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Abstract: Governance in blockchain platforms is an increasingly important topic. A particular
concern related to voting procedures is the formation of dominant positions, which may discourage
participation of minorities. A main feature of standard majority voting is that individuals can indicate
their preferences but cannot express the intensity of their preferences. This could sometimes be a
drawback for minorities who may not have the opportunity to obtain their most desirable outcomes,
even when such outcomes are particularly important for them. For this reason a voting method,
which in recent years gained visibility, is quadratic voting (QV), which allows voters to manifest both
their preferences and the associated intensity. In voting rounds, where in each round users express
their preference over binary alternatives, what characterizes QV is that the sum of the squares of the
votes allocated by individuals to each round has to be equal to the total number, budget, of available
votes. That is, the cost associated with a number of votes is given by the square of that number,
hence it increases quadratically. In the paper, we discuss QV in proof-of-stake-based blockchain
platforms, where a user’s monetary stake also represents the budget of votes available in a voting
session. Considering the stake as given, the work focuses mostly on a game theoretic approach to
determine the optimal allocation of votes across the rounds. We also investigate the possibility of the
so-called Sybil attacks and discuss how simultaneous versus sequential staking can affect the voting
outcomes with QV.

Keywords: quadratic voting; blockchain; proof of stake

1. Introduction

Governance models of blockchain platforms are becoming increasingly important,
as they can meaningfully affect the platform attractiveness and the users’ participation.
For many blockchains, a main concern related to governance appears to be the possible
emergence of dominant positions, that is of subjects who could keep under their control
a large number of votes, possibly even the majority of votes, and therefore the platform
evolution. Indeed, this may discourage users with small number of votes from participating
in governance, perhaps inducing them to drop out of the platform. For this reason, a
voting method, which in recent years has gained some attention for social decisions in
general, hence also as a possible solution to the above problem in blockchain platforms, is
quadratic voting (QV) [1–9] Its interest is additionally testified by an analogous quadratic
criterion, which has recently been proposed for project co-funding [10]. In its most common
application, represented by a voting session with a list of binary items to vote of the type
A/B, QV allows participants to express both the direction as well as the intensity of one’s
preferences as it takes place, for example, with oral acclamation [1–5]. For this reason,
unlike the standard 51% majority voting, QV sets up a framework where minority voters,
that is those subjects with a limited number of votes, could still have chances to obtain the
desirable outcomes for those issues which they care particularly about. Concern for. and
protection of, such minorities would clearly make sense when a relatively small number of
votes is not due to a user’s lack of interest in the voted issues.

The main reason for this to take place is how available votes are considered in a
QV session, where a session is composed of a sequence of voting rounds (items). More
specifically, the number of votes available to a subject represents her budget of votes for the
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session, which cannot be lower than the total cost of using the votes in the various rounds.
For every round, such cost is assumed to be quadratic in the number of votes chosen for the
item, and the total cost of the voting session cannot exceed the total number of available
votes. Frequently, in the literature, the cost of voting is indeed expressed in monetary terms,
rather than by a number of votes. However, in PoS-blockchain-based platforms, these two
interpretations coincide, since the budget of votes is given by the monetary stake.

As an illustration of QV, assume an individual X has n = 10 votes available to
participate in a voting session with two items under scrutiny. Suppose that in the first
item, the decision is between A/B, and in the second item, it is between C/D, where B
and D may simply be, respectively, not A and not C. Moreover, suppose also that X cares
more about the first item than about the second item. Therefore, with QV, they could
decide to use, for example, 3 votes when voting for the first item and 1 vote when voting
for the second item, so that such distribution of votes will satisfy 32 + 12 = 10. That is,
10 is the available budget of votes, while 32 = 9 is the cost of using 3 votes in the first
round and 12 = 1 the cost of using one vote in the second round. Therefore, with QV, the
marginal cost of the nth vote is n2 − (n− 1)2 = 2n− 1, which is equal to twice as much the
ordinal number of votes minus 1. Hence, for instance, the marginal cost of the first vote is
12 − 02 = 1, while the marginal cost of the second vote is 22 − 12 = 3 and so on. It follows
that the most expensive vote for a user is the marginal (last) one.

Consider now another individual Y, with a total number of votes equal to n = 4, hence
much less than X, with Y caring about the outcome of the second item only. Then, Y could
decide to allocate 0 votes to the first item, basically avoiding voting, and 2 votes to the
second item, so that her budget of votes is satisfied, 02 + 22 = 4. Therefore, Y may have
good chances of affecting the voting outcome of the second item in a way desirable for her.
With only two individuals and only two items of the above example, if decisions within
each round are taken according to the 51% majority criterion then, with QV, individual Y
could guarantee for herself the most desirable voting outcome in the second round.

Instead, if the voting protocol were the standard 51% majority voting, where individu-
als use all of their votes in each round, then X will secure for herself the best outcome in
both items, having 10 votes against 4. This, of course, does not mean that what is desirable
for X is necessarily unwanted by Y. Indeed, their preferences may certainly be aligned,
in which case the voting protocol would be irrelevant. However, since this is more of
an exception than the rule, with QV the user with a lower budget of votes could have
a higher chance to obtain the desirable outcome, at least for those items that they care
particularly about.

The above numerical example identifies one important point. That is, the timing with
which users communicate to the platform how many votes they intend to use in each round
can be very important. For example, if voters need to reveal simultaneously, at the very
beginning of the voting session, how many votes they want to allocate to each item, then the
reasoning in the above example can make sense. However if instead X, for instance, before
voting could be allowed to know the votes assignment across the two rounds decided by Y,
then X could perhaps assign just 1 vote to the first item and 3 votes to the second, obtaining
her most preferred outcome in both voting sessions. This point will be discussed in more
detail later in the paper.

There could be protocols other than QV for protecting minority voters. Therefore, it is
natural to ask which properties QV enjoys as compared to alternative voting criteria. One
reason is certainly given by analytical simplicity and tractability of quadratic functions.
Though attractive, this however would not be a strong enough motivation for choosing QV
rather than, for example, cubic voting. [1,2] point out that, as a vote pricing rule, QV enjoys
the main property of being robustly optimal. Broadly speaking, this means that whatever
is the users’ probability of winning a voting round in their model, QV ensures that the
most desirable social outcome will receive the highest number of votes; alternatively, that the
number of votes assigned by a user to an item is proportional to (a linear function of) the
utility/value of the item.
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In this work, we investigate QV as applied to the governance of PoS-based blockchain
platforms, by assuming that a user’s stake represents her budget of votes in a voting session.
Taking such budget as given, the paper first considers some alternative definitions of the
success probability in single voting rounds, to provide closed forms for the optimal number
of votes to be allocated to the relevant items under voting. The analysis is game theoretic,
and the optimal number of votes is characterized as a Nash Equilibrium of the game. To
the best of our knowledge, no such contribution exists in the literature. We then extend
the analysis to a general formulation of the success probability. Additionally, we also
investigate one of the main concerns in blockchain voting procedures. That is, when users
are anonymous, they may decide to split their monetary holdings, hence their stakes, into
several accounts to increase their chances of successful voting. This is well known in the
literature as the Sybil attack [11,12], indeed characterized by users taking multiple identities.
Moreover, we discuss if and how the voting timing can affect the outcome of the elections.
The paper is structured as follows. In Section 2, we introduce the model fundamentals and
provide a symmetric Nash Equilibrium characterization of the optimal number of votes
in each round. In Section 3, we discuss whether or not QV may represent an incentive for
users to engage in Sybil attacks, while Section 4 considers the implication of simultaneous
versus sequential votes selection in the various rounds. In Section 5, we consider a more
detailed description of the users’ preferences, while Section 6 concludes the paper.

2. The Framework

In this initial section, we introduce a framework to investigate the optimal number of
votes with QV in proof-of-stake-based blockchains.

We begin assuming that C is the number of committee members in a voting session
and s1, s2, . . . , sC their stakes, typically defined by a number of currency units. Henceforth,
si, with i = 1, . . . , C, will be considered as already chosen by the users and a given in
the analysis.

We assume a voting session takes place over a time interval, and it is defined by a
sequence of voting rounds, one for each item under consideration. Each vote is binary, that
is, it has two alternatives: A or B, where A/B could also simply mean disapproval of B/A.

Let R be the total number of voting rounds, which we also refer to as issues/items to
be voted in the same session, and suppose vir > 0, with i = 1, . . . , C and r = 1, . . . , R, is the
(reserve) value assigned by user i to round r.

That is, we define vir to be the maximum number of currency units that member i is
willing to pay for the most desirable alternative Ar/Br, in the rth voting session. To simplify,
without losing much in generality, we also assume that for each user, the least desirable of
the two options under voting has 0 value. Therefore, vir represents the maximum utility
that user i can obtain when voting for issue r.

Hence, if si is the stake of the generic ith user, with QV, the total number of votes
available in the R rounds of a voting session is equal to

si = si1
2 + si2

2 + si3
2 + . . . + siR

2

where 0 ≤ sir ≤ si is the number of currency units, i.e., votes, allocated to round r.
For example, suppose si = 15, R = 4. Then, si1 = 1, si2 = 1, si3 = 2, si4 = 3 is the

number of votes adopted by the user, and therefore, si1
2 = 1, si2

2 = 1, si3
2 = 4, si4

2 = 9
is agent i′s distribution of the total votes over the four issues under voting. In what follows,
to simplify the exposition, without much loss of generality, we shall also consider the
possibility of fractional, non-integer votes.

The quantity sir
2 is also interpreted as the cost of using sir votes in round r while si as

the budget of votes available for the entire voting session.
Therefore, at a general level, for given si, the optimal sir could be defined as the solution

to the following problem

maxsir EUi(sir ) = ∑R
r=1 virPir(sir, s−ir)such that ∑R

r=1 sir
2 = si
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where Pir(sir, s−ir) is user i′s probability of obtaining value vir and s−ir the profile of stakes
chosen by the committee members other than user i in round r. More specifically, if
σr = (s1r, s2r, . . . , sir, . . . sCr) is the profile of stakes in round r, then s−ir = σr − {sir}.

It seems reasonable to assume Pir (sir, s−ir) to be increasing with respect to sir, while
its behaviour with respect to s−ir may vary according to whether or not the other committee
members would vote as agent i.

The optimal choice of sir can depend upon several elements. In particular, it could
depend on whether the chosen sir is communicated sequentially by the users to the platform,
round by round, or “simultaneously” at the very beginning of the session for all r = 1, . . . , R.
Moreover, in general, sir would be chosen within a game theoretic context with strategic
interaction and would therefore also depend upon s−ir.

In what follows, we begin the analysis considering a very simple case, where users
choose sir independently of each other, “simultaneously”, in a game with complete infor-
mation over the other users’ values. More specifically, sir will be selected by users at the
beginning of the session and independently communicated to the platform.

2.1. A Benchmark Framework with Simultaneous Selection of sir

In this paragraph, we assume that users vote independently of each other and know
each other’s value. This is clearly a strong assumption, which nevertheless may be-
come more realistic when voters are not strangers to each other. To gain some initial
insights, as a very first step in the analysis, we introduce the following expression for the
success probability:

Pir (sir, s−ir) =
sir
Sr

f or all i = 1, . . . , C

where Sr = ∑C
j=1 sjr is the total number of votes in the committee used in round r, and sir

Sr
is

the probability that i will obtain the value vir in the rth voting round. The above definition
captures the idea that the committee members vote independently of each other and that
they consider the worst case, where the success probability decreases with the number of
members’ votes other than i.

Admittedly, assuming Pir (sir, s−ir) = sir
Sr

may be a simplification of what occurs in
reality, since other users may cast the same vote as the ith member. However, as an
initial approximation, we find the probability definition to be acceptable. A more detailed
discussion on users’ preferences is deferred until Section 5.

It follows that the above problem becomes

maxsir EUi (sir ) = ∑R
r=1 vir

sir
Sr

such that ∑R
r=1 sir

2 = si (1)

Problem (1), in terms of the associated Lagrange function, can be formulated as follows:

maxsir Li (sir, λi) = ∑R
r=1 vir

sir
Sr
− λi

(
∑R

r=1 sir
2 − si

)
(2)

With no major loss of generality, treating sir as a continuous variable for convenience
and considering the first-order condition with respect to sir, derived from expression (2),
we obtain

vir
Sr − sir

Sr2 = 2λisir (3)

where λi > 0 is the Lagrange multiplier associated with constraint ∑R
r=1 sir

2 = si .
Before proceeding, it is worth noticing that, unlike what occurs in [1,2] in expression

(3), the chosen stake sir is not a linear but rather a non-linear function of vir. This is due to
our assumption of the success probability sir

Sr
, which is indeed introducing the non-linearity

in expression (3). Below, in Section 2.5.1, we shall discuss a case with a linear relation
between sir and vir.
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Expression (3) clarifies that a user’s optimal stake level also depends on the other
committee members’ profile of stakes s−ir, which implies that the selection of the optimal
sir across agents could be modeled as a game. Indeed, expression (3) provides the best reply
correspondence of each user, which explicitly depends on the other users’ number of votes.

Below, we state the first result, which represents a benchmark for the rest of the analysis.

Proposition 1. Suppose vir = vr and si = s, for all i = 1, . . . , C and all r = 1, . . . , R. Then, there
exists a unique symmetric pure strategy Nash Equilibrium of the game with complete information,
sir = sr, given by

sr =

√
s

vr

V
(4)

where V = ∑R
r=1 vr is each user’s total value in the voting session.

Proof. Immediate. Since vir = vr and si = s, it is λi = λ for all i = 1, . . . , C. Hence, it
follows that expression (3) can be re-written as

vr
(C− 1)sr

C2sr2 = 2λsr (5)

and therefore

sr
2 = vr

(C− 1)
2λC2 (6)

Thus, summing up both sides of expression (6) with respect to r, we obtain

2λ =
V(C− 1)

sC2 (7)

Finally, replacing 2λ obtained from expression (7), into expression (5), the result
follows. �

Expression (4) captures some main intuitions of a symmetric equilibrium, in that
the optimal number of votes assigned to an item is proportional to its importance vr

V ,
representing such share of the total stake s. Since expression (4) is the same for all committee
members, then the probability that an issue is voted according to the preferences of a user
is 1

C , while user’s expected utility given by EUi (sir ) = V
C . Finally, notice also that sr is

an increasing and concave function with respect to vr, a shape due to both the probability
assumption Pir (sir, s−ir) =

sir
Sr

and to QV.
If Proposition 1 presents an explicit result, for our specific assumption of the success

probability, it is also true that it is a benchmark, a limit case, since it is unlikely for reality to
be so nicely symmetric. Yet, as we discuss below, computing explicit solutions of sir under
asymmetric values and stakes can be rather cumbersome. However, before doing so, in
what follows, we explore the first simple extension of QV.

2.2. An “Alternative” Quadratic Voting (AQV)

It would be interesting to discuss how this benchmark model would compare with
some of its possible extensions. As the very first generalization of the QV protocol, we
consider the following alternative modality of quadratic voting, which we name AQV:

si = (si1 + si2 + . . . + siR)
2 (8)

That is, now, the budget of votes is no longer given by the sum of squares of sir but
rather by the squares of the sum of sir. That is, the squaring and summation operations are
permuted. Therefore, problem (2) would now become

maxsir Li (sir, λi) = ∑R
r=1 vir

sir
Sr
− λi

(
(∑R

r=1 sir)
2
− si

)
(9)
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Solving problem (9) leads to the following result.

Proposition 2. Suppose vir = vr and si = s, for all i = 1, . . . , C and all r = 1, . . . , R. Then, there
exists a unique symmetric pure strategy Nash Equilibrium of the game sir = sr given by

sr =

√
svr

Vsr (10)

whereVsr = ∑R
r=1
√

vr is the users’ sum of the values’ square roots in the voting rounds.

Proof. In a symmetric equilibrium where sir = sr, the first-order condition in expression (3)
now becomes

vr
(C− 1)sr

C2sr2 = 2λCsr (11)

Again, since vir = vr and si = s is λi = λ for all i = 1, . . . , C, following the same
procedure as in Proposition 1, we obtain

2λ = (Vsr)2 (C− 1)
sC3 (12)

and the replacement of expression (12) by expression (11) proves the result. �

It is worth noticing that, since Vsr >
√

V, then sr in expression (4) is larger than sr in
expression (10).

2.3. Extending Quadratic Voting to “Any Power” Voting

An additional, somewhat natural extension to the above model can be obtained
by generalizing quadratic voting to any ath power voting, with a = 1, 2, 3, . . .. More
specifically, expression (2) now becomes

Li (sir, λi) = ∑R
r=1 vir

sir
Sr
− λi

(
∑R

r=1 sir
a − si

)
(13)

The following Corollary generalizes Proposition 1.

Corollary 1. Suppose that all is as in Proposition 1, except that now, it is ∑R
r=1 sir

a = si with
a = 1, 2, 3, . . . Then, there exists a unique symmetric pure strategy Nash Equilibrium of the game
sir = sr(a) given by

sr(a) = a

√
s

vr

V
(14)

Proof. Since the first order condition is now

vr
(C− 1)sr

C2sr2 = aλsa−1
r

following a procedure analogous to that of Proposition 1, we obtain expression (14). �

Expression (14) immediately shows that sr(a + 1) > sr(a) for 0 < s vr
V < 1, while

sr(a + 1) < sr(a) for 1< s vr
V and sr(a + 1) = sr(a) for 1= s vr

V . Therefore, if 0 < s vr
V < 1 for

all vr
V , then increasing the power of the voting protocol increases the number of votes at

stake for the issue under voting. Likewise, if 1< s vr
V , increasing the power of the voting

protocol decreases the number of votes at stake for the issue under voting. Finally, as a
varies, there will be no changes in the votes if s vr

V = 1.
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2.4. An Asymmetric Model with Simultaneous Choice

We now discuss how much more involved the optimal determination of sir becomes
with asymmetric users, that is when values and stakes may differ across committee mem-
bers. As we shall see, values and stakes can interact in a complex way in the expression
of sir.

To do so, we consider the simplest case in which i = 1, 2 and r = 1, 2, still assuming

Pir (sir, s−ir) =
sir
Sr

It follows immediately that the first-order condition (3) for, respectively, s11, s12, s21, s22
becomes

(i) v11
s21

S1
2 = 2λ1s11; (ii) v12

s22

S22 = 2λ1s12; (iii) v21
s11

S1
2 = 2λ2s21; (iv) v22

s12

S22 = 2λ2s22

Dividing the left-hand side and right-hand side of (i) by (ii), we obtain

v11s21S2
2

v12s22S1
2 =

s11

s12
(15)

Likewise, dividing (iii) by (iv), we obtain

v21s11S2
2

v22s12S1
2 =

s21

s22
(16)

Replacing expression (15) into expression (16) leads to

S2
2

S1
2 =

√
v12v22

v11v21
(17)

Expression (17) clarifies that the proportion between the total number of votes dedi-
cated to the first and second item depends exclusively upon the users’ values. In particular,
if v12v22

v11v21
= 1, then the total amount of votes will be the same in each of the two items. This

is so, for example, if v12 = 10
v11 = 1 = 10 and v22 = 10

v21 = 100 = 1
10 that is, if the values’ ratio for a user is

the inverse of the values’ ratio for the other user. In the example, user i = 1 values item
r = 1 ten times more than item r = 2, while user i = 2 values item i = 2 ten times more
than item r = 1. The condition could also be interpreted by observing that the product of
values for the second item must equal the product of value for the first item. Likewise, if
v12v22
v11v21

> 1, then the second item will attract more votes than the first, and, conversely, if
v12v22
v11v21

< 1, the second item will attract fewer votes than the first item.
Moreover, replacing expression (17) into expression (15), we derive the following

expression:
s21

s22
=

s11

s12

√
v12v21

v22v11

hence
s21

2

s222 =
s21

2

s2 − s21
2 =

s11
2

s1 − s11
2 α =

s11
2

s12
2 α (18)

where α =
(

v12v21
v22v11

)
. Therefore,

s11
2 =

(
s21

2s1

(s2 − s21
2)α + s21

2

)
=

(
s21

2s1

(s2α + (1− α)s21
2

)
(19)

Expression (19) provides some interesting information on the relationship between s11
and s21. First, notice that α can be any positive number, hence not necessarily less than one.
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It follows that (s2α + (1− α)s21
2) is not necessarily a convex combination between, an

average of, s2 and s21. In any case, it will always be non-negative.
Then, observe that expression (19) is a decreasing function of α; in particular, s11

2

tends to s1 as α goes to zero, and s11
2 goes to zero as α tends to infinity. For given v21 and

v22, this is consistent with the intuition, since α goes to zero when v12/v11 goes to zero,
which means that the outcome of the first round of voting is by far the most important item
for agent 1. Analogous considerations hold for when α goes to infinity.

Additionally, it is also interesting to point out that, for given v11 and v12, the stake s11
2

would tend to s1 when v21 is very large as compared to v22, that is, when user 2 assigns a
high value to the outcome of the first voting round. All this implies that agent 1 will set a
high s11 as long as one of the two players assigns a high value to the first item, as compared
to the other user.

Moreover, s11
2 is an increasing concave function of s21

2, which is equal to s11
2 = 0 for

s21
2 = 0, reaching its maximum value of s11

2 = s1 at s21
2 = s2.

Furthermore, notice that in the specific case of α = 1, then s11
2 = s21

2s1
s2

, which implies
that s11 > s21 if s1 > s2. More generally, based on expression (19), it follows that s21

2 > s11
2

holds if

s21
2 >

(
s21

2s1

(s2 − s21
2)α + s21

2

)
that is, if

(1− α)s21
2 > s1 − s2α (20)

To see if and when the inequality in expression (20) can be satisfied, we discuss four
possibilities:

(i) α > 1 and s1 − s2α > 0, then expression (20) is never satisfied;
(ii) α > 1 and s1 − s2α < 0, then expression (20) can be satisfied;
(iii) α < 1 and s1 − s2α > 0, then expression (20) can be satisfied;
(iv) α < 1 and s1 − s2α < 0, then expression (20) is always satisfied.

Points (i)–(iv) suggest how the relative size of s11 and s21 is related to both the users’
values and their budget of votes. For example, according to (i), s21

2 ≥ s11
2 takes place

when s2 is sufficiently smaller than s1 and item r = 2 is relatively more important for user
i = 1 than for user i = 2. Analogous considerations hold for the other three points.

2.5. The General Model of QV

After having gained some early insights into the optimal number of votes, we can
now go back to the general formulation of the problem. For a generic success probability
Pir(sir, s−ir), the optimal allocation of votes with QV can be obtained considering the initial
setting of the problem:

maxsir EUi (sir ) = ∑R
r=1 virPir (sir, s−ir)such that ∑R

r=1 sir
2 = si (21)

Assuming that ∂Pir
∂sir

> 0 and ∂2Pir
∂sir

2 < 0, we find that the optimal sir solves the following
first-order condition:

vir
∂Pir
∂sir

= 2λisir (22)

Squaring both sides and summing them up over the rounds, we obtain

2λi =

√√√√∑R
k=1 (vik

∂Pik
∂sik

)
2

si
(23)
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and therefore

sir = (vir
∂Pir
∂sir

)

√√√√ si

∑R
k=1 (vik

∂Pik
∂sik

)
2 (24)

which, without introducing specific assumptions on the shape of Pir (sir, s−ir), could not be
explicitly determined. Yet, it can be immediately observed that sir > sir′ , with r 6= r′ if and

only if (vir
∂Pir
∂sir

) > (vir′
∂Pir′
∂sir′

), that is, if, for user i, the marginal expected value of issue r is

larger than the marginal expected value of issue r′.
If, based on the above considerations, a comparison across votes of the same committee

member is immediate and relatively easy to interpret, it is more difficult to compare the
number of votes across different users for the same issue.

In some special cases, however, such comparison can be performed with no major
problems. Suppose, for example, that the only quantity differing between members i and j
is their total stake, that is, si 6= sj. In this case, it follows immediately that sir > sjr if and
only if si > sj. However, even if the members’ values would differ then, for example, si > sj

does not necessarily imply sir > sjr for all r. Indeed, suppose si > sj, ∑R
k=1 (vik

∂Pik
∂sik

)
2
=

∑R
k=1 (vjk

∂Pjk
∂sjk

)
2

but that (vjr
∂Pjr
∂sjr

) is sufficiently larger than (vir
∂Pir
∂sir

); then, it may be sir < sjr.
To summarize, when the committee members vote independently of each other, dif-

ferences in the number of votes allocated to the various rounds depend on three main
quantities: the member’s value of the item under voting, the perceived probability of
obtaining that value and the total stake of a committee member.

2.5.1. A Linear Success Probability

An additional interesting form of the subjectively perceived success probability is
Pir (sir, s−ir) = psir, with 0 ≤ sir ≤ si and 0 ≤ p ≤ 1

sir
being a non-negative constant.

We also assume that the value of p is the same for all users. Unlike what it may appear at
first, this is not a strong assumption since, as we shall see, the level of p plays no role in the
optimal sir. Notice that, being a subjectively perceived probability, we do not require that

∑C
i=1 Pir (sir, s−ir) = ∑C

i=1 psir = 1

In this case,
∂Pjr
∂sjr

= p, which is constant, which is what [1,2] basically considered.
Notice that, with such specification, the success probability does not depend upon the stake
of the other committee members, that is, it embodies no strategic interaction.

Under this assumption, expression (22) would become

vir p = 2λisir (25)

Following the same procedure as above, we are able to find

sir = vir

√
si

Vsq
i

(26)

where Vsq
i = ∑R

r=1 vir
2. Interestingly, expression (26) is independent of the constant p,

which means that the result is the same for the whole class of linear success probabilities
Pir (sir, s−ir) = psir, with any p in its relevant domain. In this sense, the solution can be
considered robust with respect to the specification of p.

Finally, it is interesting to observe that in expression (26), a truth revealing stake, namely
sir = vir, would take place if si = Vsq

i , that is, when, for agent i, the budget of votes coincides
with the sum of squares of their values over the R issues under voting. Analogously, in
expression (14) with a = 1, we would have sir = vir if s = V, namely, if the budget of votes
coincides with the sum of their values.
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3. Sybil Attacks

As we anticipated, one of the main concerns of blockchain platforms is represented
by the possibility of Sybil Attacks (SA). These take place when a user splits her own
currency holdings across more than one account to increase the chance of obtaining the
most desirable outcome. In this Section, we discuss if and to what extent QV could be prone
to SA.

To do so, we consider again the previous model, where C is the number of committee
members in a voting session and s1, s2, . . . , sC their stakes. The simplest framework to gain
some insights on the implications of SA is to assume that s1 and s2 refer to the same user
i = 1 = 2, while the others, as before, act independently. To further simplify, henceforth we
shall refer to user i = 1 to also mean i = 2. Assuming Pir (sir, s−ir) = psir it follows that for
i = 1, expression (21) becomes

maxs1r,s2r, EU1(s1r , s2r ) = ∑R
r=1 v1r p(s1r + s2r)such that ∑R

r=1 s1r
2 + ∑R

r=1 s2r
2 = s1 (27)

The first-order condition with respect to s1r is given as in expression (25) by

v1r p = 2λ1s1r (28)

and, likewise, the first-order condition with respect to s2r is given by

v1r p = 2λ1s2r (29)

which implies that s1r = s2r. For i > 2, the problem is as in expression (21), given by

maxsir, EU1 (sir ) = ∑R
r=1 vir psirsuch that ∑R

r=1 sir
2 = si

and the related first-order condition is also defined as in expression (25) by

vir p = 2λisir (30)

Therefore, the main difference between the pair of conditions (28) and (29) with (30)
rests in the QV voting constraint in expression (30) versus the QV constraint in expression
(27). Moreover, it should also be noticed that in this case, the number of different individuals
is now equal to C− 1, although the number of committee members is still equal to C. The
Proposition below contains the main result of this section.

Proposition 3. Assume Pir(sir, s−ir) = psir. Then, if user i = 1 and user i = 2 are the same
individual, while the others are all different individuals, then the pure strategy Nash Equilibrium
for each committee member i = 1, 2, . . . , C, in each round r = 1, 2, . . . , R, is given by

sir = vir

√
si

2Vsq
i

f or i = 1, 2 (31)

sir = vir

√
si

Vsq
i

f or i > 2 (32)

where Vsq
i = ∑R

r=1 vir
2 is user i′s total value in the voting session.

Proof. Squaring both sides of expression (28) and (29) and summing up their left-hand
sides and right-hand sides, we obtain

∑R
r=1 (v1r p)2 + ∑R

r=1 (v2r p)2 = 2 ∑R
r=1 (v1r p)2 = 2p2Vsq

1 = (2λ1)
2[∑R

r=1 (s1r)
2 + ∑R

r=1 (s2r)
2] = (2λ1)

2s1 (33)

from which expression (31) is obtained. By a similar reasoning, expression (32) too follows
immediately. �
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According to the above result, the success probability of user i = 1 will now be

Pir (sir, s−ir) =p(v1r

√
2s1

Vsq
1
) (34)

which is larger than the success probability

Pir(sir, s−ir) =p(v1r

√
s1

Vsq
1
)

which is obtained when i = 1 would not split their money holdings in two wallets,
suggesting that with QV a Sybil Attack may be profitable. Though within the limits of the
model assumptions, the above conclusion may provide some interesting early indications
on the possibility of Sybil attacks with QV.

4. Simultaneous versus Sequential Staking

Until now we assumed that users choose, at the beginning of a voting session, both the
total number of votes for the entire session as well as the number of votes for each round.
More explicitly, at the start of the session, user i announces si as well as sir, for each round
r = 1, . . . , R, to which she commits throughout the whole voting session. We also assumed
that users choose simultaneously, that is, they communicate to the blockchain platform
their choice independently of each other, without having observed how many votes the
other users had allocated to the various rounds.

In this section, we analyze some alternative scenarios with sequential staking to discuss
whether and how the disclosure of some information could affect the users’ strategy.

In what follows, we consider two cases:

(1) at some round, when (at least one) user chooses the number of votes to allocate for
that item, they are able to observe the number of votes chosen by the other users for
that round.

(2) at some round, users are able to observe the votes chosen by the other users in previous
rounds and possibly change their plans made at the beginning of the voting session.

(1) We start with the simplest case already mentioned in the Introduction. Suppose
there are two users i = 1, 2 and two voting rounds r = 1, 2. Moreover, assume v11 =
10, v12 = 5, v21 = 5, v21 = 10, s1 = 13 s2 = 9. That is, the two users have opposite
preferences and, furthermore, i = 1 has a larger budget of votes than i = 2. Finally, though
we consider the possibility of fractional votes, assume that the outcome of a voting round
is valid if at least one user casts one vote in it.

Take user i = 1. If when choosing s11 and s12 she does not know s21, s22, then, with
QV, a reasonable allocation of votes for her may be s11 = 3, s12 = 2, since 32 + 22 = 13,
which is slightly higher in the first round, since she cares more about its outcome. Likewise,
since user i = 2 cares more about the second item, she may decide to cast all of her votes on
it, and so s21 = 0, s22 = 3, since 02 + 32 = 9. As a result, user i = 1 will have the majority
in the first round, while user i = 2 in the second round. Therefore, even though i = 2
has a lower overall stake as compared to i = 1, she could still guarantee for herself the
outcome of the second voting round, i.e., the most desirable for her. So, overall, in the two
rounds, both users would secure a value between 10 and 15 units. Indeed, in the first round,
i = 1, having the majority of votes, would certainly obtain a value of 10 and possibly an
additional value of 5 in the second round, if their preferences are aligned with those of user
i = 2. An analogous reasoning holds for user i = 2. In any case, the example shows that
the weaker user i = 2 could be certain to obtain a value of at least 10. That is, with QV, she
could still obtain a sufficiently high value by focusing her votes on the second round.

However, suppose that now i = 1 knows that i = 2 has chosen s21 = 0; then i = 1
could choose, for example s11 = 1 and s12 =

√
13− 12 ∼ 3.46, which is larger than
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s22 =
√

9 = 3, so that i = 1 would win both voting rounds and would guarantee for herself
the maximum possible value of 15.

To summarize, even with QV, the sequential staking of the kind discussed in this point
can meaningfully affect the outcome of the voting rounds, typically favoring the user with
an informational advantage.

(2) In this second case, we consider the following situation. As above, we still assume
that users announce at the beginning of a voting session the total number of votes they
intend to have as a stake si. However, we now suppose that sir is announced simultaneously
before each round, rather than at the very beginning of the voting session for all rounds,
discussing what difference this would make as compared to the model in Section 1.

From a conceptual perspective, the main difference with simultaneous announcement
at the beginning of the session is given by the following elements. First, except for the first
round, after each voting round, the user can observe the outcome of the previous rounds,
that is, which of the two alternatives to be chosen prevailed, which, in principle, may
provide useful information on how to choose in the following rounds. Moreover, each user
could also observe how many votes have been allocated by the other committee members
to the previous rounds.

There may be multiple ways of taking account of the above observations to try an-
swering the question, depending upon the user’s goal function. To gain some insights, we
study the case of any power a = 1, 2, 3 . . .voting, i = 1, . . . , C and r = 1, . . . , R. Moreover, we
still assume

Pir (sir, s−ir) =
sir
Sr

symmetric agents, as in Proposition 1, and consider the following reasoning.
At the first voting round r = 1, user i solves expression (13) to obtain expression (14),

which, for convenience, we report below:

sr (a) = a

√
s

vr

V
(35)

Expression (14) would provide a solution for s1 (a) as well as an indication, though

not a commitment, for the values of sr (a) with r > 1. Hence, assume s1 (a) = a
√

s v1
V is

adopted in the first round but then, upon reaching the second round, the user evaluates

whether she’s still willing to choose s2 (a) = a
√

s v2
V , as computed by expression (14), or a

different number of votes. Suppose that such an alternative number of votes would now
be calculated by solving the following problem, which updates expression (13) after the
first round:

maxsir EUi(sir ) = ∑R
r=2 vir

sir
Sr

such that ∑R
r=2 sir

a = si− s1(a)a = si− si
v1

V
= s− s

v1

V
(36)

That is, if s−1r (a) stands for the solution to expression (36), then following the same
procedure as in expression (14), we obtain

s−1r(a) = a

√
s−1

vr

V−1
(37)

where s−1 = s− s v1
V and V−1 = V − v1. Therefore, still considering a symmetric equilib-

rium, it is

s−12(a) = s−1
v2

V−1
=
(

s− s
v1

V

) v2

V−1
=

sV−1

V
v2

V−1
= s

v2

V
(38)

which implies that s2(a) = s−12(a). That is if the user, after the first round, re-calculates
the number of votes to choose in the second round and finds, as in expression (36), the
same solution, we say that the user is dynamically consistent at the second round. That is, the
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number of votes that, in the first round, the user planned to choose for the second round,
she will indeed find it convenient to choose upon reaching the second round.

Following a similar reasoning, it can be immediately observed that, upon reaching
any voting round r > 1, the user will have no incentive to change the number of votes that
she planned to use at any round r− j, with j = 1, . . . , r− 2.

To summarize, under the assumptions of the model, the simultaneous versus sequen-
tial choice of the voting stake will make no difference for the user who, for this reason, we
define to be dynamically consistent.

5. A More Detailed Specification of the Users’ Preferences

In Section 1, we introduced the main fundamentals of the model, assuming that in each
round of a voting session users would obtain a positive value if the outcome of the round
was the most desirable one, or a zero value otherwise. Admittedly, this might be considered
too simplified a representation of the committee members’ preferences, since we did not
make it explicit which of the alternatives under voting was preferred by the individuals.
Indeed, specifying the alternative that the users prefer may improve our understanding of
their behavior when individuals vote under QV.

The following simple example illustrates the point. Consider a session with three
voting rounds r = 1, 2, 3 and three committee members i = 1, 2, 3. For each round r, there
is a binary choice to make, which we indicate with Ar/Br. Finally, by virA we define the
value of user i in round r with preference for alternative Ar and analogously for alternative
Br. As before, we assume that if virA > 0, then virB = 0, and if virB > 0, then virA = 0
for all users and all rounds. The table below contains a complete description of the users’
preferences over the items under voting.

Some comments are in order. Table 1 suggests that over the whole voting session, user
i = 2 is the one with the largest value, equal to 35. The total value per user provides an
indication on how important the voting session is for them. The “Ar/Br round value” row
provides the total value, for the two alternatives in each round. For example, in round
r = 1, alternative A1 has a value of 18, while B1, a value of 20, which also implies that round
1 exhibits the highest total value of 38. The total value per round provides an indication
of the overall importance for the voters of the round under consideration. Moreover, the
“Number of users” row summarizes how many users prefer each alternative.

Table 1. Users’ values with three voting rounds.

Rounds
Total Value

1 2 3

Users
1 v11A = 10 v12B = 15 v13A = 2 V1 = 27
2 v21B = 20 v22A = 10 v23B = 5 V2 = 35
3 v31A = 8 v32A = 8 v33A = 4 V3 = 20

Ar/Br round value A1 = 18, B1 = 20 A2 = 18 B2 = 15 A3 = 6, B3 = 5
Total round value 38 33 11 82
Number of users A1 = 2, B1 = 1 A2 = 2, B2 = 1 A3 = 2, B3 = 1

Additionally, the most important item under voting for user i = 1 is r = 2, while for
user i = 2, it is r = 1 and for i = 3, it is both r = 1 and r = 2. Finally, the maximum total
value that could be obtained in the entire session by the three voters is equal to 44 out of 82,
a little more than a half the overall value of the voting session.

Based on the description of Table 1, we observe that, from the point of view of the
whole “committee”, because of the wide dispersion of preferences and values, regardless
of the outcome of the voting rounds, there will be some meaningful “social waste”, in the
sense that a value of at least 82− 44 = 38, namely 46% of the total value, could not be
obtained by anyone in the session.
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Given the above preferences, the outcome of each single round of voting will depend
on each user’s stake si, which is likely to be positively correlated with the total value Vi.
Indeed, assume si = Vi; in what follows, we discuss what would occur with standard
majority voting versus QV.

(i) Standard majority voting. It follows that if they vote independently of each other
in the first round, alternative A1 prevails with 47 votes against 35. In the second round,
alternative A2 prevails with 55 votes against 2. In the third round, A3 prevails again with
47 votes against 35. Globally, the value achieved in the session is equal to 42, almost the
maximum possible one.

However, there are two points to note here. First, user i = 2, despite having the highest
global stake of 32 for the entire voting session, will be able to obtain only a total value of 10,
namely just 28% of their value in the whole voting session. Secondly, user i = 3 will obtain
100% of their value, even though their global stake is the lowest and equal to 20. Table 2
below summarizes all of this.

Table 2. Users’ values obtained with standard majority voting.

Rounds
% Value

1 2 3

Value
obtained by

the users

1 10 0 2 12/27 = 0.44

2 0 10 0 10/35 = 0.28

3 8 8 4 20/20 = 1

Majority voting is feared to penalize minorities because in case somebody has more
than 51% of the votes, they can always guarantee for themselves the best possible outcome,
which sometimes may not coincide with the best possible outcome of minority voters.
However, the above example shows that this may not always be the case, since the user
with the largest overall value is the one penalized.

Indeed, if the outcome contained in Table 2 is perceived as unfair/inefficient, we now
discuss whether the “any power voting” criterion can somehow improve the situation.

(ii) “Any power” voting. Suppose now that users have a budget of votes si, as in
Section 2.3, and expression (13), must satisfy constraint ∑R

r=1 sir
a = si where a = 1, 2, . . . .

In this case, alternative scenarios can take place, depending upon how users would allocate
their votes across the rounds.

Start considering a = 1 and, since si = Vi, suppose that somewhat naturally, sir = vir.
In this case, it is easy to check that now user i = 1 will obtain an even lower value than
with majority voting, equal to 2; user i = 2 would now increase her total value to 30, while
user i = 3 would reduce her total value to 12. If this outcome certainly improves user
i = 2′s situation, it further decreases user i = 1′s total value as well as user i = 3′s overall
value. Though the unit power a = 1 seems to be re-balancing the situation for users 2 and
3, making it more consistent with their overall values, it further deteriorates the situation
of i = 1. However, as hinted at, the distribution of votes may differ from sir = vir. For
example, if player i = 1 chooses s12 = 27 = s1 with the other two players still choosing
sir = vir, a different scenario would be obtained. Now i = 1 could guarantee for themselves
a value of 15, while i = 2 would obtain an overall value of 20 and i = 3 a total value of
equal to 4. With a = 2, that is QV, again several scenarios can take place depending upon
the stakes chosen over the three rounds by the users. For example, if users naturally select
sir =

√
vir, then it can be immediately noticed that nothing would change with respect

to standard majority in terms of voting outcomes. So, if majority voting is perceived as
somewhat biased in this case, QV, with the above allocation of votes, would not fix the issue.
However, with an alternative distribution of votes, outcomes may change, as it occurred
with the unit power a = 1.

Finally, as noticed earlier, if the power a becomes large, then a
√

vir would tend to 1,
and the voting outcome in each round is be determined by how many users will have a
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positive value for one alternative versus the other alternative. According to Table 1, the
value distribution based on the voting outcomes would again be as in Table 2, that is, as
with majority voting.

To summarize, in the example contained in Table 1, user i = 3, the one with a lower
number of votes, appears to be able to obtain very satisfactory outcomes, both with majority
voting as well as with QV. That is, QV does not seem to operate in a special way to “protect”
her. A possible intuition for this might be the following. In the three voting rounds, user
i = 3 is never alone to prefer one of the two alternatives and, moreover, the other user
with the same preference has a sufficiently large number of votes. When this occurs, QV
would perhaps not be needed for protecting the minorities, since they can obtain their most
desirable outcome being supported by other voters. However, when minorities cannot
enjoy additional support from other voters, then QV can help them grant for themselves at
least some desirable outcome.

To see this, consider the following simple variation of Table 1.
In Table 3 below, user i = 3 is still the weak one, as in Table 1 and, moreover, numer-

ically, she is always a minority in the three rounds, as well as in terms of the total value
per round. Furthermore, she cares particularly about the third item, which is not the most
desirable for the other two voters.

Table 3. Alternative users’ values with three voting rounds.

Rounds
Total Value

1 2 3

Users
1 v11B = 10 v12B = 13 v13B = 4 V1 = 27
2 v21B = 20 v22B = 10 v23B = 5 V2 = 35
3 v31A = 6 v32A = 6 v33A = 8 V3 = 20

Ar/Br round value A1 = 6 B1 = 30 A2 = 6 B2 = 23 A3 = 8, B3 = 9
Total round value 36 29 17 82
Number of users A1 = 1, B1 = 2 A2 = 1, B2 = 2 A3 = 1, B3 = 2

Assuming again si = Vi, in Table 3, user i = 3 is certainly a minority and, moreover, in
each voting round, she is the only one to prefer her own alternative. Majority voting will
certainly prevent her from obtaining any of the desirable results. With unit power a = 1
and sir = vir, again, user i = 3 will not be able to improve her situation. However, if users
i = 1 and i = 2 again choose sir = vir but, for example, s33 > 9, then i = 3 will be able to
guarantee for herself the most desirable outcome in the third round and a total value of 8.
Likewise, with QV and sir = 2

√
vir for i = 1, 2 by posing s33 = 2

√
20, then i = 3 would be

able to secure a total value of 8 in the third round.

6. Conclusions

In the paper, we investigated some issues related to quadratic voting as applied to a
sequence of rounds with binary alternatives within the context of a proof-of-stake-based
blockchain platform. In particular, considering as given the monetary stake chosen by
the voting committee members, which also represents the number of votes available for
an entire voting session, we analyzed how users can optimally choose their stakes/votes
in the rounds composing the session. In a game with complete information on the users’
values, we were able to fully characterize a symmetric pure strategy Nash equilibrium of
the game. Though interesting mostly as a benchmark, the model findings provide some
interesting insights on the more realistic case of asymmetric users. As for policy making of
the platform, the analysis suggests that, typically, the number of votes allocated by a user
to a round of a voting session is positively related to the importance assigned to that round
in relation to the importance of the entire voting session. Moreover, the number of votes
in a round increases with one’s stake. Based on our analysis, this finding appears to be
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true both in symmetric but also asymmetric cases, that is, where users may assign different
values to the outcomes of the voting rounds and when their stakes differ.

We also analyzed some extensions of the basic framework, considering alternatives
to QV, as well as discussing the possibility of Sybil attacks and the importance of timing
when users choose and communicate the allocations of votes to the platform at each round.

Finally, with reference to numerical examples, we argued that quadratic voting in
principle does not seem to guarantee that users with a low number of votes will be able
to obtain their most desirable outcome approved in a voting round. Indeed, we saw
how the structure of preferences and the size of the stakes of all users may also affect the
voting result.
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