the data collection
process, by poisoning a fraction α of the training dataset,
possibly modifying the labels of the poisoned samples. Alice,
plays the role of the trainer, defining the model architecture,
learning algorithm, and hyperparameters, and training the
model. Alice also plays the role of the defender: she inspects
the training dataset and the deployed model to detect the
possible presence of poisoned samples in the training set. The
exact goal, knowledge and capabilities of the defender are
detailed in the following.

Defender’s goal: Alice aims at revealing the presence of
poisoned samples in the training dataset Dα

tr , if any, and
identify them.3 Upon detection of the poisoned samples, Alice
may remove them from the training set and use the clean
dataset to train a sanitised model.

Formally, the core of the CCA-UD defence consists of a
detector, call it det (), defined as follows. For every subset
Dα

tr,i of the training dataset Dα
tr , det (Dα

tr,i ) = (Pi , Bi ), where
Pi and Bi are the sets with the samples in class i judged by
det () to be, respectively, poisoned and benign. Extending the
above functionality to all the classes in the input domain of
the classifier, we have det (Dα

tr ) = {(Pi , Bi ), i = 1, . . . , l}.
Clearly, for a non-poisoned dataset, ideally, we should have
Pi = ∅ ∀i , since no sample is poisoned in any class.

Defender’s knowledge and capability: Alice can inspect
the training dataset Dα

tr , and has white-box access to the
trained model Fα . Moreover, Alice has a small benign
validation dataset Dval , with a small number of non-poisoned
samples of every class. This is a requirement common to
other methods like SCAn, Beatrix (while AC and CI do not
require it).

B. The Proposed CCA-UD Defence

CCA-UD consists of two main blocks: feature clustering
and Poisoned Cluster Detection (PCD), shown in Fig. 2 and
detailed in Sections III-B.1 and III-B.2.4

Feature clustering relies on the DBSCAN algorithm [29].
DBSCAN splits a set of points into K clusters and possibly
few outliers, where K is automatically determined by counting
the areas with high sample density. We refer to [29] for more
information on the DBSCAN method. The performance of

3For sake of simplicity, we use the notation Dα
tr for the training set under

inspection, even if, prior to inspection, we do not know if the set is poisoned
or not. For benign dataset we simply have α = 0.

4The code implementing CCA-UD is available at the address
https://github.com/guowei-cn/CCA_UD-universal-training-level-defence.git
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Fig. 2. Workflow of the CCA-UD defence.

DBSCAN is affected by the choice of the parameters involved
in its definition, that is min Pts (the threshold on the number
of neighbours used to define core points, which determines the
dense regions constituting the clusters) and ϵ (distance defin-
ing the neighbourhood), whose setting depends on the problem
at hand. The influence of such parameters on CCA-UD and the
way we set them are described in Section IV-C. We decided
to use density-based clustering since it works well also in the
presence of clusters with unbalanced size [32], and because
it provides an automatic way to determine the number of
clusters.5

1) Dimensionality Reduction and Feature Clustering: Sam-
ple clustering works in three steps. In the first step, for every
class i , we compute the feature representations of all the sam-
ples in Dα

tr,i , namely { f α
1 (x j ), x j ∈ Dα

tr,i }. Vector f α
1 (x j ) is a

d-dim vector. Secondly, we reduce the dimension of the feature
space from d to d ′ via Uniform Manifold Approximation and
Projection (UMAP) [35]. Finally, we apply DBSCAN to split
Dα

tr,i into multiple clusters Ck
i (k = 1, . . . , Ki ). In addition

to clusters, DBSCAN (may) also return a number of outliers.
The set with the outlier samples, referred to as Oi , is directly
added to Pi . The outlier ratio for the class i is denoted by
ζi =

|Oi |
|Dα

tr,i |
. With the hyperparameters (d ′, min Pts and ϵ) we

have chosen, ζi is usually very small (see Table S1 reported
in the supplementary material).

Notably, in [36], the separability of poisoned and benign
features (after PCA reduction) in different layers is investi-
gated, to understand if some layers are more effective than
others for the discrimination, and a method is proposed to find
the layer where poisoned samples and benign samples are most
distinguishable. According to our experiments, however, when
UMAP [35] algorithm is used for dimensionality reduction,
poisoned samples can be distinguished well from benign sam-
ples in all layers, and CCA-UD achieves similar performance
regardless of the layer where the analysis is carried out.
A visualisation of feature separability after PCA and UMAP
is shown in the supplementary material (Section II).

We observe that the dimensionality reduction is exploited
only to run DBSCAN, while in the other steps the full
feature space is considered. Reducing the dimensionality of the
features before applying DBSCAN permits to reduce the time
complexity of the algorithm and at the same time avoids curse
of dimensionality problems [37], occurring when clustering

5DBSCAN is one of the most popular density-based clustering algorithms,
other choices, like OPTICS [33] and HDBSCAN [34]) would work as well.

is applied in high-dimensional spaces (see the experiments
reported in the supplementary material - Section IV - support-
ing this claim).

2) Poisoned Cluster Detection (PCD): To determine if a
cluster Ck

i is poisoned or not, we first compute an aver-
age representation of the samples in Ck

i , i.e., the cluster’s
centroid. Then, we check whether the centroid contains a
feature component that causes a misclassification in favour
of class i when added to the features of benign samples of
the other classes. More specifically, we first calculate the
centroid of Ck

i as r̄k
i = E[ f α

1 (x j )|x j ∈ Ck
i ], where E[·]

denotes component-wise sample averaging. Vector r̄k
i is a

d-dimensional vector.6 Then, we compute the deviation of
r̄k

i from the centroid of class i computed on a set of benign
samples:

βk
i = r̄k

i − E[ f α
1 (x j )|x j ∈ Di

val ], (1)

where Di
val is the i-th class of the benign set Dval .

Finally, we check if βk
i causes a misclassification error in

favour of class i when it is added to the feature representation
of the benign samples in Dval belonging to any class but the i-
th one. The corresponding misclassification ratio is computed
as follows:

M Rk
i =

∑
x j ∈Dval/Di

val
1
{

f α
2

(
δ( f α

1 (x j ) + βk
i )

)
≡ i

}
|Dval/Di

val |
, (2)

where 1{·} is the indicator function (outputting 1 when the
condition is satisfied and zero otherwise), Dval/Di

val repre-
sents the validation dataset excluding the samples from class
i , and δ is a ReLu operator that ensures that f α

1 (x j ) + βk
i is

a correct vector in the latent space (see Section II).
For a given threshold θ , if M Rk

i ≥ 1−θ ,7 the corresponding
Ck

i is judged to be poisoned and its elements are added to Pi .
Otherwise, the cluster is considered benign and its elements
are added to Bi . Given that M Rk

i takes values in [0, 1], the
threshold θ is also chosen in this range.

3) Expected Behaviour of CCA-UD for Clean- and
Corrupted-Label Attacks: An intuition of the idea behind
CCA-UD and the reason why the detection of poisoned
samples works for both corrupted- and clean-label attacks is
given in the following. Let us focus first on the clean-label

6We remind that, although clustering is applied in the reduced-dimension
space, the analysis of the clusters is performed in the full features space.

7We defined the threshold as 1 − θ to ensure that T P R and F P R increase
with the growth of θ as for AC and CI, so to ease the comparison between
the various defences.
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attack scenario. If cluster Ck
i is poisoned, the centroid r̄k

i
contains the features of the trigger in addition to the feature of
class i . Then, arguably, the deviation of the centroid from the
average representation of class i is a significant one. Ideally,
subtracting to r̄k

i the average feature representation of the i-
th class, obtaining βk

i , isolates the trigger features. The basic
idea behind CCA-UD is that the trigger features in βk

i will
cause a misclassification in favour of class i when added to
the features of benign samples of the other classes. On the
contrary, if cluster Ck

i is benign, the centroid r̄k
i approximates

the average feature representation of the i-th class and then
βk

i has a very small magnitude. In this case, βk
i accounts for

normal intra-class fluctuation of the features and its addition to
benign samples is not expected to induce a misclassification.

Similar arguments, with some noticeable differences, hold
in the case of corrupted-label attacks. As before, for a benign
cluster Ck

i , the centroid r̄k
i approximates the average feature

representation of the i-th class and then βk
i corresponds to

minor intra-class variations. In the case of a poisoned cluster
Ck

i , the cluster now includes mislabeled samples of the other
classes (different from i) containing the triggering signal.
In this way, the cluster representative contains features of the
original classes in addition to the features of the triggering
signal. Note that even if the clustering algorithm splits the
poisoned samples across more than one cluster, the deviation
vector βk

i of poisoned clusters will contain the features of the
triggering signal (possibly in addition to features accounting
for difference between the original class i and the target class
t). Given that the network has been trained to recognise the
triggering signal as a distinguishing feature of class t , once
again, the addition of the deviation vector to benign samples
is likely to cause a misclassification in favour of class t .

The situation is pictorially illustrated in Fig. 3 for a
3 dimension case, in the case of a clean-label attack (a similar
picture can be drawn in the corrupted label case). Class ‘3’
corresponds to the poisoned class. Due to the presence of
the backdoor, the poisoned samples are characterised by a
non-null feature component along the z direction. Due to
the presence of such a component, the backdoored network
classifies those samples in class ‘3’. On the contrary, benign
samples lie in the x-y plane. When CCA-UD is applied to
the samples labelled as Class ‘3’, DBSCAN identifies two
clusters, namely C1

3 and C2
3 , where the former is a benign

cluster and the latter is a poisoned cluster containing a non-
null z-component. When PCD module is applied to C1

3 (left
part in the figure), the deviation from the set of benign samples
of class i (β1

3 ), has a small amplitude and lies in the x-y
plane, hence when β1

3 is added to the other clusters it does
not cause a misclassification error. Instead, when the PCD
module is applied to C2

3 (right part in the figure), the deviation
vector (β2

3 ) contains a significant component in the z direction,
causing a misclassification when added to the benign samples
in D1

val and D2
val .

It is worth stressing that CCA-UD indirectly exploits a
general behaviour induced by backdoor attacks, that also
works for sample-specific attacks when the samples are
poisoned by applying a specific processing (e.g. a defor-
mation/warping [38]). In this case, the backdoored network

associates the traces of the specific processing applied to the
input samples to one or more peculiar features (fingerprint),
and uses such an evidence to misclassify these samples as
belonging to the target class (it is possible that, in this case,
the features of the poisoned samples are characterised by a
larger variability with respect to the case in which the attack
relies on a fixed triggering signal).

4) Discussion: We observe that the universality of CCA-UD
essentially derives from the use of DBSCAN and from the
generality of the proposed strategy for PCD. Firstly, in con-
trast to K -means, DBSCAN can handle unbalanced clusters,
ensuring good performance also when the poisoning ratio α

is small or when the number of poisoned samples is larger
than the number of benign samples. Secondly, CCA-UD also
works when the class samples have large intra-variability,
since the ultimate decision on the presence of a cluster with
poisoned samples is made is made by observing the corrupting
capabilities of the cluster samples. In addition, in the presence
of large intra-class variability, DBSCAN groups the data of
a benign class into multiple clusters (a large Ki , Ki > 2,
is estimated by DBSCAN), that are then detected as benign
clusters. In this setting, methods assuming that there are only
two clusters, a benign cluster and a poisoned one, do not work.

Finally, we observe that thanks to the fact that Ki is directly
estimated by DBSCAN, in principle our method can also work
in the presence of multiple triggering signals [39], [40]. In this
case, the samples poisoned by different triggers would cluster
in separate clusters, that would all be detected as poisoned by
CCA-UD.

IV. EXPERIMENTAL METHODOLOGY

A. Evaluation Metrics

The performance of the backdoor attacks is evaluated by
providing the accuracy of the backdoored model Fα on benign
data and the success rate of the attack when the model is tested
on poisoned data. The two metrics we use to do that are:

• Accuracy (ACC), measuring the probability of a cor-
rect classification of benign samples, and calculated as
follows:

ACC =

l∑
i=1

∑
x j ∈Dts,i

1{Fα(x j ) ≡ i}/|Dts |; (3)

• Attack Success Rate (AS R), measuring the probability
that the triggering signal υ activates the desired behaviour
of the backdoored model Fα , computed as follows:

AS R =
1

|Dts/Dts,t |

∑
x j ∈Dts/Dts,t

1{Fα(P(x j , υ)) ≡ t},

(4)

where Dts/Dts,t is the test dataset excluding the samples
from class t .

In our experiments, a backdoor attack is considered successful
when AS R is greater than 0.90 and the ACC of the poisoned
model is similar to that of a model trained over benign samples
(in our experiments such a difference is smaller than 0.01).
To measure the performance of the defence algorithms, we
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Fig. 3. Simplified illustration of PCD (clean-label case). For class ‘3’ as the poisoned class, DBSCAN identifies two clusters: C1
3 (benign) and C2

3 (poisoned).
When PCD is applied to C1

3 (left part), the deviation from the set of benign samples of class i (C(D3
val )) has a small amplitude and lies on x-y plane, which

cannot cause misclassification when added to the benign samples in D1
val and D2

val . Instead, the deviation vector of C2
3 (right part), containing a significant

component in the z direction, can cause misclassification.

measure the True Positive Rate (T P R) and the False Positive
Rate (F P R) of the defence. Actually, when i corresponds to a
benign class, there are no poisoned samples in Dα

tr,i and only
the F P R is computed. More formally, let G Pi (res. G Bi )
define the set of ground-truth poisoned (res. benign) samples
in Dα

tr,i . We define the T P R and F P R on Dα
tr,i as follows:

T P R(Dα
tr,i ) =

|Pi ∩ G Pi |

|G Pi |
, F P R(Dα

tr,i ) = 1 −
|Bi ∩ G Bi |

|G Bi |
.

(5)

Given that benign classes may exist for both poisoned and
benign datasets,8 we need to distinguish between these two
cases. Hence, we introduce the following definitions:

• Benign Class of Benign dataset (BCB): a class of a clean
dataset. In this case α = 0 and Dα

tr,i includes only benign
samples.

• Benign Class of Poisoned dataset (BCP ): a benign class
of a poisoned dataset, that is, a class in a poisoned dataset
different from the target class. Also in this case, Dα

tr,i
includes only benign samples.

The difference between BCB and BCP is that in the former
case Fα is a clean model, while in the latter it is backdoored.
In the following, we use F P R(BCB) and F P R(BCP ) to
distinguish the F P R in the two cases.

Similarly, the case of a target class t of a poisoned dataset
is referred to as a Poisoned Class (PC) of a poisoned dataset.
In this case, Dα

tr,i=t includes both poisoned and benign sam-
ples, then we compute and report T P R(PC) and F P R(PC).
T P R and F P R depend on the choice of the threshold θ . Every
choice of threshold defines a different operating point of the
detector. In order to get a global view of the performance of the
tested systems, then, we also provide the AUC value, defined
as the Area Under the Curve obtained by varying the value of
the threshold and plotting T P R as a function of F P R.

According to the definitions in Eq. (5), the false positive
and true positive rates are computed for each cluster. For the
sake of simplicity, we will often report average values. For
the case of benign clusters of a benign dataset, the average

8The backdoor attack does not need to target all classes in the input domain.

value, denoted by F P R(BCB), is calculated by averaging over
all the classes of the benign training dataset. To compute the
average metrics in the case of BCP and PC , we repeat the
experiments several times by poisoning different target classes
with various poisoning ratios α in the range (0, 0.55] for every
target class, and by using the poisoned datasets to train the
backdoored models.9 Then, the average F P R(BCP ) is com-
puted by averaging the performance achieved on non-target
classes of all the poisoned training datasets. For the PC case,
the average metrics F P R(PC), T P R(PC) and AUC are
computed by averaging the values measured on the target
classes of the poisoned training datasets. We also measured
the average performance achieved for a fixed poisoned ratio α,
by varying only the target class t . The notation F P Rα(BCP ),
F P Rα(PC), T P Rα(PC), AUCα is used in this case to
highlight the dependence on α.

B. Network Tasks and Attacks

To validate the effectiveness of CCA-UD, we carried out
extensive experiments considering the following classification
tasks and attacks.

1) MNIST Classification: In this set of experiments,
we trained a model to classify the digits in the MNIST dataset,
which includes n = 10 digits (classes) with 6000 binary
images per class. The size of the images is 28 × 28. The
architecture used for the task is a 4-layer network [41]. The
feature representation of dimensionality 128 is obtained from
the input of the final fully-connected layer.

Regarding the attack setting, three different backdoor attacks
have been considered, as detailed below. For each setting,
the training dataset is poisoned by considering 16 poisoning
ratios α chosen in (0, 0.55]. For each α, 10 different poisoned
training datasets are generated by choosing different classes
as the target class.

• Corrupted-label attack, with a 3 × 3 pixel trigger
(3 × 3 corrupted): the backdoor is injected by adding
a 3 × 3 pixel pattern to the corrupted samples, as shown

9Only successful backdoor attacks are considered to measure the perfor-
mance in the various cases.
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Fig. 4. Triggering signals. On CIFAR10, the ‘Modified’ image represents the difference between the original and warped image.

in Fig. 4, and modifying the sample labels into that of
the target class.

• Corrupted-label attack, with ramp trigger (ramp cor-
rupted): Eve performs a corrupted-label backdoor attack
using a horizontal ramp signal [9] as a trigger (see
Fig. 4). The ramp signal is defined as υ(i, j) = j1/W ,
1 ≤ i ≤ H , 1 ≤ j ≤ W , where H × W is the size
of the image. The parameter 1 controls the slope (and
strength) of the ramp trigger signal, with a larger value
leading to a more visible trigger (and to a more effective
attack). We set 1 = 40 in the experiments, that represents
a good tradeoff between visibility and effectiveness of the
attack [9].

• Clean-label attack, with 3 × 3 pixel trigger (3 × 3 clean):
the 3 × 3 pixel trigger signal is utilised to perform a
clean-label attack.

2) Traffic Signs: For the traffic sign classification task,
we selected 16 different classes from the GTSRB dataset,
namely, the most representative classes in the dataset, includ-
ing 6 speed-limit, 3 prohibition, 3 danger, and 4 mandatory
signs. Each class has 1200 colour images with size 28 × 28.
The model architecture used for training is based on ResNet18
The feature representation is extracted from the 17-th layer,
that is, before the FC layer, after an average pooling layer and
ReLu activation. With regard to the attack, we considered the
corrupted-label scenario. The triggering signal is a horizontal
sinusoidal signal, defined as υ(i, j) = 1 sin(2π j f/W ), 1 ≤

i ≤ H , 1 ≤ j ≤ W , where H × W is the size of input image.
The parameters 1 and f are the amplitude and frequency
of the sinusoidal function, which control the strength and
frequency of the sinusoidal signal. In our experiment, we set
1 = 20 and f = 6. The sinusoidal trigger is shown in
Fig. 4. As before, for a given α, the network is trained on
16 poisoned datasets, each time considering different target
classes.

3) Fashion Clothes: The Fashion-clothes dataset includes
10 classes of grey-level cloth images, each class consisting of
6000 images of size 28 × 28. The model architecture used for
the classification is based on AlexNet with input size equal to
224 × 224. The representation used by the backdoor detector
is extracted from the 5-th layer, at the output of the ReLu
activation layer before the first FC layer. With regard to the
attack, the poisoned samples are generated by performing the
attack in a clean-label setting. A ramp trigger with 1 = 256 is
used to implement the attack, as shown in Fig. 4. Once again,
for each choice of α, the backdoor attack is repeated 10 times,
each time considering a different target class.

Furthermore, to prove the universality of the proposed
method, we also run some experiments considering more
complex tasks and realistic datasets, namely CIFAR10

classification and face recognition, and with different backdoor
attacks relying on source-specific and sample-specific triggers.
The setting used and the results achieved in these cases are
reported in Section V-E.

For all the classification tasks, the benign validation dataset
Dval is obtained by randomly selecting 100 samples from all
the classes in the dataset.

C. Parameters Setting and State-of-the-Art Comparison

To implement CCA-UD, we have to set the following
parameters: the reduced dimension d ′ for the clustering, the
parameters of the DBSCAN algorithm, namely min Pts and
ϵ, and finally the threshold θ used by the clustering poison-
ing detection module. In our experiments, we set d ′

= 2,
min Pts = 20 and ϵ = 0.8. This is the setting that, according
to our experiments, achieves the best performance with the
minimum complexity for the clustering algorithm (being d ′

=

2).10 The effect of these parameters on the result of clustering
and detection performance is evaluated by the ablation study
reported in the supplementary material (Section I).

We compared our method with the state-of-the-art meth-
ods mentioned in Section I-A, namely, AC [10], CI [13],
SCAn [16] and Beatrix [17].

With regard to θ , as mentioned before, AC, CI, SCAn,
Beatrix and CCA-UD involve the setting of a threshold for
poisoning detection. Specifically, in AC the relative size of the
class ratio is thresholded, while in CI we vary the prediction
change rate between filtered and non-filtered samples. For
SCAn, the threshold applies to the hypothesis testing statistics
used to judge if a class is poisoned or not (the smallest size
cluster obtained after the application of the LDA represents
the set of poisoned data). Finally, for Beatrix, we varied the
anomaly detection threshold

For a fair comparison, we set the threshold in the same way
for all the methods. In particular, we set θ by fixing the average
F P R on the validation dataset (consisting of benign samples).
For each class Di

val , we calculate the F P R(Di
val) value, and

its average counterpart is F P R(Dval) =
∑

i F P R(Di
val)/ l.

We chose the threshold in such a way to minimise the
distance from the target rate. Formally, by setting the target
false positive rate to 0.05, the threshold θ∗ is determined
as:

θ∗
= arg min

θ

∣∣0.05 − F P R(Dval)
∣∣. (6)

The parameters of CCA-UD and their settings are summa-
rized in Table II.

10Notably, the same setting works for all the cases, namely for all the tasks,
architectures and attacks we have considered in our experiments.
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TABLE II
SETTING OF DBSCAN PARAMETERS IN CCA-UD

V. EXPERIMENTAL RESULTS

A. Threshold Setting

Our experiments reveal that, for AC and CI, the threshold
determined via Eq. (6) does not lead to a good operating
point when used on the test dataset (see Table IV for the
MNIST case), and a threshold that works well in all cases
can not be found for AC and CI. In particular, while for
SCAn, Beatrix and CCA-UD, the threshold θ∗ set on the
validation dataset yields a similar F P R (around 0.05) in the
BCB , BCP and PC cases, this is not true for AC and CI,
for which F P R(BCB), F P R(BCP ) and F P R(PC) are often
smaller than 0.05, reaching 0 in many cases. This leads to
a poor T P R(PC). In particular, with AC, when α > θ∗,
both clusters are classified as benign, and then T P Rα(PC) =

F P Rα(PC) = 0, even when the method would, in principle,
be able to provide perfect discrimination (AUCα ≈ 1). The
difficulty in setting the threshold for AC and CI is also evident
from the plots in Fig. 5, that report the F P R and T P R
values (that are averaged also on α), for different values of the
threshold θ . From these plots, we clearly see that a threshold
that works for all α can not be found for AC and CI.

Due to the difficulties encountered to set the detection
threshold for AC and CI,11 the results at θ∗ for these methods
are not reported in the other cases, for which we report only
the AUCα . Note that the possibility to set a unique threshold
on a benign dataset that also works on poisoned datasets is
very important for the practical applicability of a defence.

B. Results on MNIST

Performance is evaluated against the three types of back-
door attacks, namely, 3 × 3 corrupted, ramp corrupted, and
3 × 3 clean. In Fig. 5, the figures report the average perfor-
mance of AC, CI, SCAn, Beatrix, and CCA-UD in the three
cases. The values of F P R(BCB), F P R(BCP ), T P R(PC)

and F P R(PC) are reported for each method, as a function
of the detection threshold θ . The behaviour of F P R(Dval),
which is utilised to determine the threshold θ∗ (at 0.05 of
F P R(Dval)), is also reported. The position of θ∗ is indicated
by a vertical dotted line.12

By observing the figure, we see that CCA-UD outperforms
the other methods in all the settings. In the first setting,
CCA-UD achieves T P R(PC) and F P R(PC) equal to 0.983
and 0.051 at the optimal threshold θ∗, with F P R(BCB) =

11Note that the problem of threshold setting is not addressed in the original
papers, since different thresholds are used in the various cases.

12We verified that the threshold on the false positive rate set on the
validation dataset, also works on the test dataset, where we get the target
F P R (0.05 in our case).

TABLE III

AUC OF THREE METHODS WITH THE VARIOUS ATTACKS

0.051 and F P R(BCP ) = 0.050. The performance of SCAn
and Beatrix is a bit worse than CCA-UD, while the per-
formance of AC and CI at their optimal threshold is very
poor. Similar results are achieved for the second and third
settings. In particular, for the second attack, CCA-UD achieves
T P R(PC) and F P R(PC) equal to (0.975, 0.050) at θ∗, and
(0.966, 0.050) for the third one.

For a poisoned dataset, the AUC values obtained in the
three settings are provided in Table III. From these results,
we see that CI has good discriminating capability (with an
AUC only slightly lower than CCA-UD) against the first
attack, but fails to defend against the other two. This is an
expected behaviour since CI does not work when the triggering
signal is robust against the average filter, as the ramp signal
considered in the second attack, or clean-label attacks in the
last setting. SCAn and Beatrix instead have performance only
slightly lower than our method.

Table IV shows the results obtained for different values
of the poisoning ratio α for the three different attacks. The
values of F P Rα(PC) and T P Rα(PC) have been obtained by
letting θ = θ∗. For the clean-label case, due to the difficulty
of developing a successful attack [5], [9], [30], the backdoor
can be successfully injected in the model only when α is large
enough and, in any case, a successful attack could not always
be obtained in the 10 repetitions. The number of successfully
attacked classes (cnt) with different poisoning ratios is reported
in this case. Upon inspection of Table IV, we observe that:

• With regard to AC, the behaviour is similar under the
three attack scenarios. Good results are achieved for
intermediate values of α, namely in the [0.2, 0.3] range.
However, AC can not defend against backdoor attacks
adopting a poisoning ratio smaller than 0.1. Moreover,
AC does not work when α > 0.5, in which case AUCα

goes to zero, as benign samples are judged as poisoned
and vice-versa (this is a consequence of the assump-
tion made on the cluster size). Finally, by comparing
Table IVa and IVc, we see that AC achieves better AUCα

against the corrupted-label attack than in the clean-label
case .

• With regard to CI, the detection performance achieved
in the first attack scenario (3 × 3 corrupted) is good
for all the values of α, (with the exception of the
smallest α, for which AUCα = 0.876), showing that
CI can effectively defend against the backdoor attack in
this setting, for every attack poisoning ratio. However,
as expected, CI fails in the other settings.

• Regarding SCAn, when α < 0.5 results are very good
in all the settings, with the only notable exception of
small α, in which case low AUCα and, in particular, low
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Fig. 5. Average performance of AC and CI, SCAn, Beatrix, and CCA-UD for different the threshold against the three types of backdoor attacks implemented
in the case of MNIST classification. The position of θ∗ is indicated by a vertical dotted line. In each figure, the x-axis represents the threshold value, while
the y-axis reports the values of F P R(BCB ), F P R(BCP ), T P R(PC) and F P R(PC) and F P R(Dval ).

T P Rα(PC) values are achieved. Similarly to AC, when
α > 0.5, AUCα goes to zero.

• With regard to Beatrix, results are good especially in the
first and third setting, a little bit worse in the second
setting. Also in this case, the values of T P Rα(PC) and
AUCα are lower when α is small.

• CCA-UD provides good results in all settings and for
every value of α, with a perfect or nearly perfect AUCα

in most of the cases. Moreover, a very good T P Rα(PC)

is obtained, always larger (often much larger) than
0.95 with only very few exceptions in the corrupted attack
settings when α is very low, and a F P Rα(PC) around
0.05.

Overall, the tables confirm the universality of CCA-UD that
works very well in all the setting, regardless of the specific
attack and regardless of the value of α, thus confirming that
the strategy used to detect poisoned clusters exploits a general
misclassification behaviour.

C. Results on Traffic Signs

Fig. 6 shows the average performance of AC, CI, SCAn,
Beatrix, and CCA-UD on traffic signs. Similar considerations
to the MNIST case can be made. CCA-UD achieves very
good average performance at the operating point given by θ∗,
where T P R(PC) and F P R(PC) are (0.965, 0.058) (with
F P R(BCB) = F P R(BCB) ≈ 0.08). As before, for AC and
CI a threshold that works well on the average can not be

found. In the case of a poisoned dataset, the average AUC
of the detection AUC is equal to 0.897, 0.958, 0.924, 0.965,
0.993 for AC, CI, SCAn, Beatrix and CCA-UD, respectively.
We observe that also CI gets a good AUCα . In fact, given that
the size of the input image is 28 × 28, the trigger, namely the
sinusoidal signal can be effectively removed by a 5×5 average
filter.

The results obtained for various α are reported in Table V.
As it can be seen, CCA-UD achieves the best performance in
terms of AUCα , and T P Rα(PC) and F P Rα(PC) measured
at θ = θ∗, in all the cases. With regard to the other meth-
ods, as observed before, while CI and Beatrix are relatively
insensitive to α, the performance of AC and SCAn drop when
α < 0.1 or α > 0.5. Also in this case, CCA-UD is the
best-performing method outperforming Beatrix (second-best),
with a gain of about 0.03 in AUCα for every setting of α, and
up to 0.12 in T P Rα .

D. Results on Fashion Clothes

Fig. 7 reports the results obtained on the fashion clothes
task. We did not run the SCAn method in this case. In fact,
as already pointed in [17], SCAn is highly time-consuming
when the feature dimension is large. With this network d =

9216 (with MNIST and traffic sign d is lower than 512),
SCAn took more than 7 days to find out the poisoned samples
from the training dataset, running on a computer with Intel(R)
Core(TM) i7-8700 CPU@3.20GHz.
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TABLE IV
PERFORMANCE FOR VARIOUS POISONING RATIOS α, AGAINST THE THREE TYPES OF BACKDOOR ATTACKS FOR MNIST CLASSIFICATION.

F P Rα(PC) AND T P Rα(PC) (INDICATED AS F P Rα AND T P Rα IN THE TABLE) VALUES ARE COMPUTED WITH θ = θ∗ .
IN SUB-TABLE (C) CNT INDICATES THE NUMBER OF SUCCESSFUL ATTACKS IN 10 REPETITIONS

Fig. 6. Average performance of AC, CI, SCAn, Beatrix, and CCA-UD for different values of θ for the traffic signs task. The vertical dotted line indicates
the position of θ∗ for the various methods. line. In each figure, the x-axis represents the threshold value, while the y-axis reports the values of F P R(BCB ),
F P R(BCP ), T P R(PC) and F P R(PC) and F P R(Dval ).

Fig. 7. Average performance of AC, CI, Beatrix, and CCA-UD for different values of θ for the fashion clothes task. The vertical dotted line indicates the
position of θ∗ for the various methods. In each figure, the x-axis indicates threshold values, while the y-axis reports the values of F P R(BCB ), F P R(BCP ),
T P R(PC) and F P R(PC) and F P R(Dval ).

Once again, the performance of CCA-UD is largely superior
to those achieved by other works. In particular, by looking at
Fig. 7, CCA-UD achieves T P R(PC) and F P R(PC) equal

to (1.000, 0.053), with F P R(BCB) = F P R(BCP ) ≈ 0.05.
Regarding the AUC scores, AUC of AC, CI, Beatrix, and
CCA-UD are 0.900, 0.106, 0.519 and 0.997 respectively.
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TABLE V

PERFORMANCEFOR VARIOUS POISONING RATIOS FOR THE TRAFFIC SIGNS TASK. F P Rα(PC) AND T P Rα(PC)

(INDICATED AS F P Rα AND T P Rα IN THE TABLE) VALUES ARE COMPUTED WITH θ = θ∗

TABLE VI
PERFORMANCEFOR VARIOUS POISONING RATIOS FOR THE FASHION

CLOTHES TASK. F P Rα(PC) AND T P Rα(PC) (INDICATED AS F P Rα

AND T P Rα ) VALUES ARE COMPUTED WITH θ = θ∗

Since the attack is carried out in a clean-label modality, the
poor performance of CI is expected. The bad performance
of Beatrix in this case, instead, is likely due to the curse of
dimensionality, since distinguishing between poisoned samples
and benign ones by relying on inner products of feature vectors
is not possible when the feature dimension is very large (as
it is the case here, with a dimension larger than 9000). The
results for various α are reported in Table VI and confirm
the good behaviour of CCA-UD, which provides very good
performance in all the cases, always outperforming the other
methods.

E. Other Datasets, Architectures and Attacks

Below we report the additional experiments we carried out
with different and more complex tasks and attacks, to prove
the generality/universality of the proposed method.

1) CIFAR10 Classification: CIFAR10 dataset consists of a
total of 60000 images of size 32×32 belonging to 10 classes,
split into two parts (50000 for training and 10000 for testing).
The model architecture is based on VGG19 , and the feature
representation is extracted from the final convolutional (16th)
layer after the pooling layer and flatten operation. The follow-
ing types of corrupted-label backdoor attacks are considered:

• Corrupted-label attack, with 3×3 pixel trigger, see Fig. 4.
Specifically, the attacker chooses samples from non-target
classes, adds the trigger over the samples, and finally
modifies the labels to the target class.

• Source-specific attack, with 3×3 pixel trigger, see Fig. 4.
The attacker poisons samples from a specific source class
and modifies their labels into that of the target class.
At test time, only poisoned samples from this class can
lead to misclassification.

• Sample-specific attack. The attack is carried out consid-
ering the warping-based trigger described in [42], see

Fig. 4. The poisoned images are warped with fixed param-
eters and the labels modified into that of the target class.
To facilitate the network to learn the specific backdoor,
the attacker also injects into the training dataset noise
samples, namely images warped randomly, for which the
labels are not corrupted.

In this case, to speed up the experiments, we run our tests
by randomly choosing the target class, instead of repeating the
experiments for every possible choice of the target. Experi-
ments are carried out considering 5 different poisoning ratios,
ranging from 0.096 to 0.45.

The AUCα obtained for the three types of attack are shown
in Fig. 8a, Fig. 8b, and Fig. 8c, respectively. We verified that
SCAn, Beatrix, and CCA-UD13 can achieve average F P R,
evaluated on the benign class, as 0.066, 0.052, and 0.003,
respectively.

For the corrupted-label attack in Fig. 8a, we can observe
that CI, SCAn, Beatrix and CCA-UD can achieve good
performance for different poisoning ratios with AUCα ≈

1. However, AC performance degrades to 0.77 when the
poisoning ratio decreases.

In the case of the source-specific attack shown in Fig. 8b,
all methods work very well when α ≥ 0.186. AC and Beatrix
are the methods showing the worse performance (with an
AUCα ≈ 0.75) when α is small (α ≤ 0.134 in the plots).

By choosing the threshold as explained in Section IV-C,
we were able to find a threshold θ∗ that works in all cases,
also for this task. Specifically, by choosing the threshold in
this way (set to 9.74, 9.38, 0.98) we get T P R(PC) and
F P R(PC) equal to (0.775, 0.001), (0.671, 0.078), (0.996,
0.002) for different α’s and three different tasks. .

From the results obtained against the sample-specific attack
shown in Fig. 8c, we can observe that CCA-UD achieves the
best performance with AUCα ≈ 1 in all the cases. With
regard to the other methods, we can observe the following:
1) AC achieves good results when α is large (being always
smaller than 0.5), while - as before - performance drops when
α becomes very small; 2) CI is not very effective, since
the average filter cannot remove the warping-based trigger;
3) SCAn’s bad performance was expected since, as observed
in [17], this method can not work on sample-specific attacks
Beatrix can indeed improve the performance of SCAn in this
case, however, performance is good only when α is large.

13For AC and CI, it is hard to find a fixed threshold, as discussed in
Section V-A, so we only compare CCA-UD with SCAn and Beatrix.
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Fig. 8. Performance (AUCα) of AC, CI, SCAn, Beatrix and CCA-UD for
various poisoning ratio α for CIFAR10 classification, against the three types
of backdoor attacks. .

2) Face Recognition Task: We also run some experiments
considering a very different task, namely, face recognition,
with larger-size images. For this task, features tend to have
a larger intra-class variability compared to the other tasks.
To prove this, we visualise the feature distribution for this
task in Section III of the supplementary material and compare
it with CIFAR10.

For these experiments, the 12 most populated classes in
YoutubeFace dataset [43] were selected, with more than
2600 images per class. The dataset is split in training and
testing in proportions 9:1. The image size is 315 × 315. Clas-
sification is performed considering an Inception-Resnet-v1
architecture [44]. The feature representation for the clustering
analysis are extracted before the first FC layer (2nd last layer).

With regard to the attack, we considered the corrupted
label case, with a 30 × 30 pixel trigger, see Type1 trigger in
Fig. 4. The same triggering signal used before was considered,
enlarged by a factor of 10 (being the size of the images
approximately 10 times larger than in the previous cases, this
triggering signal has approximately the same relative size as
before).

As for the case of CIFAR10, we run tests for a randomly
chosen target class. Experiments were carried out by consider-
ing 5 different poisoning ratios, i.e., 0.05, 0.134, 0.359, 0.45,
0.55.

Fig. 9 shows the AUCα values. Performance is good for
most of the methods. CCA-UD and Beatrix are the best-
performing methods, with an almost perfect AUCα in all the
settings. With regard to the other methods, a behaviour similar
to the previous cases can be observed. In particular, AC and

Fig. 9. Performance (AUCα) of AC, CI, SCAn, Beatrix and CCA-UD for
various poisoning ratio α for face recognition (YouTubeFace), against the
30 × 30 pixel trigger attacks.

SCAn do not work when α = 0.55, and their performance
drops (especially for SCAn) when α is very small (cluster
imbalance issue). CI is the method that has worse performance
on average, however, some discrimination capability can be
observed also for this method. In fact, even if the average
filter kernel is 5 × 5 (and the filter can not completely remove
the trigger), the triggering signal is impaired by the filter and
the activation of the backdoor inhibited.

For F P R, we evaluated the performance of SCAn, Beatrix
and CCA-UD on the benign class and got average values equal
to 0.086, 0.053, and 0.002. Given the thresholds (8.46, 9.65,
and 0.95 for SCAn, Beatrix and CCA-UD) determined as in
Section V-A, the average T P R(PC) and F P R(PC) are equal
to (0.800, 0.100), (0.961, 0.053), (0.988, 0.000), respectively.

In summary, these results confirm that CCA-UD is effec-
tive also when there is large intra-variability in the feature
representation of the various classes and then the samples in
benign classes are split into distinct clusters (as shown in
Section III of supplementary material). Being these clusters
benign, as expected, the clusters’ centroids do not activate the
misclassification behaviour CCA-UD looks for.

For the face recognition task, we also run an experiment
considering a multiple triggers attack, to evaluate the effective-
ness of CCA-UD also in this scenario. In a multiple triggers
attack, several triggers are used to poison the samples, to
induce more than one malicious behaviour. Specifically, in our
experiments, the attacker chooses three types of 30 × 30 trig-
gers to poison three different classes, as shown in Fig. 4,
where the three triggers use different patterns and are placed in
different locations. At test time, the presence of the triggering
signal inside the sample will lead to a misclassification in
favour of the corresponding target class.

Our experiments confirm that CCA-UD can achieve very
good performance, with an average AUC ≈ 0.99, for all
the target classes. At the optimum threshold θ∗

= 0.95 (this
threshold is the same as for the previous experiment as it
was set on benign data), we get an error probability averaged
over the three classes equal to T P R(PC) = 0.997 and
F P R(PC) = 0.006.

On the same experiments SCAn and Beatrix achieved
AUC = 0.833 and AUC = 0.999 respectively, and identified
the poisoned samples with T P R(PC) and F P R(PC) equal
to (0.667, 0.001) and (0.998, 0.064), respectively.

VI. CONCLUDING REMARKS

We have proposed a universal backdoor detection method,
called CCA-UD, to reveal the possible presence of a backdoor
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inside a model and identify the poisoned samples by analysing
the training dataset. CCA-UD relies on DBSCAN clustering
and on a new strategy for the detection of poisoned clusters
based on the analysis of clusters’ centroids, that exploits a
general behaviour of backdoored models. The capability of
the centroids’ features to cause misclassification of benign
samples is exploited to decide whether a cluster is poisoned
or not. We evaluated the effectiveness of CCA-UD on a great
variety of classification tasks and architectures, and attack
scenarios. The results confirm that CCA-UD can work well
regardless of the corruption strategy (corrupted- or clean-
label), the poisoning ratio (that can either be very small or
very large), and the type of trigger used by the attacker.
In particular, in our experiments, we considered a wide
variety of triggers, from fixed triggering signals (local and
global pattern) to source-specific and sample-specific triggers.
Furthermore, we proved that the performance achieved by
CCA-UD is always superior or comparable to those achieved
by the existing methods, when these methods are applied in a
setting that meets their operating requirements.

Future work will be devoted to the investigation of the
capability of CCA-UD to defend against backdoor attacks
in application scenarios beyond image classification, The
effectiveness of the method against backdoor attacks carried
out against modern architectures (e.g. vision transformers) or
different deep neural network models, e.g. generative mod-
els [45], sequential models [46], and recurrent neural networks
in particular, is also worth investigation.
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