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Abstract: A difficult and open problem in artificial intelligence is the development of agents that can
operate in complex environments which change over time. The present communication introduces
the formal notions, the architecture, and the training algorithm of a machine capable of learning and
decision-making in evolving structured environments. These environments are defined as sets of
evolving relations among evolving entities. The proposed machine relies on a probabilistic graphical
model whose time-dependent latent variables undergo a Markov assumption. The likelihood of such
variables given the structured environment is estimated via a probabilistic variant of the recursive
neural network.
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1. Introduction

The development of artificial intelligence (AI) systems capable of keeping up with
evolving environments, just like “biological systems can adapt to new environments”, was
posed as Challenge One for AI by Rodney Brooks [1]. To date, the challenge is still open. The
relevance of machines capable of coping with evolving environments was further pointed
out in the modern framework of evolving computation [2,3]. Evolving environments are
met in most machine learning applications under real-world circumstances. This is the
consequence of two main factors:

1. the world is not stationary, but it changes over time;
2. a learning machine may be applied under different conditions [4].

Examples are found in fault diagnosis for complex dynamical systems [5], modeling
of climate and financial data [6,7], detection of fraud [8] or spam [9]. As pointed out
by [10], coping with these evolving environments requires approaches that overcome a
fundamental assumption that holds in traditional machine learning, namely that data
are drawn from a fixed distribution [10]. In this respect, the headmost contribution of
this communication is to cope for the first time in a formal manner with environments
that change over time according to time-dependent, unknown probabilistic laws. To this
aim, the machine sought is expected to realize a statistical model of the environment that
probabilistically accounts for the environmental changes.

To this end, several learning machines suitable for sequential data processing may
appear to be promising, e.g., hidden Markov models (HMM) [11] or recurrent neural
networks [12]. Nonetheless, in our view, the general notion of a structured environment
is better expressed in terms of a relation, or set of relations, over individual entities. Each
entity may be represented as a variable-size, entity-specific set of attributes that capture
certain characteristics, or perspectives, of the world. Attributes may be either discrete or
real-valued. Given these premises, traditional learning machines are unfeasible. The second
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contribution of the present communication is to present a new machine that is suitable
for the aforementioned relational scenario. To the best of our knowledge, this is the first
approach to modeling and learning structured environments that evolve over time.

An evolving structured environment is then expressed by means of a time-dependent
graph process defined over the entities. The entities existing in the environment at time t
are represented by the vertices of the graph at t. The edges of the graph encapsulate the
binary relation(s) over the entities at time t. Labels in the form of real-valued attributes
may, in turn, be attached to the edges. These labels account for the evolving type and
characteristics of the relation(s) that hold within the environment. We assume that any
decision made by the machine at time t does not depend only on the environment at time
t, but also, the evolution of the environment that had occurred so far. To fix ideas, a toy
example is given by an autonomous robotic platform that is required to move and assist
human workers in setting up the booths and furniture within the exhibition spaces of a
large trade fair pavilion. The partitioning of the building into booths, conference rooms,
etc. changes from time to time, as do the amount, positioning, and type of furniture.
The different rooms and pieces of furniture are the entities to be modeled in the present
framework, and their mutual positioning is the relation among the entities. The features, or
labels, to be associated with such entities may represent the geometry, size, weight, and
specific function of the corresponding items or rooms. In order to be capable of navigating
autonomously within such an evolving environment, the moving platform must be capable
of keeping track of the changes, progressively adapting to the changeable spaces, and
making suitable decisions accordingly.

We use a probabilistic framework, such that the environment can be described in terms
of probabilistic laws over time-varying random quantities, e.g., the likelihood of the entities
being related to each other at time t. Intrinsically, the machine we are introducing is a novel
‘probabilistic graphical model [13] that represents a particular joint probability density,
including a set of latent variables undergoing a first-order Markov assumption, and a set of
observable, time-varying random graphs drawn from properly-defined probability density
functions (pdf). In the light of our previous experience with neural networks for density
estimation [14–16], the short-term modeling of these pdfs is realized via a probabilistic
radial basis functions (RBF) [17] variant of recursive neural networks (RNN) [18,19], hereby
denoted by RBF-RNN. Conversely, the latent variables and their conditional probabilis-
tic dependencies are modeled via a long-term hidden Markov chain, as in HMMs. The
potentialities of combinations of short-term predictors and long-term models of evolv-
ing environments were shown empirically by [20]. Moreover, suitable change detection
tests based on the HMM likelihood were proven to be successful in detecting drifts in
evolving environments [21]. The present approach can be seen as an instance of the online
Bayesian learning setup for evolving environments [22] extended to graphical or relational
data, where the time-dependent RBF-RNNs play the role of the parameterized proba-
bilistic observation model, and the Markov chain encapsulates implicitly the probabilistic
transition model.

The underlying assumption is that by observing the evolution of an environment for
a long enough period of time, it is possible to learn the fundamental probabilistic laws
that rule its behavior, as well as its evolution, such that suitable models of such laws may
be later used to make statistically sound predictions, e.g., making educated decisions. As
in Just-in-time classifiers for recurrent concepts drift in evolving environments [23], the
present approach exploits the notion of recurrent, underlying concepts that re-present after
an unpredictable amount of time, and that the machine shall be able to detect in order to
react with the adequate probabilistic response. In the present framework, these concepts
are the latent states of nature ruling the pdf of the observations.

Before introducing the machine formally, we need to extend the definitions of random
variables and pdf to the present, structured setup. Eventually, learning (in terms of esti-
mating proper statistical parametric models) will rely on a training sample of streams of
environmental observations over time. Decision making among the actions A1, . . . , Ak
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in the environment E at any future time t will take place within the Bayesian framework,
relying on the action-conditional joint pdfs estimated at t via action-specific machines
which observe the evolution of E .

2. Materials and Methods

The present formalization requires assumptions on the type of evolving environments
we can cope with. Still, it forms a well-defined ground on which to develop proper
algorithms. First, the novel notion of the random environment is introduced, broadening
the definition of random graph [24] to a large extent. Let Ω be a sample space, and let
V denote any discrete or continuous-valued universe. The latter is the set of entities. A
random environment (RE) on V and Ω is a function E : Ω→ {(V, R)|V ⊆ V , R ⊆ V ×V}.
Labels (namely, real-valued vectors associated with the entities or with the elements of R)
can be accommodated in the definition in a straightforward manner. Let E = {(V, R) |
V ⊆ V , R ⊆ V ×V} be the space of RE outcomes. A pdf for REs over V is defined as any
function p : E → R such that (1) p(ε) ≥ 0, ∀ε ∈ E, and (2)

∫
E p(ε)dε = 1. The Lebesgue-

measurability of the space of labeled graphs defined on measurable domains is shown
in [25], which makes the writing

∫
E p(ε)dε meaningful. It is seen that traditional notions

of probability theory, such as conditional pdf, joint pdf, statistical independence, etc., are
readily extended to REs. An environment is any outcome ε of a RE, i.e., drawn from the
corresponding pdf p(ε). This definition covers all cases of labeled/unlabeled entities, as
well as environments having variable sizes (e.g., the number of entities making up the
environment is not necessarily pre-defined, and it may change over time) and/or variable
topology (e.g., two-by-two relations between pairs of entities may evolve, too).

Loosely speaking, a stochastic environment process X(t) is any function that maps
discrete or continuous time t ∈ T onto a corresponding RE. Since by definition REs
are random variables, and since we can bijectively represent X(t) as an indexed family
{X(t)|t ∈ T }, it is seen that a stochastic environment process is a special case of random
process according to the classic definition of the latter (see, for instance, [26], Section 1.9,
page 41). Consequently, an extension of the traditional hidden Markov model (HMM) to
REs is given by proposing the novel definition of HMM over environments (ε-HMM) as
a pair of stochastic processes: a hidden Markov chain, that is a traditional discrete-time
random process, and an observable stochastic environment process which is a probabilistic
function of the states of the former.

Let us assume that the evolution of an environment over time t = 1, . . . , T has been
observed, and represented as a sequence Y = ε1, . . . , εT generated by a hidden stochastic
environment process. Also, let Y be the outcome of a sequenceW = ω1, . . . , ωL of latent
states of nature, e.g., drifting concepts. No prior segmentation of Y into subsequences
Y1, . . . , YL corresponding to the individual states of nature are known in advance. We pro-
pose a hybrid neural/Markovian realization [27] of ε-HMMs for the probabilistic graphical
modelling of p(Y | W) . Using a standard HMM notation [28], an ε-HMM H is formally
defined asH = (S, π, A, BE ) where: S = {S1, . . . , SQ} is a set of states (namely, the Q dif-
ferent values that the hidden Markov chain can assume); π = {P(Si | t = 0), Si ∈ S} is the
probability distribution of the initial states (t being a discrete time index); A is the Q×Q ma-
trix of the transition probabilities, whose ij-th entry is aij = P(Sj at time t + 1 | Si at time t);
finally, BE is a set of pdfs over REs, called emission probabilities, describing the state-specific
statistical distributions of the REs: BE = {bi(.) | bi(ε) = p(ε | Si), Si ∈ S, ε ∈ E}.

The observable component of the ε-HMM is realized via neural models of the emission
probabilities [29]. For each state of the ε-HMM, a neural network is introduced that esti-
mates the corresponding emission probability given the current status of the environment
being observed. Relying on the formalism we introduced in [30], for each ι = 1, . . . , Q
we assume the existence of d ∈ N and of the functions φι : E → Rd and pι : Rd → R
such that bι(εt) = pι(φι(εt)). It is seen that there are countless pairs of such functions φ(.)
and p̂(.), the simplest choice being φ(ε) = p(ε), p̂(x) = x. The function φι(.) is hereafter
referred to as the encoding for ι-th state of the ε-HMM, whereas the function pι(.) is called
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the emission associated with the corresponding state. We assume parametric forms φι(ε|θφι)
and pι(x|θpι) for the encoding and for the emission, respectively, and we let θι = (θφι , θpι).
The function φι(ε|θφι) is realized via an encoding network, suitable to mapping structured
environments ε into real vectors x, as it is found in supervised training of traditional RNNs
over graphs [18,19]. Consequently, we identify the parameters θφι with the weights of
the encoding network. An RBF network is then used to model the emission pι(xt|θpι),
where the parameters of the RBF play the role of θpι . All the parameters in the ε-HMM
can be estimated from examples by means of a global optimization algorithm, presented
in the next Section, aimed at the maximization of the likelihood of the very ε-HMM given
time-varying sequences of empirical observations of the evolving environment.

3. Results

The main result of the present communication is the following gradient-ascent global
training technique. The proposed technique is based on the maximum likelihood (ML)
criterion. Using standard notation [28], the likelihood L of the ε-HMM given the sequence
Y is given by L = ∑ι∈F αι,T , where αι,T is the forward term for state ι at time T. The sum
is extended to the set F of all final states [31] of the ε-HMM. Let us write qι,t in order to
represent the fact that the Markov chain is in state Sι at time t. Then, the forward terms
αι,t = P(qι,t, ε1, . . . , εt) and the backward terms βι,t = P(εt+1, . . . , εT |qι,t) can be computed
recursively as usual [28]. In turn, the forward-backward algorithm [28] can be used for
ML estimation of the parameters of the underlying Markov chain, i.e., initial and transition
probabilities. For a generic RBF-RNN parameter θ ∈ θι, instead, gradient-ascent over L
entails a learning rule in the form ∆θ = η ∂L

∂θ , where η ∈ R+ is the learning rate. We can
rewrite ∂L

∂θ as:

∂L
∂θ

=
Q

∑
q=1

T

∑
t=1

βq,t
αq,t

bq(εt)

∂bq(εt)

∂θ
(1)

The usual computations over the trellis of a standard HMM [28] can be used to obtain

the quantities in the right-hand side of Equation (1), except for ∂bq(εt)
∂θ (where bq(εt) is the

output from the corresponding RBF-RNN at time t). Hereafter, we focus on the computation
of this partial derivative. Since (i) each state of the ε-HMM has its own RBF-RNN, (ii) in
HMMs the emission probabilities for different states are mutually independent [28], and
(iii) in HMMs the individual observations (i.e., environments) in the input sequence are
assumed to be mutually independent given the state [28], we can simplify the notation
by dropping the indexes ι and t, and we resort to the calculation of the derivatives of
the generic emission p(φ(ε|θφ)|θp). For any free parameter in the RBF-RNNs, say θ, an

explicit formulation for ∂p(φ(ε|θφ)|θp)
∂θ can be obtained as follows. Eventually, the resulting

formulation shall be put in place of ∂bq(εt)
∂θ into Equation (1) and the latter, in turn, into the

overall learning rule ∆θ = η ∂L
∂θ . There are three categories of parameters of the RBF-RNN

that the algorithm shall estimate:

1. the hidden-to-output connection weights c1, . . . , cn of the RBF. In order to ensure the
satisfaction of the axioms of probability, these weights must range over (0, 1) and
sum to one. This is guaranteed by introducing n unconstrained variables γ1, . . . , γn
such that

ci =
ς(γi)

∑n
j=1 ς(γj)

(2)

where ς(x) = 1/(1 + e−x). The generic variable γi is estimated via ML. This guaran-

tees the satisfaction of the axioms. The quantity ∂p(φ(ε|θφ)|θp)
∂ci

is computed by applying

the chain rule to ∂p(φ(ε|θφ)|θp)
∂γi

for i = 1, . . . , n.
2. The mean vector µi and covariance matrix Σi of the generic i-th Gaussian kernel

Ki(x) = G(x; µi, Σi) in the RBF. For each component j = 1, . . . , d of the encoding space,



Mathematics 2022, 10, 2646 5 of 7

ML parametric estimation of Gaussian mixture models [11] is applied in order to

compute the quantities ∂p(φ(ε|θφ)|θp)
∂µij

and ∂p(φ(ε|θφ)|θp)
∂σij

.

3. The parameters U = {v1, . . . , vu} of the encoding network. For each v ∈ U , the

quantity ∂p(φ(ε|θφ)|θp)
∂v is obtained as follows: ∂p(φ(ε|θφ)|θp)

∂v =
∂p(φ(ε|θφ)|θp)

∂y
∂y
∂v , where

y represents the output from the neuron that is fed from v. The partial derivative
∂y
∂v is computed as usual. As for ∂p(φ(ε|θφ)|θp)

∂y , the backpropagation through struc-
tures (BPTS) algorithm can be applied [18,19]. First, computation of the derivative
∂p(φ(ε|θφ)|θp)

∂y is straightforward for the connection weights v between hidden and
output neurons. This yields the initialization of the δ’s to be backpropagated via BPTS.
Then, let us turn our attention to the hidden weights v = vm`, where ` and m are the
hidden neurons connected by v. Relying on the aforementioned initialization of the

δ’s, the derivative ∂p(φ(ε|θφ)|θp)
∂vm`

is finally obtained via standard BPTS.

After the training process has been completed, an estimation of the likelihood at time t
of an ε-HMM given an evolving random environment E can be obtained from the forward
terms on the t-th column of the trellis, as in plain HMMs [28]. In turn, action-specific
ε-HMMs shall be trained and applied for each possible action, say A1, . . . , Ak, in those
tasks that require to decide which action to undertake at any time t in the environment E .
In this setup, the i-th ε-HMM models the corresponding action-conditional pdf, namely
p(ε1, . . . , εt | Ai). Provided that the prior probability of any individual action is known, be
estimated via the usual frequentist approach of Bayesian decision theory [32], the action
is chosen to rely on Bayes’ decision rule, as usual, as the action Amax that maximizes
p(ε1, . . . , εt | Ai)P(Ai), i = 1, . . . , k.

4. Summary and Conclusions

Most environments may be described as relations over entities whose attributes are
random variables. In turn, evolving environments do implicitly entail time sequences
of varying relations. The goal of this communication was the foundation of an ad-hoc
paradigm for learning and modeling the statistical properties of such sequences. The goal
was pursued by combining probabilistic graphical models, encoding neural networks, and
constrained RBFs within a unifying framework. A ML adaptation algorithm for the param-
eters of the overall model was devised under an implicit assumption of recurrent concepts
drift, where the concepts are represented by the latent variables. We expect applications in
real-world scenarios, as well as extensions of the technique to the incremental real-time
adaptation of the parameters.
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Abbreviations
The following abbreviations are used in this manuscript:

AI artificial intelligence
HMM hidden Markov model
pdf probability density function
RBF radial basis function
RNN recursive neural network
RBF-RNN probabilistic radial basis functions variant of recursive neural networks
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RE random environment
ε-HMM HMM over environments
ML maximum likelihood
BPTS backpropagation through structures
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