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THE EXACT STRENGTH OF THE CLASS FORCING THEOREM

VICTORIA GITMAN, JOEL DAVID HAMKINS, PETER HOLY, PHILIPP SCHLICHT,
AND KAMERYN J. WILLIAMS

Abstract. The class forcing theorem, which asserts that every class forcing
notion P admits a forcing relation P, that is, a relation satisfying the forcing
relation recursion—it follows that statements true in the corresponding forcing
extensions are forced and forced statements are true—is equivalent over Gödel-
Bernays set theory GBC to the principle of elementary transfinite recursion
ETROrd for class recursions of length Ord. It is also equivalent to the existence
of truth predicates for the infinitary languages LOrd,ω(∈, A), allowing any class
parameter A; to the existence of truth predicates for the language LOrd,Ord(∈
, A); to the existence of Ord-iterated truth predicates for first-order set theory
Lω,ω(∈, A); to the assertion that every separative class partial order P has a
set-complete class Boolean completion; to a class-join separation principle; and
to the principle of determinacy for clopen class games of rank at most Ord+1.
Unlike set forcing, if every class forcing notion P has a forcing relation merely
for atomic formulas, then every such P has a uniform forcing relation applicable
simultaneously to all formulas. Our results situate the class forcing theorem in
the rich hierarchy of theories between GBC and Kelley-Morse set theory KM.

1. Introduction

We shall characterize the exact strength of the class forcing theorem, which
asserts that every class forcing notion P has a corresponding forcing relation P,
a relation satisfying the relevant forcing relation recursion. When there is such a
forcing relation, then statements true in any corresponding forcing extension are
forced and forced statements are true in those extensions.

Unlike set forcing, for which one may prove in ZFC that every set forcing no-
tion has corresponding forcing relations, with class forcing it is consistent with
Gödel-Bernays set theory GBC that there is a proper class forcing notion lacking
a corresponding forcing relation, even merely for the atomic formulas. For cer-
tain forcing notions (see [HKL+16, Kra17], also theorem 17), the existence of an
atomic forcing relation implies Con(ZFC) and much more, and so the consistency
strength of the class forcing theorem strictly exceeds GBC, if this theory is consis-
tent. Nevertheless, the class forcing theorem is provable in stronger theories, such
as Kelley-Morse set theory. What is the exact strength of the class forcing theorem?
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Our project here is to identify the strength of the class forcing theorem by
situating it in the rich hierarchy of theories between GBC and KM, displayed in
part in figure 1, with the class forcing theorem highlighted in blue. (The theory
KM + Class Choice that appears at the top of figure 1 is defined e.g. in [Wil19,
definition 2.11].) It turns out that the class forcing theorem is equivalent over GBC
to an attractive collection of several other natural set-theoretic assertions; it is a
robust axiomatic principle.

GBC ≡ GB ≡ ZFC ≡ ZF

GBC+ Con(GBC) ≡ ZFC+ Con(ZFC)

GBC+ Conα(GBC) ≡ ZFC+ Conα(ZFC)

GBC+ ETRω

GBC+ ETRα = GBC+ α-iterated truth predicates

GBC+ ETR<Ord = GBC + ∀α∃α-iterated truth predicates

GBC+ Class forcing theorem = GBC+ ETROrd

= GBC+ truth predicates for LOrd,ω(∈, A)
= GBC+ truth predicates for LOrd,Ord(∈, A)
= GBC+ Ord-iterated truth predicates
= GBC+ Boolean set-completions exist =

GBC+Determinacy for clopen class games of rank Ord+1

GBC+ ETROrd·ω

GBC+ ETR = GBC+ Determinacy for clopen class games

GBC+ Determinacy for open class games

GBC+Π1
1-comprehension

KM ≡ KM+Class Choice

Figure 1. A hierarchy of theories between GBC and KM by con-
sistency strength (≡ means equiconsistent)

The main theorem is naturally part of the emerging subject we call the reverse
mathematics of second-order set theory, a higher analogue of the perhaps more
familiar reverse mathematics of second-order arithmetic. In this new research area,
we are concerned with the hierarchy of second-order set theories between GBC and
KM and beyond, analyzing the strength of various assertions in second-order set
theory, such as the principle ETR of elementary transfinite recursion, the principle
of Π1

1-comprehension or the principle of determinacy for clopen class games. We
fit these set-theoretic principles into the hierarchy of theories over the base theory
GBC. The main theorem of this article does exactly this with the class forcing
theorem by finding its exact strength in relation to nearby theories in this hierarchy.

Specifically, extending the analysis of [HKL+16, HKS17, Kra17, GH16], we show
that the class forcing theorem is equivalent over GBC to the principle of elementary
transfinite recursion ETROrd for transfinite class recursions of length Ord; to the
existence of various kinds of truth predicates and iterated truth-predicates; to the
existence of Boolean completions for any separative class partial order; to a class-
join separation principle; and to the principle of determinacy for clopen class games
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of rank at most Ord+ 1. In addition, by separating the class forcing theorem from
the nearby theories of figure 1, placing it strictly between the theory with ETRα
simultaneously for all ordinals α and the theory ETROrd·ω, we locate it finely in
the hierarchy of second-order set theories.

Main Theorem. The following are equivalent over Gödel-Bernays set theory GBC.

(1) The atomic class forcing theorem: every class forcing notion admits forcing
relations for atomic formulas

p  σ = τ p  σ ∈ τ.

(2) The class forcing theorem scheme: for each first-order formula ϕ in the

forcing language, with finitely many class names Γ̇i, there is a forcing re-
lation applicable to this formula and its subformulas

p  ϕ(~τ , Γ̇0, . . . , Γ̇m).

(3) The uniform first-order class forcing theorem: every class forcing notion P

admits a uniform forcing relation

p  ϕ(~τ , Γ̇0, . . . , Γ̇m)

applicable to all assertions ϕ ∈ Lω,ω(∈, V P, Γ̇0, . . . , Γ̇m) in the first-order
forcing language with finitely many class names.

(4) The uniform infinitary class forcing theorem: every class forcing notion P

admits a uniform forcing relation

p  ϕ(~τ , Γ̇0, . . . , Γ̇m)

applicable to all assertions ϕ ∈ LOrd,Ord(∈, V P, Γ̇0, . . . , Γ̇m) in the infinitary
forcing language with finitely many class names.

(5) Names for truth predicates: every class forcing notion P has a class name Ṫ

and a forcing relation for which 1  Ṫ is a truth-predicate for the first-order
forcing language with finitely many class names Lω,ω(∈, V P, Γ̇0, . . . , Γ̇m).

(6) Boolean completions: Every class forcing notion P, that is, every separative
class partial order, admits a Boolean completion B, a set-complete class
Boolean algebra into which P densely embeds.

(7) The class-join separation principle plus ETROrd-foundation.
(8) For every class A, there is a truth predicate for LOrd,ω(∈, A).
(9) For every class A, there is a truth predicate for LOrd,Ord(∈, A).

(10) For every class A, there is an Ord-iterated truth predicate for Lω,ω(∈, A).
(11) The principle of determinacy for clopen class games of rank at most Ord+1.
(12) The principle ETROrd of elementary transfinite recursion for Ord-length

recursions of first-order properties, using any class parameter.
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We shall prove the theorem by establishing the complete cycle of implications
pictured above. For convenience, the implication diagram is clickable, with each
implication arrow linking to the corresponding theorem where the implication is
proved. In addition, all subsequent mentions of an implication, such as (8)→ (10),
link to the corresponding theorem statements. Precise details for the terms ap-
pearing in the theorem statements appear in the various sections below where the
corresponding implications are proved. The red implication arrows indicate more
substantial or critical implication arguments; blue arrows correspond to the essen-
tially immediate implications; and the dashed green arrow indicates implication
(12)→ (1), which although not needed to complete the cycle, is nevertheless used
in the proof of theorem 13, establishing the implication (12)→ (4).

We should like particularly to emphasize that statement (2) is a scheme over
the formulas ϕ that are finite in the meta-theory, stating as a scheme that for each
such formula, there is a forcing relation class that works with that formula and
its subformulas. Statements (3) and (4), in constrast, are not schemes, but assert
in each case that there is a single uniform relation that works with all formulas
simultaneously. In the set-forcing ZFC context, we are used to having the forcing
relations p  ϕ(~τ ) available only as a scheme, a separate relation for each formula ϕ,
and because of Tarski’s theorem on the non-definability of truth, it follows that one
cannot prove in ZFC that there is a single unified forcing relationP that works with
all formulas (although by theorem 12 one can do this in the quantifier-free infinitary
case). In the case of class forcing, however, our main theorem shows that if every
class forcing notion P admits forcing relations merely for atomic formulas, then in
fact they all have fully uniform forcing relations P, and not only for the first-order
forcing languages, but for the infinitary forcing languages, as in statement (4).

Let us remark specifically on the role of the global axiom of choice in this analysis.
The base theory for the subject is Gödel-Bernays set theory GBC, which includes
the global axiom of choice, the assertion that there is a class well-ordering of the
universe. But actually, none of the arguments in the proof of the main theorem
require the global axiom of choice, as opposed to the ordinary axiom of choice for
sets, with the exception of the implications to the clopen determinacy assertion of
statement (11). In particular, our arguments show that all the statements in the
main theorem except statement (11) are equivalent over the theory GB+AC, which
has the axiom of choice only for sets. Meanwhile, the clopen determinacy assertion
of statement (11) in the main theorem implies the global axiom of choice, by the
folklore result mentioned in [GH16, theorem 4], and so global choice is required if
one wants to include statement (11).

For definiteness, in this article we say P is a class forcing notion if P is a separative
class pre-order. Note that the axiom of global choice allows us to form the separative
quotient of any class pre-order.

2. ETROrd implies the class forcing theorem scheme

In this section, we shall prove the implications (12)→ (1) and (1)→ (2) in the
main theorem. Let’s begin by defining the notions carefully.

Definition 1. The principle of elementary transfinite recursion ETROrd for recur-
sions of length Ord, is the scheme asserting of any first order formula ϕ(x,X,A)
with a class parameter A, that there is a class S ⊆ Ord × V that is a solution of
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the following recursion
Sα = { x | ϕ(x, S ↾ α,A) },

where Sα = { x | 〈α, x〉 ∈ S } denotes the αth slice of S and S ↾ α = S ∩ (α× V ) is
the part of the solution prior to stage α.

Thus, the axiom asserts that we may undertake transfinite recursive definitions
of classes by recursions of length Ord. In general, in GBC one may not necessarily
undertake class recursions even merely of length ω, since first-order truth, of course,
is defined by the Tarskian recursion on formulas, and this recursion has length
merely ω; but in GBC, if consistent, one cannot prove the existence of a truth-
predicate for first-order truth and therefore this recursion may have no solution.
So even ETRω, which asserts that class recursions of length ω have solutions, is not
provable in GBC, if GBC is consistent, and consequently neither is ETROrd.

Meanwhile, ETROrd is a consequence of the full principle ETR of elementary
transfinite recursion, which allows recursion along any class well-founded relation,
including relations much taller than Ord, and this principle is strictly weaker than
GBC+Π1

1-comprehension [Sat14], which is itself strictly weaker than Kelley-Morse
set theory KM. Gitman and Hamkins [GH16] proved that ETR is equivalent over
GBC to the principle of determinacy for clopen class games.

The idea of [GH16, lemma 7] shows that the principle ETROrd is equivalently
formulated in terms of recursions along arbitrary well-founded class relations of
rank Ord.

Definition 2. A class forcing notion P admits forcing relations for atomic formulas,
if there are relations

p  σ ∈ τ, p  σ ⊆ τ, p  σ = τ

which obey the following recursive properties:

(a) p  σ ∈ τ if and only if there is a dense class of conditions q ≤ p for which
there is 〈ρ, r〉 ∈ τ with q ≤ r and q  σ = ρ.

(b) p  σ = τ if and only if p  σ ⊆ τ and p  τ ⊆ σ.
(c) p  σ ⊆ τ if and only if whenever 〈ρ, r〉 ∈ σ and q ≤ p, r then q  ρ ∈ τ .

Since the formulas are distinguished syntactically, we may unify the three forcing
relations into a single relation , applied to any atomic assertion. One may take
statement (c) as a definition of the relation p  σ ⊆ τ in terms of the forcing
relation for ∈, and in this case statements (a) and (b) are expressible as a recursion
solely in terms of p  σ ∈ τ and p  σ = τ . So the use of ⊆ here is merely a
convenience.

Theorem 3. The principle ETROrd of elementary transfinite recursion for class
recursions of length Ord implies that every class forcing notion P admits a forcing
relation for atomic formulas.

This will establish implication (12)→ (1) in the main theorem.

Proof. The main point is that having a forcing relation for atomic formulas, by
definition, is to have a solution of the recursion that is expressed by definition 2.
Since this is an ∈-recursion on the P-names, we may organize it as a recursion
of length Ord, using the natural Ord-ranking of pairs of names 〈σ, τ〉, which are
ordered first by the maximum of their ranks and then lexically by rank. We may
now place the forcing relation p  σ ∈ τ and p  σ = τ on the αth slice, when the
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pair 〈σ, τ〉 has rank α with respect to that relation; the forcing relation for such
names is defined in terms of the forcing relation on preceding pairs of names. So
ETROrd is sufficient to find a solution of the recursion. �

Now, let us explain how to extend the forcing relation beyond the atomic for-
mulas. A class P-name Γ̇ is simply a class of pairs 〈ρ, p〉, where ρ is a P-name and
p ∈ P; so, it is a class that is a P-name. The canonical name for the generic filter
is the class Ġ = { 〈p̌, p〉 | p ∈ P }. We denote by Lω,ω(∈, V P, Γ̇0, . . . , Γ̇m) the usual
first-order forcing language, allowing the names σ ∈ V P as constants and allowing
finitely many class name parameters Γ̇i. This notation will mesh with the more
general notation we introduce in definition 10 for the various infinitary languages.

Definition 4. A class forcing notion P admits a forcing relation for a collection of
first-order formulas, closed under subformulas, if there is a relation  obeying the
following recursive properties, for the formulas on which it is defined:

(a) The forcing relation  is defined on atomic formulas σ = τ and σ ∈ τ in
accordance with definition 2;

(b) For a class name Γ̇, we have p  σ ∈ Γ̇ if and only if there is a dense class

of q ≤ p for which there is 〈τ, r〉 ∈ Γ̇ with q ≤ r and q  σ = τ .
(c) p  ϕ ∧ ψ if and only if p  ϕ and p  ψ;
(d) p  ¬ϕ if and only if there is no q ≤ p with q  ϕ; and
(e) p  ∀xϕ(x) if and only if p  ϕ(τ) for every P-name τ .

What we mean is that in each case, if the left-hand side of the equivalence
is defined, then the relations appearing on the right hand side are defined and
furthermore, are defined in such a way that fulfills the equivalence. We say that P
admits a forcing relation for a formula ϕ, if it admits a forcing relation defined on
a collection of formulas including all instances of ϕ(~τ ) for any choice of P-names ~τ .

We should like particularly to emphasize that this definition, as well as the
definition of what it means to have a forcing relation for atomic formulas, makes
no reference whatsoever to generic filters or to genericity of any kind or to the
truth of any formula in any forcing extension. Rather, for a forcing relation to
exist means, by definition, precisely that there is a class relation P exhibiting the
recursive properties expressed in definitions 2 and 4 (and later, for the infinitary
language case, definition 11). These recursive properties are entirely first-order
expressible properties of the class relation P, and the question of whether P has
those properties can be answered entirely in the ground model. The question for a
given forcing notion P is whether or not there is indeed a class relation P exhibiting
those recursive properties.

Theorem 5. If a forcing notion P admits a forcing relation for atomic formulas,
then it admits a forcing relation for any particular first-order formula ϕ in the
forcing language Lω,ω(∈, V P, Γ̇0, . . . , Γ̇m).

This establishes (1) → (2) in the main theorem, which although not necessary
for the main cycle of implications, will be used in subsequent arguments.

Proof. This is also proved in [HKL+16]. This is a theorem scheme, proved by meta-
theoretic induction on the formula ϕ. Given the forcing relation defined on atomic
formulas σ = τ and σ ∈ τ , one may proceed simply to define the forcing relation
for any given first-order formula in the meta-theory. For any particular formula ϕ,
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we may form the finite set of subformulas of ϕ, plus the atomic formulas, and then
simply apply the recursive definitions expressed by the requirements of definition 4.
For an actual formula, this recursion takes place in the meta-theory, and so we get
the desired forcing relation in finitely many recursive steps. �

Because the induction in the proof of theorem 5 takes place in the meta-theory,
the result applies only to formulas ϕ that are finite in the meta-theory. We cannot
use this theorem directly, for example, to get a forcing relation for nonstandard
formulas in a nonstandard model of GBC. Nevertheless, the main theorem shows
that the principle ETROrd implies that indeed we can have a uniform forcing re-
lation applying to such formulas in such a model, as in statement (3) of the main
theorem.

Lemma 6. Suppose that P is a class forcing notion and  is a forcing relation
defined on the relevant formulas.

(1) If p  ϕ and q ≤ p, then q  ϕ.
(2) If it is dense below p to force ϕ, then p  ϕ.
(3) If ϕ→ ψ is a logical validity and p  ϕ, then p  ψ.

Proof. Statements (1) and (2) are each proved for atomic formulas by induction
on names, and then easily extended to all formulas by induction on formulas. For
example, for the negation case of statement (2), if it is dense below p to force ¬ϕ,
then for any q ≤ p there is r ≤ q with r  ¬ϕ, which means by (1) that q cannot
force ϕ, and so p  ¬ϕ, as desired.

Statement (3) is proved by induction on proofs with respect to a standard deduc-
tion system. It is easy to verify, for example, that forcing respects modus ponens :

if p  ϕ and p  ϕ→ ψ, then p  ψ.

Forcing respects substitution, since by definition, p  ∀xϕ(x) just in case p  ϕ(τ)
for any particular name τ . Also, if p  ϕ and x is not a variable in ϕ, then p  ∀xϕ.

One can prove by induction on names that every condition forces every instance
of the atomic equality axioms:

σ = σ

σ = τ → τ = σ

σ = τ → (τ = ρ→ σ = ρ)

σ = τ → (ρ ∈ σ ↔ ρ ∈ τ).

We leave to the reader the further elementary exercises to prove for every condition
p that

p  ∀x(ϕ→ ψ)→ (∀xϕ→ ∀xψ)

p  ϕ→ (ψ → ϕ)

p  (¬ψ → ¬ϕ)→ (ϕ→ ψ)

p  [ϕ→ (ψ → θ)]→ [(ϕ→ ψ)→ (ϕ→ θ)]

In each case, one can prove the statement by considering the definition of what it
means to be a forcing relation and by using statements (1) and (2) in a density
argument. Since we have therefore observed that forcing respects the axioms and
rules of a complete deduction system, statement (3) now follows by induction on
proofs. �
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The lemma also holds by essentially similar arguments for the infinitary lan-
guages we introduce in section 5. For example, the forcing relation respects the
infinitary conjunction rule and the infinitary quantifier rules.

3. Constructing actual forcing extensions

Before proceeding to the rest of the main theorem, we should like to clarify
some issues concerning the forcing relation and class forcing and the construction
of forcing extensions. It has been traditional to highlight what has been called the
forcing theorem, which explains how the forcing relation interacts with truth in a
forcing extension. What we would like to do here is to explain how that part of
the forcing theorem is a consequence of the existence of the forcing relation, which
we defined here as a solution of the forcing relation recursion. The central question
with regard to a class forcing notion P, therefore, becomes whether indeed one has
such a forcing relation; for if one does, then it will interact with truth in the forcing
extension in the desired manner.

In order to show this, let us first review how one constructs a forcing extension
for a forcing notion P. We shall explain how to construct forcing extensions of
an arbitrary model M of GBC, without assuming that that model is countable or
transitive.

Given a class forcing notion P inside a model M of GBC, let’s say that a filter
G ⊆ P is M -generic, if G meets every dense subclass D ⊆ P that is in M . Suppose
that we have a forcing relation  available in M for P. For any such G, we may
define the following relations on the P-names available in M :

σ =G τ ⇐⇒ ∃p ∈ G p  σ = τ

σ ∈G τ ⇐⇒ ∃p ∈ G p  σ ∈ τ.

Equivalently, using the Boolean values described in theorem 14, we have defined

σ =G τ ⇐⇒ [[σ = τ ]] ∈ G

σ ∈G τ ⇐⇒ [[σ ∈ τ ]] ∈ G.

It follows easily using lemma 6 that =G is an equivalence relation and a congruence
with respect to ∈G. Let M [G] denote the collection of equivalence classes [σ]=G ,
equipped with the relation induced by ∈G. This amounts to the same quotient
procedure one undertakes with the Boolean-valued model approach to forcing and
the Boolean ultrapower (discussed in [HS]).

It is well-known that 〈M [G],∈G〉 is not necessarily a model of ZFC, since with
class forcing one can, for example, collapse all cardinals to ω, which of course
contradicts ZFC; indeed, one can even collapseM itself to become countable, as will
happen with the forcing FA that we consider in section 8. Nevertheless, 〈M [G],∈G〉
is a structure of some kind and has its theory, whatever it may be, and so it still
makes sense to inquire about which statements in that theory are true in M [G] or
forced by a condition, and so on.

If we had equipped the forcing relation with a class name Γ̇, then we define its
extension in M [G] by

Γ([σ]) ⇐⇒ ∃p ∈ G p  σ ∈ Γ̇,

which is the same as saying that there is a dense class of conditions q ≤ p for which
there is 〈ρ, r〉 ∈ Γ̇ with q ≤ r and q  σ = ρ. For example, if we use the canonical

name of the generic filter Ġ, then we have G([σ]) just in case there is p ∈ G with
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p  σ ∈ Ġ. If G isM -generic, this is equivalent to saying that there is some p, r ∈ G
with p ≤ r and p  σ = ř.

Theorem 7. Suppose that M is a model of GBC with a class forcing notion P that
admits a forcing relation in M for a first-order formula ϕ, which is standard in the
meta-theory, in a forcing language with finitely many class names Γ̇i and G ⊆ P is
M -generic. Then

〈M [G],∈G,Γ0, . . . ,Γn〉 |= ϕ([τ ]) if and only if ∃p ∈ G p  ϕ(τ).

Proof. This is proved by induction in the meta-theory on the formula ϕ, which is
why we need ϕ to be standard in the meta-theory. The theorem is true for atomic
formulas basically by definition of the relations =G and ∈G and the definitions of
the extensions Γi in M [G] for any of the class names Γ̇i. If the theorem statement
is true for ϕ, then it is also true for ¬ϕ, since the class of conditions p with p  ϕ
or p  ¬ϕ is easily seen to be dense, and so there is such a condition in G. If the
theorem statement is true for ϕ and ψ, then it is also true for the conjunction ϕ∧ψ,
because the class of conditions p that either force both ϕ and ψ or else force one
of the negations ¬ϕ or ¬ψ is dense, and so there is such a p ∈ G, which then gives
the theorem for the conjunction. If the theorem is true for ϕ, then it is true for
∀xϕ(x), since the class of conditions p that either force ¬ϕ(τ) for some τ or force
ϕ(τ) for all such names τ , is dense, and so there is such a condition p ∈ G, which
then gives the theorem for ∀xϕ(x), as desired. �

The argument can just as easily handle assertions ϕ in the infinitary languages
LOrd,Ord(∈, A), introduced in definitions 10 and 11, provided that the formulas are
actually well-founded in the meta-theory.

We should like to emphasize that although theorem 7 works with nonstandard
models M of GBC, we do still have a standardness assumption for the formula ϕ,
since one proves the theorem by induction on formulas in the meta-theory. We
shall later explain how one can move beyond that to a setting accommodating
nonstandard formulas ϕ by using theorem 9 to construct suitable truth predicates
in the extension.

4. Forcing relation as name for a truth predicate

We shall now prove the equivalence (3)↔ (5) in the main theorem. Let us begin
by making precise what it means to have a truth predicate for first-order truth.

Definition 8. A truth predicate for first-order truth (also known as a satisfaction
class), with a class parameter A, is a class T consisting of pairs 〈ϕ,~a〉, where ϕ
is a formula in the first-order language of set theory augmented with a predicate
symbol Â for the class A and ~a is a valuation mapping the free variables of ϕ to
corresponding set parameters, such that the following recursion is satisfied:

(a) T judges the truth of {=,∈, Â}-atomic statements correctly:

T(x = y, 〈a, b〉) if and only if a = b

T(x ∈ y, 〈a, b〉) if and only if a ∈ b

T(x ∈ Â, a) if and only if a ∈ A
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(b) T performs Boolean logic correctly:

T(ϕ ∧ ψ,~a) if and only if T(ϕ,~a) and T(ψ,~a)

T(¬ϕ,~a) if and only if ¬T(ϕ,~a)

(c) T performs quantifier logic correctly:

T(∀xϕ,~a) if and only if ∀bT(ϕ, b a ~a)

When a truth predicate exists in a model of GBC, then it is unique, since there
cannot be a least formula where the disagreement occurs. Nevertheless, classical
results of Krajewski [Kra74] show that there are (necessarily nonstandard) models
of ZFC that admit different incompatible truth predicates as ZFC-amenable classes
(see discussion and further results in [HY]). Similar reasoning produces models of
ZFC with different incompatible forcing relations for a given forcing notion, even
for set forcing, each of them ZFC-amenable but not jointly ZFC-amenable.

Let us introduce the notation op(σ, τ) for the canonical name for the ordered
pair of σ and τ ; technically, if we use the Kuratowski definition of the ordered pair,
then op(σ, τ) = {〈{〈σ,1〉},1〉 , 〈{〈σ,1〉 , 〈τ,1〉},1〉}.

Theorem 9. For any class forcing notion P, and any finitely many class name
parameters Γ̇0, . . . , Γ̇m, the following are equivalent:

(i) P admits a uniform forcing relation for the first-order forcing language

Lω,ω(∈, Γ̇0, . . . , Γ̇m).

(ii) There is a class name Ṫ and a forcing relation defined on the following
statement, for which

1  Ṫ is a truth predicate for Lω,ω(∈, Γ̇0, . . . , Γ̇m).

The main lesson of this argument should be that a uniform forcing relation
essentially is the name of a truth predicate.

Proof. (i) → (ii) Suppose that we have a uniform forcing relation  for P in the

first-order forcing language Lω,ω(∈, Γ̇0, . . . , Γ̇m). Let

Ṫ = { 〈op(ϕ̌, ~τ ), p〉 | p  ϕ(~τ ) },

which is a class name for the pairs 〈ϕ,~a〉 such that ϕ(~a) will be true in the extension.
Since we have the atomic forcing relation, it follows by theorem 5 that we may
extend  to cover any particular first-order statement using any other fixed class
parameter. In particular, we can talk about whether specific assertions about Ṫ
are forced, even if Ṫ is not one of the Γ̇i (that is, theorem 5 allows us to apply the

forcing relation to specific individual assertions about Ṫ). Using this, we claim that

1  Ṫ is a first-order truth predicate.

This is a first-order-expressible property of the predicate Ṫ.
The main point is that the recursive requirements on the forcing relation are ex-

actly what one needs to prove that Ṫ is (forced to be) a truth predicate. The atomic
case is clear, because a condition p forces (the canonical name of) 〈x ∈ y, 〈σ, τ〉〉 to
be in Ṫ if and only if p  σ ∈ τ , and similarly with = and with any class name
parameter Γ̇. Since p  ¬ϕ just in case no stronger condition q ≤ p forces ϕ,
it follows that the class of conditions q either forcing ϕ or forcing ¬ϕ, but never
both, is dense, and so 1 forces that Ṫ exhibits the negation requirement for a truth
predicate. Similarly, since any condition p forces

∧

i ϕi just in case it forces each
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ϕi separately, it follows that 1 forces that Ṫ obeys the conjunction rule. And since
p  ∀~xϕ(~x) just in case p  ϕ(~τ ) for all particular ~τ , it follows that 1 forces that

Ṫ obeys the quantifier requirement.
(ii → i) Conversely, suppose that P admits a class P-name Ṫ and a forcing

relation  for which

1  Ṫ is an Lω,ω(∈, Γ̇0, . . . , Γ̇m)-truth predicate.

We take it as part of this assertion, following definition 4, that the forcing relation
 is defined on all atomic formulas. For assertions ϕ in the forcing language, let us
define a new relation � as follows:

p � ϕ(~τ ) ←→ p  op(ϕ̌, ~τ) ∈ Ṫ.

That is, we say that an assertion ϕ(τ) is forced via � by a condition p, if p forces

that it is true according to the truth predicate Ṫ. On the right hand side of this
definition, we use the extension of the atomic forcing relation  as in theorem 5 to
any particular first-order expression in the forcing language.

First, let’s notice that the two forcing relations agree on atomic formulas. Specif-
ically, because of what it means to be a truth predicate, this relation gets the
right answer for atomic formulas, since we have that p � σ = τ if and only if
p  op

(

(x = y)̌, op(σ, τ)
)

∈ Ṫ, which holds if and only if p  σ = τ ; and similarly,

p � σ ∈ τ if and only if p  op
(

(x ∈ y)̌, op(σ, τ)
)

∈ Ṫ, which holds if and only if
p  σ ∈ τ . So � and  agree on atomic assertions (and therefore we didn’t really
need a new forcing symbol).

We have to verify that this relation that we have just defined satisfies the required
recursive properties to be a forcing relation. We have already observed that it
agrees with the forcing relation for atomic assertions. Since 1 forces that Ṫ is a
truth predicate, it follows that for any particular assertion ϕ(~τ ), there are densely

many conditions q either forcing that ϕ(~τ ) is true according to Ṫ or that ¬ϕ(~τ ) is
true according to Ṫ, but never both. From this, it follows that p � ¬ϕ(~τ ) just in
case no stronger condition forces ϕ(~τ ). Similarly, the truth-predicate requirements
on conjunctions lead to the fact that p � ϕ ∧ ψ if and only if p � ϕ and p � ψ.
And p � ∀xϕ(x) just in case p � ϕ(τ) for all P-names τ . So we’ve got a uniform
forcing relation, as desired. �

Theorem 9 establishes the equivalence (3)↔ (5) in the main theorem on a case-
by-case basis for any class forcing notion P. A similar argument shows that to
have a forcing relation  defined on a fragment of the forcing language, such as the
collection of subformulas of a given formula or the formulas of a certain complexity,
then 1 forces that the corresponding predicate Ṫ is a truth predicate on the same
language fragment. In the case of the infinitary languages introduced in section 5,
an analogue of theorem 9 provides a name for a truth predicate for the language
consisting of all ground-model assertions in that infinitary language.

5. The infinitary languages

Let us now explain how to extend the forcing relation concept to the case of var-
ious infinitary languages. These languages are unified as instances of the following
general definition.

Definition 10. Assume κ, λ ≤ Ord are infinite cardinals or Ord itself.
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(a) The language Lκ,λ(∈, Â) has a signature consisting of the binary relation

∈, a unary predicate symbol Â and sufficiently many (e.g. λ<κ many)
variable symbols xi. The formulas of the language are obtained from the

atomic formulas x = y, x ∈ y and x ∈ Â by closing under negation ¬ϕ,
under conjunctions

∧

j∈J ϕj of size |J | < κ, provided that there are fewer

than max(ω, λ) many free variables collectively in the ϕj , and under quan-
tification ∀~xϕ(~x) by quantifier blocks ~x = 〈xi | i ∈ I〉 of size |I| < λ.

(b) The forcing languageLκ,λ(∈, V P, Γ̇0, . . . , Γ̇m), for any class forcing notion P,
augments the previous language with all the various P-names as constant
symbols and predicate symbols Γ̇i for finitely many class names, closing
under conjunctions of size less than κ and quantifier blocks of size less than
λ.

This general definition has natural special cases, with which we shall be con-
cerned:

• The usual first-order language of set theory Lω,ω(∈);

• the usual first-order forcing language Lω,ω(∈, V P, Ġ);

• the quantifier-free infinitary forcing language LOrd,0(∈, V
P, Ġ);

• the partial infinitary language LOrd,ω(∈, Â);

• the full infinitary language LOrd,Ord(∈, Â).

• the full infinitary forcing language LOrd,Ord(∈, V P, Γ̇0, . . . , Γ̇m).

Every formula in each of these languages is determined by its well-founded parse
tree, which specifies at each node how the formula was constructed from its various
subformulas, and one may undertake inductive proofs on formulas by means of
these parse trees. Indeed, let us simply identify every formula ϕ with its parse tree.

Extending definitions 2 and 4, we now define what it means to have uniform
forcing relations for these languages.

Definition 11. If P is a class forcing notion and L(∈, V P, Γ̇0, . . . , Γ̇m) is one of the
forcing languages mentioned above, then we say that P admits a uniform forcing
relation for this language, if there is a relation  obeying the following recursive
properties:

(a) The forcing relation  is defined on all atomic formulas σ = τ , σ ∈ τ , and
σ ∈ Γ̇i and fulfills the requirements expressed by definitions 2 and 4 for
these atomic formulas;

(b) for conjunctions in the language, p 
∧

j∈J ϕj if and only if p  ϕj for each
j;

(c) p  ¬ϕ if and only if there is no q ≤ p with q  ϕ;
(d) if the language allows quantification, then p  ∀xϕ(x) if and only if p 

ϕ(τ) for every P-name τ ; and
(e) if the language allows infinitary blocks of quantifiers, then p  ∀~xϕ(~x),

where ~x = 〈xi | i ∈ I〉, if and only if p  ϕ(~τ ) for all sequences of P-names
~τ = 〈τi | i ∈ I〉.

If we regard disjunction
∨

j ϕj as an abbreviation for ¬
∧

j ¬ϕj , then the defini-

tion requires that p 
∨

j ϕj if and only if there are densely many q ≤ p for each of
which there is some j such that q  ϕj , allowing different j for different q. Similarly,
if we regard ∃xϕ(x) as an abbreviation for ¬∀x¬ϕ(x), then the definition requires
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that p  ∃xϕ(x) if and only if there are densely many q ≤ p for each of which there
is some τ such that q  ϕ(τ).

It turns out that every class forcing relation for atomic formulas can be extended
to a uniform forcing relation on the quantifier-free infinitary forcing language. In-
deed, the proof of theorem 12 shows that the expressive power of the forcing lan-
guage LOrd,0(∈, V P, Ġ) does not actually exceed the expressive power of the atomic

equality assertions ȧ = ḃ, and this is why having a forcing relation for merely the
atomic assertions suffices to provide a forcing relation for LOrd,0(∈, V P, Ġ). This
theorem will be used in section 6

Theorem 12. If a class forcing notion P admits a forcing relation for atomic
formulas, then it admits a uniform forcing relation in the quantifier-free infinitary
forcing language LOrd,0(∈, V P, Ġ).

Proof. This argument adapts the main ideas of [HKL+16, lemma 5.2, theorem 5.5],
generalizing from the context there of a countable transitive model of set theory M
to our development here of class forcing as an internal GBC matter. The difference
is that in the countable-transitive-model case, one is able to define a forcing relation
externally by reference to what is true in the various extensions M [G], and then
use that relation in inductive arguments; but here, we must define a suitable class
relation internally to GBC and then prove that it fulfills the forcing-relation recur-
sion, even in uncountable or nonstandard models and with nonstandard formulas,
whose truth conditions are not necessarily sensible in the meta-theory.

To begin, we assume that P is a class forcing notion for which we have a forcing
relation  for the atomic formulas. We aim to define a forcing relation p  ϕ for the
sentences ϕ in the quantifier-free infinitary forcing language LOrd,0(∈, V P, Ġ). In
order to do so, we shall recursively assign to each sentence ϕ in the quantifier-free
infinitary forcing language LOrd,0(∈, V P, Ġ) an atomic formula of the form ȧϕ = ḃϕ
and then define the desired forcing relation  as follows:

p  ϕ ←→ p  ȧϕ = ḃϕ . (∗)

Basically, we aim to find suitable atomic equality assertions ȧϕ = ḃϕ that track the
truth and forcing conditions for any given quantifier-free infinitary assertion ϕ, and
we shall then prove that the relation  defined by (∗) is indeed a forcing relation.

The assignment ϕ 7→ ȧϕ = ḃϕ will be the end result of a certain transfi-
nite syntactic translation process, which gradually reduces a given sentence ϕ in
LOrd,0(∈, V P, Ġ) to sentences appearing earlier in the (well-founded) translation
hierarchy that is implicit in our construction, eventually reaching the atomic equal-
ities ȧϕ = ḃϕ as irreducible terminal nodes. At each step, the translation process
will respect the forcing-relation requirements of definition 11.

For the first step of the translation, we systematically eliminate use of the Ġ
predicate, except for the check names, by applying the following transformation
whenever σ is not itself a check name:

σ ∈ Ġ 7→
∨

p∈P∩Vrank(σ)+1

(

p̌ ∈ Ġ ∧ σ = p̌
)

Since it is not difficult to see by induction on names that 1  σ ∈ V̌rank(σ)+1 for
any name σ, the idea of this transformation is that the only way σ can name a
condition in Ġ is if it is naming one of the conditions p ∈ P ∩ Vrank(σ)+1. It follows
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that 1 forces the equivalence of the assertion σ ∈ Ġ with its translation at the right.
The result of the transformation is a formula for which the only occurrences of the
Ġ predicate are with check names of the form p̌ ∈ Ġ.

Next, we systematically apply the infinitary de Morgan laws to push all re-
maining negations to the bottom of the parse tree, so that they appear, if at all,
immediately in front of atomic formulas.

¬
∨

i∈I

ϕi 7→
∧

i∈I

¬ϕi

¬
∧

i∈I

ϕi 7→
∨

i∈I

¬ϕi

These transformations are logical validities and therefore, if the forcing relation is
defined on the formulas at the right, then it can be legitimately extended to the
formulas at the left.

After this, we eliminate most of the remaining negations by systematically ap-
plying the following reductions.

σ 6= τ 7→ σ 6⊆ τ ∨ τ 6⊆ σ

σ 6⊆ τ 7→
∨

〈ρ,r〉∈σ

(

ř ∈ Ġ ∧ ρ /∈ τ
)

σ /∈ τ 7→
∧

〈ρ,r〉∈τ

(

ř /∈ Ġ ∨ σ 6= ρ
)

What we intend here is that the reductions are applied iteratively, until they can no
longer be applied; an easy inductive argument on names shows that the reduction
process eventually terminates. It is easy to see in each case that 1 forces the
equivalence of each of these negated atomic formulas with its translation.

The translation process mentioned so far reduces any given sentence to a positive
infinitary Boolean combination (using iterated infinitary conjunction and disjunc-

tion) of formulas of the form σ = τ , σ ∈ τ , p̌ ∈ Ġ and p̌ /∈ Ġ. In order to eliminate
all but the atomic equalities, we now apply the following reductions

σ ∈ τ 7→ τ = τ ∪ { 〈σ,1〉 }

q̌ ∈ Ġ 7→ { 〈∅, q〉 } = { 〈∅,1〉 }

q̌ /∈ Ġ 7→ { 〈∅, q〉 } = ∅,

whose equivalences are in each case forced by 1.
Thus, we have transformed every sentence of the quantifier-free infinitary forcing

language LOrd,0(∈, V P, Ġ) to a positive Boolean combination of atomic equalities
σ = τ . We shall now systematically apply further reductions to eliminate the need
for conjunctions and disjunctions, and thereby reduce every infinitary sentence ϕ
to a single atomic equality ȧϕ = ḃϕ.

If ϕi has already been mapped to the atomic equality ȧi = ḃi, then we eliminate
the infinitary conjunction by the transformation

∧

i∈I

ϕi 7→ {
〈

op(̌i, ȧi),1
〉

| i ∈ I } = { 〈op(̌i, ḃi),1〉 | i ∈ I }.

It is easy to see that a condition p forces the atomic equality ȧ = ḃ at the right if
and only if p  ȧi = ḃi for all i ∈ I.
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Infinitary disjunctions are a little more troublesome, but we can eliminate them
by means of the following transformation.

∨

i∈I

ϕi 7→ ȧ = ḃ,

where

u̇ = { 〈op(̌i, ȧi),1〉 | i ∈ I } ∪ { 〈op(̌i, ḃi),1〉 | i ∈ I }

u̇j = { 〈op(̌i, ȧi),1〉 | i ∈ I } ∪ { 〈op(̌i, ḃi),1〉 | i ∈ I, i 6= j }

ȧ = { 〈uj,1〉 | j ∈ I },

ḃ = { 〈uj,1〉 | j ∈ I } ∪ { 〈u̇,1〉 }.

The idea is that the names u̇j each remove what might be a redundancy from u̇, and

so the names ȧ and ḃ will name the same set just in case there is such a redundancy.
Note that if p  ȧj = ḃj for some particular j, then p  u̇j = u̇, because of

the corresponding redundancy in u̇, and consequently p  ȧ = ḃ. Conversely, if
p  ȧ = ḃ, then p  u̇ ∈ ȧ, and so there are densely many q ≤ p for which there
is some j such that q  u̇ = u̇j and consequently q  ȧj = ḃj . In short, p  ȧ = ḃ

if and only if there are densely many q ≤ p with q  ȧi = ḃi for some particular
i. Thus, our transformation respects the desired forcing relation requirement for
disjunctions.

We now complete the proof of the theorem. We have described a translation
of any sentence ϕ in the quantifier-free infinitary forcing language LOrd,0(∈, V P, Ġ)

to a corresponding atomic equality ȧϕ = ḃϕ. This translation process was an
ordinary set-like recursion on formulas, which can be undertaken in GBC without
the need for any ETR-like assumption. We defined the forcing relation by (∗)

above, namely, p  ϕ if and only if p  ȧϕ = ḃϕ. This relation , we claim,
obeys the recursive requirements of definition 11. This is proved by induction on
the translation order. If  is a forcing relation on all formulas appearing before
ϕ in the translation process, then because as we have observed, each step of the
translation process respects the requirements of the forcing relation, it follows that
 is also a forcing relation on the sentence ϕ. So we have defined a uniform forcing
relation on LOrd,0(∈, V

P, Ġ), as desired. �

The statement in the conclusion of theorem 12, if stated for all class forcing
notions—that is, the assertion that every class forcing notion P admits a uniform
forcing relation for the quantifier-free infinitary forcing language—is equivalent to
all the other statements made in the main theorem, because the previous theorem
shows that it is implied on a case-by-case basis by statement (1) and conversely it
clearly also implies statement (1). So we could actually have added this statement
to the main theorem as yet another equivalent assertion.

The method of the previous theorem extends to the case of limited-complexity
infinitary assertions, which allow finitely many quantifiers at the top level of the
parse tree. That is, if one has a forcing relation for atomic formulas, then one can
have a forcing relation for any formula having finitely many quantifiers at the front,
alternating in any desired pattern, followed by a quantifier-free infinitary assertion.
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One first gets the forcing relation for the quantifier-free infinitary language as above,
and then applies induction in the meta-theory as in theorem 5.

Let us now prove the implication (12) → (4). Meanwhile, the implications
(4)→ (3)→ (2)→ (1) are essentially immediate.

Theorem 13. The principle ETROrd of elementary transfinite recursion for class
recursions of length Ord implies that every class forcing notion P admits a uniform
forcing relation for assertions in the forcing language LOrd,Ord(∈, V P, Γ̇0, . . . , Γ̇m),

allowing any fixed class names Γ̇i.

Proof. For any class forcing notion P, we get the forcing relation for atomic formulas
by theorem 3. And now the point is that the requirements stipulated for the rest
of the forcing relation by definition 11 amount exactly to a recursion on formulas.
That is, to have a forcing relation is to have the solution of a certain recursion,
the recursion expressed by definition 11. Since every formula has a well-founded
parse tree, which has some ordinal rank, we may organize this recursive definition
of the uniform forcing relation as a class recursion of length Ord, by recursing on
the rank of the parse tree of the formula. Thus, ETROrd provides a solution of this
recursion, which is the desired uniform infinitary forcing relation. �

We should like to call attention to the contrast between theorems 12 and 13. In
the case of theorem 12, we constructed a uniform forcing relation for quantifier-free
infinitary assertions in the forcing language LOrd,0(∈, V P, Γ̇0, . . . , Γ̇m) on a case-by-
case basis for the forcing P, without any need for ETROrd. This was an ordinary
set-like recursion on formulas. In theorem 13, however, the recursion is no longer
set-like, because for the quantifier case, the relation p  ∀xϕ(x) reduces to a proper
class of smaller instances p  ϕ(τ), even when ϕ is merely first-order. Thus, this is
no longer an ordinary recursion on sets, but a class recursion of length Ord, which
can be undertaken using ETROrd.

In the ZFC context, set theorists have grown accustomed to having separate
forcing relations for each formula ϕ, since it is not possible ever to have a uniform
forcing relation as a definable class, as this would lead quickly to a definable truth
predicate, contrary to Tarski’s theorem. Nevertheless, the main theorem shows that
if every class forcing notion P has its atomic forcing relations, then ETROrd holds,
and therefore every class forcing relation P has a fully uniform forcing relation,
even in the full infinitary forcing language LOrd,Ord(∈, V P, Γ̇0, . . . , Γ̇m). And there-
fore also we get the accompanying truth predicates that these relations provide.
This does not violate Tarski’s theorem, because while the forcing relations exist as
classes, they are not first-order definable classes.

For that reason, the ‘definability lemma’ terminology in the literature, used to
refer to the assertion that the class forcing relations exist, is somewhat misleading,
because this terminology should not be interpreted as asserting that the forcing
relations are actually (first-order) definable classes. Indeed, certain definable class
forcing notions, such as those used in section 8, cannot have first-order definable
forcing relations, even in the case of the forcing relations for atomic formulas only,
although those relations can exist as GBC classes. It is true, however, that when the
forcing relations exist, then they are the unique class relations satisfying the forcing
relation recursion, and therefore they are always first-order implicitly definable, in
the sense of [HL16], and therefore also second-order definable relations.
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6. Boolean completions

In this section we prove the equivalence (1) ↔ (6). This argument basically
follows [HKL+16, theorem 5.5], generalizing it from the context of countable tran-
sitive models of set theory to the general case of arbitrary models of GBC, using
our recursion conception of what it means in GBC to have a forcing relation. The
equivalence holds on a case-by-case basis for each class forcing notion P separately.

Theorem 14. For any class forcing notion P, the following are equivalent:

(i) P admits a forcing relation for atomic formulas.
(ii) P admits a uniform forcing relation for quantifier-free infinitary formulas

in the forcing language LOrd,0(∈, Ġ).
(iii) P admits a Boolean completion, a set-complete class Boolean algebra B into

which P densely embeds.

Proof. The implication (i→ ii) is provided by theorem 12.
For (ii → iii), assume that P has a uniform forcing relation for quantifier-free

infinitary formulas in the forcing language LOrd,0(∈, Ġ). For ϕ, ψ in this language,
define ϕ ≈ ψ just in case 1  ϕ ↔ ψ. This is a class equivalence relation, and
the quotient B = LOrd,0(∈, Ġ)/ ≈, inheriting the logical structure of the language
itself, is easily seen to be a set-complete Boolean algebra, as in the Lindenbaum
algebra, where ¬[ϕ]≈ = [¬ϕ]≈ and

∧

i∈I [ϕi]≈ = [
∧

i∈I ϕi]≈. (We use Scott’s trick to
represent each equivalence class canonically by the set of its minimal-rank members,
in order to avoid the inconvenience that an equivalence class would otherwise be a
proper class.) Finally, P embeds densely into B by the map p 7→ [p̌ ∈ Ġ]≈.

Lastly, for (iii→ i), suppose that a class forcing notion P has a Boolean comple-
tion B, a set-complete class Boolean algebra B with a dense embedding i : P→ B.
We shall prove that there is a forcing relation for atomic formulas. To do so, we
define the following Boolean values, by recursion on names:

[[σ ∈ τ ]] =
∨

〈ρ,r〉∈τ

(

[[σ = ρ ]] ∧ i(r)
)

[[σ = τ ]] = [[σ ⊆ τ ]] ∧ [[ τ ⊆ σ ]]

[[σ ⊆ τ ]] =
∧

〈ρ,r〉∈σ

(

¬i(r) ∨ [[ ρ ∈ τ ]]
)

This is a straightforward recursion on names, which we may undertake in GBC,
without need for any ETR assumption. We now define the corresponding forcing
relation p  ϕ if and only if i(p) ≤ [[ϕ ]], for atomic ϕ.

It remains to check that this relation is indeed a forcing relation for atomic truth,
that is, that it fulfills the recursive requirements of definition 2. This is an exercise
in the usual Boolean-valued reasoning. For example, if p  σ ∈ τ , then

i(p) ≤ [[σ ∈ τ ]] =
∨

〈ρ,r〉∈τ

(

[[σ = ρ ]] ∧ i(r)
)

,

and so every p′ ≤ p has i(p′) compatible with [[σ = ρ ]] ∧ i(r) for some 〈ρ, r〉 ∈ τ ,
which means there is some q ≤ p′ with q ≤ r and i(q) ≤ [[σ = ρ ]]. Thus, there is a
dense class of q ≤ p with q  σ = ρ for some 〈ρ, r〉 ∈ τ with q ≤ r, as desired. The
other properties are similar and left for the reader. �
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7. ETROrd implies truth predicate for LOrd,Ord(∈, A)

In this section, we shall prove the implication (12)→ (9). The implication (9)→
(8) is essentially immediate. We begin by providing the natural generalization of
the truth predicate concept of definition 8 to the infinitary context as follows.

Definition 15. If κ, λ ≤ Ord are cardinals or Ord itself and A is a fixed class
parameter, then a truth predicate for the Lκ,λ(∈, Â) language of set theory with a
predicate for A is a class T consisting of pairs 〈ϕ,~a〉, where ϕ is a formula in that
language and ~a is a valuation mapping the free variables of ϕ to corresponding set
parameters, such that the following recursion is satisfied:

(a) T judges the truth of {=,∈, Â}-atomic statements correctly:

T(x = y, 〈a, b〉) if and only if a = b

T(x ∈ y, 〈a, b〉) if and only if a ∈ b

T(x ∈ Â, a) if and only if a ∈ A

(b) T performs Boolean logic correctly:

T
(

∧

i∈I

ϕi,~a
)

if and only if T(ϕi,~a) for all i ∈ I

T(¬ϕ,~a) if and only if ¬T(ϕ,~a)

(c) T performs quantifier logic correctly:

T(∀~xϕ,~a) if and only if ∀~b T(ϕ,~b a ~a),

where ~b a ~a is the valuation extending ~a by mapping the variables of ~x to

the objects listed by ~b.

This generalizes definition 8 from the case of the first-order language Lω,ω(∈, A)
to the infinitary languages, such as LOrd,ω(∈, A) and LOrd,Ord(∈, A). Let us subli-
mate a few minor syntactical details, such as the fact that in (b) when referring to
T(ϕi,~a), we should restrict the valuation ~a to the free variables of ϕi, if these were
fewer than in

∧

i ϕi.

Theorem 16. Assume the principle of elementary transfinite recursion ETROrd

for recursions of length Ord. Then there is a truth predicate for LOrd,Ord(∈, A),
with any class parameter A.

Proof. The point is that the existence of a such a truth predicate for this infinitary
logic is an elementary transfinite recursion of length Ord, defined by recursion on
formulas. The formulas each have an ordinal rank coming from the rank of their
parse trees, and we may define the truth of such a formula by reference to the truth
of its constituent pieces. �

In light of the results of section 13, we should not expect to get Ord-iterated
truth predicates for the infinitary logic LOrd,Ord(∈, A), or even an ω-iterated truth

predicate for LOrd,ω(∈, A), since those recursions have length Ord2 or Ord · ω, and
ETROrd is not able to prove that such recursions have a solution. Indeed, it follows
from the separation results of that section that the existence of an ω-iterated truth
predicate for LOrd,ω(∈) is strictly stronger in consistency strength than ETROrd.
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8. Forcing theorem implies truth predicate for LOrd,ω

In this section, we shall prove the implication (1) → (8) in the main theorem.
In order to do so, let us define a particular class forcing notion FA, from whose
atomic forcing relation we shall be able to extract a truth predicate. This is an
adaptation and generalization of the forcing defined in [HKL+16, definition 2.4],
and the argument here is based on the analysis of [HKL+16, section 7]. Let A be
a proper class parameter. Since the existence of a truth predicate relative to A is
invariant under finite changes of A, we can assume that A has at least two elements
and that A 6= V . Let Coll(ω, V ) be the class partial order having as conditions
all finite injective partial functions f ... ω → V . This is the usual forcing to add a
bijection from ω to V . To form FA, we take a disjoint union that augments the
forcing Coll(ω, V ) with additional conditions, by setting

FA = Coll(ω, V ) ⊔ { en,m | n,m ∈ ω } ⊔ { an | n ∈ ω }

where for f ∈ Coll(ω, V ) we define

f ≤ en,m ⇐⇒ f(n) ∈ f(m), and

f ≤ an ⇐⇒ f(n) ∈ A.

In other words, the condition en,m is by definition precisely the supremum of the
conditions f with f(n) ∈ f(m), and an is by definition the supremum of the con-
ditions f for which f(n) ∈ A. Let us also take 1 = ∅ ∈ Coll(ω, V ) to be above all
the new conditions en,m and an. Recall that A has at least two elements, and that
A 6= V . Using this, it is easy to check that FA is separative.

In short, we define the forcing FA to be basically the collapse forcing Coll(ω, V ),
but augmented with some additional conditions that are the suprema of certain
useful classes of conditions. In particular, Coll(ω, V ) is a dense subclass of FA, and
consequently a generic filter G ⊆ FA will be fully determined by G ∩ Coll(ω, V ),
which will be generic for that forcing. Nevertheless, class forcing differs from set
forcing in that a dense subclass of the forcing does not necessarily give rise to
the same forcing extensions (see [HKS17, section 5]). The reason is that the extra
conditions, such as en,m and an above, allow one to form names in the larger forcing
that are not equivalent to any name in the smaller forcing, even though it is dense.
Basically, we augmented the forcing with those extra conditions precisely so that
we could use those conditions to form FA-names for objects that we could not have
been able to name in the Coll(ω, V ) forcing alone.

Let us illustrate with a few examples. Define the name

ε̇ = { 〈op(ň, m̌), en,m〉 | n,m ∈ ω }.

Notice that ε̇ is a set-sized name—actually, it is countable—even though it seems
to carry information about what will ultimately happen with a proper class of con-
ditions f . The reason it can do so is precisely because of the supremum conditions
en,m that we added to FA.

Similarly, we may define the name

Ȧ = { 〈ň, an〉 | n ∈ ω }.

This is not a name for the class A itself, but rather it is the name for the copy
of A on ω that will be induced by the generic bijection. That is, Ȧ is the name
for the collection of n ∈ ω that will correspond to an element of A by the generic
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bijection. Again, this is a set-sized name, actually countable, which we can form
precisely because of the extra conditions an that we had added to the forcing.

Lastly, without using the augmented part of FA, let us define for each set a the
name

ṅa = {
〈

ǩ, (n 7→ a)
〉

| k < n ∈ ω },

where (n 7→ a) = {〈n, a〉} ∈ Coll(ω, V ) is the finite partial function defined on only
the point n and mapping it to a. Thus, ṅa is the name of the set of numbers k
that are less than the natural number n that will get mapped to a by the generic
bijection. In other words, since every natural number is the set of smaller numbers,
ṅa is the name of the number n that will get mapped to a.

The following theorem is a generalization of [HKL+16, theorem 7.3] to the in-
ternal GBC treatment of class forcing and also to allow a class parameter.

Theorem 17. If the forcing FA, for a fixed class parameter A, admits forcing
relations for atomic formulas, then there is a truth predicate for LOrd,ω(∈, A).

Proof. Fix the class A and suppose that the forcing FA admits forcing relations for
atomic formulas. It follows by theorem 12 that we have a uniform forcing relation
for quantifier-free infinitary assertions in the forcing language LOrd,0(∈, V FA).

Our proof will make use of the following purely syntactical translation ϕ 7→ ϕ⋆,
where ϕ ∈ LOrd,ω(∈, A) and ϕ⋆ ∈ LOrd,0(∈, V FA). The translation is defined by
recursion on ϕ as follows:

(x ∈ y)⋆ = x ε̇ y

(x = y)⋆ = x = y

(x ∈ A)⋆ = x ε̇ Ȧ

(ϕ ∧ ψ)⋆ = ϕ⋆ ∧ ψ⋆

(¬ϕ)⋆ = ¬ϕ⋆

(

∧

i∈I

ϕi
)⋆

=
∧

i∈I

ϕ⋆i

(∀xϕ)⋆ =
∧

m∈ω

ϕ⋆(m̌).

The interesting cases are (x ∈ y)⋆ and (∀xϕ)⋆. The idea is that the translation
is transforming truth assertions about the structure 〈V,∈, A〉 to the correspond-

ing truth assertions about the structure 〈ω, ε̇, Ȧ〉, which intuitively will be made
isomorphic by the generic bijection a 7→ (ṅa)G, where G is generic for FA. The
point is that ∈ assertions in V will correspond to ε̇ relations in the latter struc-
ture, and universal assertions ∀xϕ in V will correspond to countable conjunctions
in the latter structure, since every object will be placed at some n by the generic
bijection, mapping a to (ṅa)G. Intuitively, the translation aims at establishing the
equivalence

〈V,∈, A〉 |= ϕ(a) ⇐⇒ V [G] |=
(

〈ω, ε̇G, ȦG〉 |= ϕ⋆((ṅa)G)
)

.

Formalizing this equivalence at the outset, however, is somewhat problematic, be-
cause the left-hand side is not expressible unless we already have the desired truth
predicate, and the right-hand side makes truth assertions in V [G], which is not a
model of any decent set theory, as we have collapsed V to become countable, and so
it isn’t clear to what extent V [G] has a truth predicate for the structure 〈ω, ε̇G, ȦG〉.
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One might hope alternatively for the right hand side to work directly with the struc-
ture 〈ω, ε̇G, ȦG〉, using an externally defined truth predicate; but this will not work
properly with non-standard models, since there will be nonstandard formulas ϕ⋆

whose truth in that structure will not have a clear meaning in the meta-theory
(although this approach does work when the original model is transitive).

Nevertheless, without formalizing the equivalence displayed above, we may in-
stead take it as inspiring an idea that we are able to formalize, specifically, the
definition in GBC of a certain predicate Tr(ϕ,~a), which we shall prove is a truth
predicate. The idea is similar to that of theorem 9. Namely, if ϕ is an infinitary
formula in the language LOrd,ω(∈, A) and ~a = 〈a0, . . . , ak〉 is a valuation of the
(finitely many) free variables of ϕ, then we define

Tr(ϕ,~a) ⇐⇒ 1 FA
ϕ⋆(ṅa0 , . . . , ṅak).

The definition uses the forcing relation in FA only in the case of the formulas ϕ⋆,
which are quantifier-free infinitary assertions in the forcing languageLOrd,0(∈, V FA),
and we have a uniform forcing relation for that language by theorem 12. Let us
prove that this is indeed a truth predicate.

Lemma 17.1. For any formula ϕ ∈ LOrd,ω(∈, A), any sets a0, ..., ak and any
condition p,

p  ϕ⋆(ṅa0 , . . . , ṅak) if and only if 1  ϕ⋆(ṅa0 , . . . , ṅak).

Proof. We proceed by induction on the formula ϕ. It is important here that the
only names appearing as parameters in ϕ⋆ have the form ṅa for some a; for example,
the lemma is not true if one allows parameters of the form ň, since if p(n) is defined,
then p will force things about ň that other conditions will not. For the atomic case,
it is easy to verify that

p  ṅa = ṅb if and only if a = b

p  ṅa ε̇ ṅb if and only if a ∈ b

p  ṅa ε̇ Ȧ if and only if a ∈ A

because we can simply extend p to a condition that decides the exact values of
ṅa and ṅb. It follows that if p  ṅa = ṅb, p  ṅa ε̇ ṅb, or p  ṅa ε̇ Ȧ, then
1 also forces that statement, which verifies the atomic case of the lemma. Next,
for conjunctions, suppose that p 

(
∧

i ϕi(ṅa)
)⋆
, which by the definition of the ⋆-

translation means p  ϕ⋆i (ṅa) for every i (for notational simplicity, we consider just
one parameter ṅa). By the induction hypothesis, this means 1  ϕ⋆i (ṅa) for every

i and so 1 
(
∧

i ϕi(ṅa)
)⋆
, as desired. For negation, if p  ¬ϕ⋆(ṅa), it means there

is no q ≤ p with q  ϕ⋆(ṅa). But now, in fact there is no q at all with q  ϕ⋆(ṅa),
for if there were such a q, then by induction we would have 1  ϕ⋆(ṅa), contrary
to our assumption that p  ¬ϕ⋆(ṅa).

Finally, we consider the universal quantifier case. Since universal quantifiers
get ⋆-translated to conjunctions over the natural numbers, let us suppose that
p 

∧

m∈ω ϕ
⋆(m̌, ṅa). If 1 does not force this conjunction, then there is some

condition forcing the negation, and by strengthening further we find a condition q
forcing ¬ϕ⋆(m̌, ṅa) for some particularm. Notice that ϕ⋆(m̌, ṅa) does not fall under
the induction assumption, since the name m̌ is not of the form ṅa. Nevertheless,
by strengthening further if necessary, we may assume q(m) is defined and thus
q  m̌ = ṅb for some b. It follows by lemma 6 that q  ¬ϕ⋆(ṅb, ṅa). By the
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induction hypothesis (and the negation case), it follows now that 1  ¬ϕ⋆(ṅb, ṅa).
By strengthening p to a condition p′ forcing ṅb = m̌ for some m, this contradicts
our assumption that p 

∧

m∈ω ϕ
⋆(m̌, ṅa). �

We now proceed to prove that the class Tr defined before the lemma is a truth
predicate for the language LOrd,ω(∈, A). We need simply to verify the recursive
requirements of definition 15. For the atomic case, the equivalences

a = b if and only if 1  ṅa = ṅb

a ∈ b if and only if 1  ṅa ε̇ ṅb

a ∈ A if and only if 1  ṅa ε̇ Ȧ,

follow essentially by design from the definitions of ṅa, ε̇ and Ȧ.
Next, let’s check that our definition performs Boolean logic correctly. For sim-

plicity, allow us to consider the case of just one parameter a rather than ~a. In the
case of conjunctions, we have Tr(

∧

i ϕi, a) just in case 1 
∧

i ϕ
⋆
i (ṅa), which holds

if and only if 1  ϕ⋆i (ṅa) for each i, which by induction is equivalent to Tr(ϕi, a)
for all i, as desired.

Consider next negation. If Tr(ϕ, a) holds, then 1  ϕ⋆(ṅa), and so it is not the
case that 1  ¬ϕ⋆(ṅa) and so Tr(¬ϕ, a) fails. Conversely, if Tr(ϕ, a) does not hold,
then 1 6 ϕ⋆(ṅa). It follows by the lemma that no condition p can force ϕ⋆(ṅa) and
consequently 1  ¬ϕ⋆(ṅa), which implies that Tr(¬ϕ, a) holds, thereby fulfilling
the desired negation requirement.

Finally, consider the quantifier case. Suppose that Tr(∀xϕ(x), a) holds. By

definition, this means 1 
(

∀xϕ(x)
)⋆
(ṅa), and by definition of the ⋆-translation,

this means 1 
∧

m∈ω ϕ
⋆(m̌, ṅa), which is equivalent to 1  ϕ⋆(m̌, ṅa) for every

m. For any set b, there is a dense class of conditions q ≤ 1 with q  ṅb = m̌
for some m and consequently q  ϕ⋆(ṅb, ṅa). Since the q are dense, this implies
1  ϕ⋆(ṅb, ṅa), and so we have Tr(ϕ, ba a) for every set b, as required. Conversely,
if Tr(ϕ, b a a) for every set b, then 1  ϕ⋆(ṅb, ṅa) for every b, and from this it
follows that 1  ϕ(m̌, ṅa) for any particular m, since it is dense to force m̌ = ṅb for
some b. Thus, 1 

∧

m∈ω ϕ
⋆(m̌, ṅa) and consequently Tr(∀xϕ, a), as desired. �

9. Truth predicate for LOrd,ω(∈, A) implies Ord-iterated truth

predicate for Lω,ω(∈, A)

In this section, we prove the implication (8) → (10). To begin, let us define
what it means to have an Ord-iterated truth predicate. The idea is to have a truth
predicate that applies not only to statements in the language of set theory, but to
statements about (earlier stages of) truth in that language. So the Ord-iterated
truth predicate will make truth assertions in ordinal stages.

Definition 18. An Ord-iterated truth predicate for first-order truth, with a class
parameter A, is a class Tr consisting of triples 〈β, ϕ,~a〉, where β is an ordinal, ϕ
is a formula in the first-order language of set theory augmented with a predicate
for A and also with a trinary predicate symbol T̂r to be used for (iterated) truth
assertions, and ~a is a valuation mapping the free variables of ϕ to corresponding
parameters, such that the following recursion is satisfied:
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(a) Tr judges the truth of {=,∈, Â}-atomic statements correctly:

Tr(β, x = y, 〈a, b〉) if and only if a = b

Tr(β, x ∈ y, 〈a, b〉) if and only if a ∈ b

Tr(β, x ∈ Â, a) if and only if a ∈ A

(b) Tr judges atomic assertions of the truth predicate self-coherently:

Tr(β, T̂r(x, y, z), 〈α, ϕ,~a〉)

if and only if α < β and Tr(α, ϕ,~a)

(c) Tr performs Boolean logic correctly:

Tr(β, ϕ ∧ ψ,~a) if and only if Tr(β, ϕ,~a) and Tr(β, ψ,~a)

Tr(β,¬ϕ,~a) if and only if ¬Tr(β, ϕ,~a)

(d) Tr performs quantifier logic correctly:

Tr(β, ∀xϕ,~a) if and only if ∀bTr(β, ϕ, b a ~a)

Note the crucial clause (b), which insists that atomic truth assertions made at
stage β can refer only to earlier stages of truth, α < β. When the formula ϕ has
no free variables, then to improve readability we shall write Tr(β, ϕ) in place of
Tr(β, ϕ, 〈〉), since in this case the valuation is empty.

When Tr(β, ϕ,~a), then we shall say that ϕ[~a] is declared true by the predicate at
stage β. In this way, we can extract from the uniform truth predicate the sequence of
individual truth predicates Trβ(ϕ,~a) for the truth assertions made at each stage β.
These predicates perform as one would want for the non-uniform manner of iterated
truth, where one makes truth assertions always only at a particular stage of truth,
with a separate predicate symbol for each stage. We should like to emphasize,
however, that the uniform truth predicate is stronger than this, because it allows
formulas to quantify over the stages of truth. For example, the uniform iterated
truth predicate allows one to express various liar-type sentences, which have an
interesting nature with respect to the iterated truth predicate.

Consider the following instance, a sentence σ whose truth value will systemat-
ically and endlessly alternate between true and false at successive ordinal stages.
Specifically, the sentence σ expresses that there is no immediately preceding stage
at which σ is true. To formalize this in the language of the iterated truth predicate,
let ⊤ be any tautologically valid sentence, such as ∀xx = x, and notice that in light
of requirement (b) above, the assertion T̂r(α,⊤) is judged true at stage β if and
only if α < β; we can use this feature to quantify in effect over the ‘earlier’ stages
of truth. By the Gödel-Carnap fixed-point theorem, which asserts of every formula
ϕ(x) that there is a sentence σ such that our theory proves σ ↔ ϕ(σ), it follows
that there is a sentence σ for which:

σ ←→ ¬∃α
[

Tr(α, σ) ∧Tr(α,⊤) ∧ ¬Tr(α+ 1,⊤)
]

,

and furthermore, this equivalence is valid at every stage of truth. Said plainly, σ
asserts that it isn’t the case that σ is true at a stage which is the largest ‘previous’
stage. At stage 0, there is no largest previous stage, and so indeed σ is true at
stage 0. Thus, it will become false at stage 1, and therefore true again at stage 2.
Whenever σ is true at stage β, then it will become false at stage β + 1 and true
again at stage β+2. The sentence σ will be true at limit ordinal stages, since there
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is no largest previous stage. So σ flips between true and false for the iterated truth
predicate, being true at every even ordinal stage and false at every odd ordinal
stage, even though it is the very same sentence being considered each time.

Similar constructions yield sentences σ that are true exactly at the stages in
a class A or exactly at certain other stages in a way that is convenient. Such
kind of sentences are not generally possible in the weaker language having only
truth predicates Trβ for each stage of truth separately, without the possibility of
quantifying over the index β, since in that language a sentence ϕ would refer to only
finitely many of those predicates, and therefore the truth or falsity of the sentence
would stabilize at stages of truth beyond those explicitly mentioned in ϕ.

Theorem 19. For any class A, if there is a truth predicate for the infinitary
language LOrd,ω(∈, A), then there is an Ord-iterated truth predicate in the first-

order language Lω,ω(∈, T̂r, A).

This will establish implication (8)→ (10) in the main theorem.

Proof. Suppose that T (ψ,~a) is a (non-iterated) truth predicate for the infinitary
language LOrd,ω(∈, A), where A is a fixed class parameter. Note that in light of
lemma 24, we don’t actually need the parameters ~a, since every set is definable,
and so the entire semantic content of the truth predicate is actually contained in
its sentences. Nevertheless, we shall carry on with the parameters ~a.

Using the truth predicate T, we shall define another truth predicate, an Ord-
iterated truth predicate Tr(β, ϕ,~a) for first-order assertions ϕ in the language

Lω,ω(∈, T̂r, A). In order to do so, we first define a certain syntactic translation

(β, ϕ) 7→ ϕ∗
β ,

where β is an ordinal and ϕ is a formula in the first-order language with an iter-
ated truth predicate Lω,ω(∈, T̂r, A). The resulting formula ϕ∗

β is an assertion in

LOrd,ω(∈, A), without any truth predicate. This translation is defined by induction
on β and ϕ, as follows:

(a) Atomic formulas not mentioning the truth predicate are not changed by
the translation:

(x ∈ y)∗β = (x ∈ y),

(x = y)∗β = (x = y),

(x ∈ Â)∗β = (x ∈ Â).

(b) T̂r(x, y, z)∗β is the assertion
∨

ξ<β

ψ∈Lω,ω(∈,T̂r,Â)

[

“x = ξ” ∧ “y = ψ” ∧ ∃~a valuationψ(z,~a) ∧ ψ
∗
ξ (~a)

]

.

(c) (ϕ ∧ ψ)∗β = ϕ∗
β ∧ ψ

∗
β .

(d) (∀xϕ)∗β = ∀xϕ∗
β .

The key translation occurs in step (b), replacing atomic instances of the truth
predicate with certain infinitary formulas. The formula valuationψ(z,~a) asserts that
z is a valuation mapping the variables that happen to be free in ψ to the objects in
~a. Basically, the stage β translation of the atomic truth assertion T̂r(x, y, z) is the
assertion that (i) x is some stage ξ less than β; (ii) y is some formula ψ; and (iii) z is
a valuation of the free variables of that formula to objects ~a for which ψ∗

ξ (~a) holds.



25

In particular, in statement (b) we used the expressions “x = ξ” and “y = ψ”, and
by this we mean the formulas θξ(x) and θψ(y) provided by lemma 24, which as we
mentioned does not involve using ξ or ψ (or any code for ψ) as a parameter. We
should also like to emphasize that we do not need ETROrd in order to make this
recursive definition of the translation, since it is an ordinary transfinite recursion
of length Ord on sets, not a class recursion.

We now define our proposed iterated truth predicate Tr(β, ϕ,~a) to hold if and
only if T(ϕ∗

β ,~a). We claim that this relation fulfills the requirements to be an
iterated truth predicate.

Because T is a truth predicate for assertions in LOrd,ω(∈, A), it follows easily that

our iterated truth predicate Tr works correctly on {∈,=, Â}-atomic formulas and
on Boolean combinations and quantifiers. The only difficult part is to verify that
we have judged the atomic truth assertions themselves in a self-coherent manner.
What we need to prove is that Tr(β, T̂r(x, y, z), 〈α, ϕ,~a〉) holds if and only if α < β
and Tr(α, ϕ,~a).

To see this, notice that Tr(β, T̂r(x, y, z), 〈α, ϕ,~a〉) holds, by the definition of Tr,

just in case T(T̂r(x, y, z)∗β , 〈α, ϕ,~a〉) holds, which is equivalent to

T
(

∨

ξ<β

ψ∈Lω,ω(∈,T̂r,Â)

(

“x = ξ” ∧ “y = ψ” ∧ ψ∗
ξ

)

, 〈α, ϕ,~a〉
)

.

Since T is a truth predicate, we may unwrap the meaning of this disjunction to see
that this holds if and only if α < β and T(ϕ∗

α,~a), since the disjuncts can be realized
only with α = ξ and ϕ = ψ themselves. By the definition of Tr, this is equivalent to
Tr(α, ϕ,~a). So we have verified that Tr is an iterated truth predicate for first-order
truth with the class parameter A, as desired. �

One can extract from this argument a corresponding result for having merely
a κ-iterated truth predicate, given a truth predicate for the Lκ,ω language of set
theory.

Theorem 20. For any class A, if there is a truth predicate for the infinitary
language Lκ,ω(∈, Â), where κ is any uncountable cardinal, then there is an κ-iterated

truth predicate in the first-order language Lω,ω(∈, T̂r, Â).

Proof. The point is that to define Tr(β, ϕ,~a) in the previous theorem, we took
a disjunction of size ω · β, which will still be less than κ for β < κ, if κ is an
uncountable cardinal. So exactly the same translation and definition of Tr works
up to κ. �

10. Iterated truth predicates imply the elementary transfinite

recursion principles

In this section, we shall prove implication (10)→ (12) in the main theorem, and
indeed, we shall prove (10) ↔ (12). To do so, we shall undertake a refinement of
the following theorem of Fujimoto [Fuj12] (see also Gitman and Hamkins [GH16]).

Theorem 21. The principle of elementary transfinite recursion ETR is equivalent
over GBC to the existence of iterated truth predicates along any well-founded class
relation.
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The forward implication of this is straightforward, as the truth predicate itself
is defined as the solution to a certain recursion. The real content of the theorem
is the converse, that from any sufficiently iterated truth predicate one can extract
a solution of a given recursion. For the full ETR, one must consider recursions of
length exceeding Ord, as well as iterated truth predicates of length strictly longer
than Ord, for any well-founded class relation.

What we want to prove here is that the equivalence goes through when one
restricts the recursions and iterations to length Ord, or indeed, to length Γ for any
well-ordered infinite class Γ.

Theorem 22. For any class well-order Γ, with ωω ≤ Γ, the principle of elementary
transfinite recursion ETRΓ for recursions of length Γ is equivalent over GBC to the
existence of Γ-iterated truth predicates, allowing any class parameter in each case.

This will establish the equivalence (10) ↔ (12) in the main theorem, if we con-
sider the case Γ = Ord. The expression ωω refers to the countable ordinal arising
via ordinal exponentiation of ω with itself.

Proof. We follow the proof of [GH16, theorem 8]. Let us emphasize that both
statements in the theorem make their assertions universally for all class parameters.

The forward implication is basically straightforward, since the iterated truth
predicate itself is defined by a transfinite recursion of length ω · Γ, by recursion on
formulas. Namely, if we have the predicate Tr ↾ α up to stage α ∈ Γ, then we can
define Tr at stage α by a length ω-recursion on formulas, by reference to the partial
solution Tr ↾ α. So the entire recursion has length ω · Γ. Note that ETRΓ implies
ETRΓ+Γ, since one need only perform the recursion up to stage Γ, and then define a
new recursion for the rest of the way, using the partial solution as a new parameter.
And since ωω ≤ Γ, it follows that ω·Γ < Γ+Γ (use that Γ = ωω ·Λ+α for some Λ and
some α < ωω, and observe ω ·Γ = ω ·(ωω ·Λ+α) = ωω ·Λ+ω ·α = Γ+ω ·α < Γ+Γ).
Thus, we can get the Γ-iterated truth predicate from ETRΓ, as desired.

Conversely, suppose that for a class parameter A, we have an iterated truth pred-
icate Tr of length Γ for first-order truth relative to the parameter A. Now suppose
that we have an instance of ETRΓ, iterating a formula ϕ(x, α,A,X), where we seek
a solution S up to Γ, a class S ⊆ Γ× V for which Sα = { x | ϕ(x, α,A, S ↾ α) } for
every α < Γ. We claim that using the truth predicate as a class parameter, we may
define such a solution S. To do this, we claim first that there is a formula ϕ̄ such that
if one extracts from Tr the class defined by ϕ̄, namely, S = { 〈α, x〉 | Tr(α, ϕ̄, x) },
then S is a solution to the recursion of ϕ along Γ. The formula ϕ̄ should sim-
ply be chosen so that 〈V,∈, A,Tr ↾ α〉 |= ϕ̄(x, α) if and only if 〈V,∈, A, S ↾ α〉 |=
ϕ(x, α), where S is defined as just mentioned using ϕ̄. Such a formula ϕ̄ exists
by the Gödel-Carnap fixed-point lemma: for any e, let ψ(e, x, α) be the assertion
〈V,∈, A, { 〈α, x〉 | Tr(α, e, x) }〉 |= ϕ(x, α), and then by the usual fixed-point trick
find a formula ϕ̄(x, α), for which 〈V,∈, A,Tr ↾ α〉 |= ψ(ϕ̄, x, α) ↔ ϕ̄(x, α). It fol-
lows that the class S iteratively defined from Tr by ϕ̄ satisfies ϕ at each step and
therefore is a solution to the recursion of ϕ up to Γ, as desired. �

An essentially similar idea works with infinitary formulas, provided that Ord·Γ ≤
Γ + Γ, which is to say that Γ is at least Ordω, with ordinal exponentiation.

Theorem 23. For any infinite class well-order Γ, of order type at least Ordω, the
principle ETRΓ

(

LOrd,Ord(∈, A)
)

of elementary transfinite recursion for recursions
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of length Γ in the infinitary language with a class parameter A is equivalent over
GBC to the existence of Γ-iterated truth predicates for that language.

Proof. The forward implication is proved by observing that the iterated truth pred-
icate is precisely a solution of a recursion. The converse implication is proved as
in the previous theorem by defining a solution of the recursion by reference to the
iterated truth predicate. �

11. Class-join separation

In this section, we shall prove the implications (12) → (7) → (8) in the main
theorem. To begin, we define the principle of ETROrd-foundation to be the assertion
that every instance of elementary transfinite recursion of length Ord either has a
solution, or else fails at some least stage α ≤ Ord. That is, either there is a solution
or there is α ≤ Ord such that for every β < α there is a solution of the recursion of
length β, but there is no solution of length α. Since the partial solutions are unique
when they exist, perhaps some readers expect that one could simply combine those
earlier solutions into one uniform solution; but such an argument would appeal to
a class-replacement principle that is not provable in GBC. (Consider the difficulty,
for example, of combining the various Σn-truth predicates into a uniform truth
predicate, if the model is ω-standard and has only definable classes.) Meanwhile, the
principle of ETROrd-foundation is a consequence of the principle of Π1

1-foundation,
which asserts that every Π1

1-definable class of ordinals has a least element, and both
of these principles are true in any well-founded model of GBC. That is, in transitive
models, we get it for free.

Let us now define a separation-like principle that we call the class-join separation
principle. This is the assertion that for any class Φ of LOrd,ω(∈, A)-formulas in
finitely many free variables, where A is any class parameter, if every formula ϕ ∈ Φ
admits a truth predicate Tϕ, then {~a | ∃ϕ ∈ Φ Tϕ(ϕ,~a) } exists as a class. (By a
truth predicate Tϕ, we mean a class that satisfies the conditions in Definition 8,
but only for subformulas of ϕ.) The idea is that this class is essentially what we
would want to mean by the class {~a |

∨

ϕ∈Φ ϕ(~a) }, defined by a class-sized join.
The principle asserts that such class-sized joins can be used to define classes, even
when one lacks a uniform truth predicate and only has truth predicates for each
formula ϕ individually. Indeed, if there is a uniform truth predicate application
to all ϕ ∈ Φ, then the instance of the class-join separation principle would follow
from the ordinary separation axiom of GBC simply by using that predicate as a
parameter. The principle, instead, is about unifying a class-indexed collection of
separate truth predicates.

The dual principle, the class-meet separation principle, asserts of every Φ as
above that {~a | ∀ϕ ∈ Φ Tϕ(ϕ,~a) } exists. In other words, the principle allows us to
use the class-sized conjuction

∧

ϕ∈Φ ϕ(~x) to define a class, provided that we have
truth predicates for each individual ϕ ∈ Φ.

It will be convenient to have the following folklore lemma, showing that every
set is definable by a suitable infinitary formula.

Lemma 24. For every set a, there is a formula θa(x) in the infinitary language
LOrd,ω(∈) that defines a. More specifically, there is a truth predicate for the class
of these formulas θa and their subformulas, and with respect to this truth predicate,
θa(x) is true only when x = a.



28 GITMAN, JOEL DAVID HAMKINS, HOLY, SCHLICHT, AND KAMERYN J. WILLIAMS

In particular, in any transitive model of set theory, θa defines a, meaning that
M |= θa[b] just in case b = a.

Proof. We define the formulas θa by the following ∈-recursion:

θa(x) = ∀z
[

z ∈ x↔
∨

u∈a

θu(z)
]

.

The formula asserts that the elements of x are precisely the objects satisfying the
definition of an element of a. In GBC we can define a truth predicate for the class
of θa(x) and their subformulas simply by extending the class {〈θa(x), a〉 | a ∈ V }
in the natural way to the subformulas of the θa, which are these, joins of these
and the formulas z ∈ x ↔

∨

u∈a θu(z). Basically, since we know that we want
θa(x) to define x = a, we can use that to build the truth predicate. One can verify
inductively that this is indeed a truth predicate for these formulas. �

Subsequently, we shall write simply “x = a” for the formula θa(x), with the
understanding that a is not appearing here as a parameter, but rather the hereditary
∈-structure of a appears essentially in the parse tree of the formula itself.

Theorem 25. The following are equivalent over GBC:

(i) The principle ETROrd.
(ii) For every class A, there is a truth predicate for LOrd,ω(∈, A).
(iii) The class-join separation principle plus ETROrd-foundation.
(iv) The class-meet separation principle plus ETROrd-foundation.

Proof. (i)↔(ii) This was established by the results of sections 7 and 10.
(ii)→(iii) The principle of ETROrd-foundation is an immediate consequence of

ETROrd. And once we have a uniform LOrd,ω(∈, A)-truth predicate T, any in-
stance of class-meet separation with predicate A reduces to an ordinary instance of
separation relative to the class predicate T.

(iii)↔(iv) This follows easily from the de Morgan law.
(iv)→(ii) Assume the class-join separation principle plus ETROrd-foundation.

Consider the recursive definition of a truth predicate for LOrd,ω(∈, A). This is an
Ord-recursion, defined by recursion on the rank of the parse trees of the formulas.
If the recursion has a solution, then we have the desired truth predicate. If it does
not, then by ETROrd-foundation, the recursion fails at some least rank α ≤ Ord. So
for every β < α, we have a uniform truth predicate Tβ for the class Lβ consisting of
formulas whose parse tree has rank less than β, but there is no such uniform truth
predicate covering all formulas of rank less than α. Since we can easily extend a
truth predicate for formulas of rank β to rank β + 1, it follows that α must be a
limit ordinal or Ord itself, and so the class of formulas of rank less than α is the
union of those of rank less than some β < α. Let Φ be the class of formulas in
Lα with free variable x. Using the class-join separation principle, we may define a
predicate Tα as follows:

Tα = { (y, z) |
∨

ψ∈Φ

(

“y = ψ” ∧ ψ(z)
)

}.

What we mean by the join is the assertion ∃ψ ∈ ΦTψ
(

“y = ψ” ∧ ψ(z)
)

, where
“y = ψ” is the formula θψ(y) of lemma 24 and where Tψ is a truth predicate for
the conjunction “y = ψ” ∧ ψ(z). Indeed we have such a truth predicate, because
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we can simply combine the truth predicate of ψ arising from the fact that it has
rank less than α with the truth predicates provided by lemma 24.

Thus, we have included (ϕ, a) in Tα just in case ϕ is some formula ψ of rank less
than α for which ψ(z) is true. It is now easy to verify that this is indeed a uniform
truth predicate for all formulas of rank less than α, contrary to the assumption that
there was no such solution at stage α. �

At bottom, the argument is that ETROrd-foundation tells you that if the recur-
sion fails, then it does so at a particular stage, and class-join separation allows you
to unify the earlier-stage truth predicates into a uniform predicate, showing that
that stage was not a failure after all. So the recursion must succeed.

12. Clopen determinacy for games of rank at most Ord + 1

We shall now prove the implications (12) → (11) → (8), using arguments that
amount to a refinement of corresponding results of Gitman and Hamkins in [GH16].

A clopen class game is played on a well-founded class tree T ⊆ V <ω, whose
terminal nodes are labeled as a win for one or the other player. The game starts
at the root node, which we place at the top, so the play proceeds downward. The
players take turns, each subsequently selecting a child node of the current node
and then continuing in turn from this node. The game ends when a terminal node
is reached—by well-foundedness this must happen at some finite stage—and the
winner is determined by the label of that node.

A well-founded class tree T admits a ranking function with a well-ordered class
relation Γ, if there is a labeling of the nodes of the tree with elements of that
relation, in such a way that every child node has lower rank than its parent. A tree
has rank at most Ord+1, therefore, if we can label the root of the tree with Ord and
all other nodes of the tree with ordinals, in such a way that these ordinals descend
as one moves down in the tree. A ranking is continuous, if it obeys the recursive
property that the rank of any node p is exactly the supremum of rank(q) + 1 in Γ
for every child q of p. The principle ETRΓ implies that every tree with a Γ ranking
function has a continuous Γ ranking function, but it isn’t clear whether one can
prove this without an appeal to some fragment of ETR.

Meanwhile, we claim that the question of whether or not a well-founded class tree
T has rank at most Ord+1 is actually a first-order-expressible property of the tree,
and furthermore in GBC such trees always admit first-order-definable continuous
ranking functions, without requiring any appeal to a fragment of ETR. To see this,
notice that if we consider T ∩ Vθ, which is a well-founded set-sized tree, then it
has an continuous ranking function, since ZFC proves that every well-founded set
relation has a continuous ranking function. As θ increases, the rank of any fixed
node in T ∩ Vθ never decreases. If every non-root node in T has the property that
its ranks in these approximation trees T ∩Vθ eventually stabilize for large enough θ,
then in fact those limit values form an acceptable continuous ranking of the whole
tree T , if we should place label Ord or a suitable ordinal on the root node. And
conversely, if we are able to rank the whole tree, then those ranks also serve as ranks
in the trees T ∩Vθ. So a tree has rank at most Ord+1 if and only if every non-root
node has an eventually stabilizing ordinal rank in T ∩ Vθ, which is a first-order
property about the tree. Since the assignment to the nodes of the corresponding
limit rank value is first-order definable, we thereby achieve a definable continuous
ranking of such trees, as we claimed.
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The existence of rankings in a game tree is connected with the requirement in
some games that a particular player must count down in a well-order during play.
This counting-down feature in a game is often a convenient way to ensure that the
game is clopen, since the player cannot count down forever, and the outcome of the
game is known when the clock runs out. If a game tree has one player counting
down in Γ during play, then we can rank the tree with elements of 2 · Γ + 1, since
we label the root node with 2 · Γ, and then whenever the count-down player has
just announced α, we label that node with 2 · α, and if it is the other players turn,
we label with 2 · α+ 1. Thus, using the fact that 2 ·Ord = Ord, a game where one
of the players must count down in the ordinals has rank at most Ord + 1.

Definition 26. The principle of determinacy for clopen class games of rank at
most Γ, a class well-order, is the assertion that for every clopen class game with a
game tree of rank at most Γ, one of the players has a winning strategy.

We emphasize that we are referring here to the ordinal rank of the game tree,
which is not the same as the game values that would arise in the open determinacy
analysis of the game. For example, the game tree can have a very high rank, even
if the first player has a winning move on the first move, which would make the
game value very low. Meanwhile, the game value for a clopen game, when it exists
(it is defined by a class recursion and in GBC there needn’t be a solution of that
recursion) is bounded by the rank of the tree.

A winning strategy for a player is a function on the game tree, which selects of
every parent node a child of it, in such a way that every play of the game that
conforms with those choices on that player’s moves, leads to a terminal node that
is a win for that player.

Theorem 27. The principle of elementary transfinite recursion ETROrd for Ord-
length recursions implies the principle of determinacy for clopen class games of rank
at most Ord + 1. More generally, for any class well-order Γ, the principle ETRΓ

for recursions of length Γ implies determinacy for clopen class games of rank at
most Γ + 1.

This will establish implication (12)→ (11) in the main theorem.

Proof. Using the back-propagation method, due originally to Zermelo in his proof
of the fundamental theorem of finite games, we shall label every node in the game
tree T as a win either for player I or for player II, and these designations will provide
a winning strategy for whoever gets their label on the root node, the strategy being:
stay on the nodes with your label. To begin, assume ETRΓ for a class well-order
Γ, and suppose T is a well-founded game tree T of rank at most Γ + 1. Thus, the
root node in the tree gets rank Γ, but all other nodes will have a rank below Γ.
Using ETRΓ, we apply the back-propagation method to label the nodes of the tree
with player I or player II, by recursion on rank. The terminal nodes, with rank 0,
are already labeled for us. If all children of a node t are labeled, then if it is player
I’s turn to play and there is a child node labeled I, then we place label I on t, and
otherwise II; similarly, if it is player II’s turn to play, and there is a child node
labeled II, then we place label II on t, and otherwise I. By the principle ETRΓ, this
labels all the non-root nodes of the tree. We may now place the corresponding label
on the root, labeled following the same back-propagation rule. From this labeling,
we can get a winning strategy: whoever has their label on the root node can always
stay on their own labels, and thereby win the game. �
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Next, we establish the implication (11)→ (8) in the main theorem.

Theorem 28. The principle of determinacy for clopen class games of rank at
most Ord + 1 implies the existence of a truth predicate for LOrd,ω(∈, A) for any
class parameter A.

Proof. We follow the main ideas of Gitman and Hamkins [GH16, theorem 9], using a
natural infinitary analogue of the truth-telling game, where the interrogator counts
down in the ordinals. Specifically, consider the truth-telling game for assertions
in the logic LOrd,ω(∈, A). There are two players, the interrogator and the truth-
teller. At each move, the interrogator issues a challenge in the form of a set Φ of
infinitary formulas ϕ ∈ LOrd,ω(∈, A) and a valuation ~a of their free variables. The
interrogator must also state an ordinal α, which will strictly descend during play;
we call this the count-down clock. The truth-teller replies to the inquiry by stating
of each formula ϕ ∈ Φ whether it is true or false at ~a (not necessarily truthfully). If
the truth-teller happens to declare an existential formula ∃xψ(x) to be true, then
she is also obligated to provide a witness b and declare that (ψ, b a ~a) is true. The
truth-teller loses, if she should ever explicitly violate the Tarskian recursion. The
interrogator loses if the clock runs out (which must happen eventually, in finitely
many moves).

This game has rank at most Ord + 1, because of the ordinal count-down clock.
Now, we simply argue as in [GH16] that if the truth-teller has a winning strategy,
then the truth assertions made by that strategy will be independent of the play,
for all plays in which there remains sufficient time on the clock. This can be
proved by induction on formulas. It is clearly true for atomic formulas. And if it
is true for a formula, it will be true for the negation, since any violation of this
can be transformed into a violation of the Tarski recursion. If it is true for a set of
formulas, then it will be true for the conjunction, just by taking the supremum of
the stabilizing clock values plus one. And the quantifier case is also easy to handle.

Thus, these plays provide a truth predicate for our infinitary language, as desired.
Finally, we need to argue that the interrogator can have no winning strategy. If

σ is any strategy for the interrogator, then find an ordinal θ such that Vθ is closed
under that strategy, and have the truth-teller play in accordance with truth in Vθ.
This will never violate the Tarski recursion and therefore it will defeat σ.

So if clopen determinacy holds for this game, then there is a truth predicate for
LOrd,ω(∈, A) truth, as desired. �

We would like to remark that Gitman and Hamkins have pointed out that there
is a flaw in their published proof of [GH16, theorem 9] for the implication of clopen
determinacy to ETR. While that implication is indeed correct as they state, never-
theless it does not suffice for the interrogator to count down merely in the natural
numbers, as they had initially claimed. Rather, the interrogator should count down
in the order ω · Γ, where Γ is the length of the iteration, and one can prove by in-
duction in this case that the truth assertions made by the truth-teller about the
solution up to any stage α are invariant of the play, provided that the count-down
clock is at least ω ·(Γ ↾ α). Gitman and Hamkins plan to release an updated version
of their paper addressing this matter.
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13. Separating the theorem from other second-order theories

In order to situate the class forcing theorem more precisely in the hierarchy of
theories between GBC and KM, let us prove a few theorems that separate ETROrd

from other similar principles in the vicinity.

Theorem 29. The theory GBC + ETROrd·ω is strictly stronger in consistency
strength than GBC + ETROrd.

Proof. Assume GBC+ETROrd·ω, and fix a class global well-order. By theorem 22,
it follows that we may form an (Ord · ω)-iterated truth predicate Tr for first-order
truth relative to the fixed global well-order (in the language with a predicate for
that order). Using this predicate, consider the GBC model having the same sets as
V , but having as classes only those classes that are definable from a proper initial
segment Tr ↾ (Ord · n) for some n < ω. This is a GBC model, and furthermore,
it satisfies ETROrd, because if a class A is definable from Tr ↾ Ord · n, then we
have an Ord-iterated truth predicate definable from Tr ↾

(

Ord · (n + 1)
)

. So by
statement (10) in the main theorem, we have ETROrd in this model. But this model
cannot have its own (Ord ·ω)-iterated truth predicate, because no such predicate is
definable from a proper initial segment of itself. Thus, this is a model of ETROrd

without ETROrd·ω. But furthermore, since the entire collection of classes of our
constructed model is coded by a single class in our original model, it follows that
ETROrd·ω implies the consistency of GBC + ETROrd, as desired. �

Theorem 30. The theory GBC + ETROrd has a strictly stronger consistency
strength then the theory GBC + ETR<Ord, which asserts ETRα for every ordinal
α, provided this latter theory is consistent.

Proof. We may use a similar argument for this. Let Tr be an Ord-iterated truth
predicate for first-order truth, with a fixed class global well-order parameter. Con-
sider the GBC model arising from the sets in V together with any class that is
definable from a proper initial segment of the truth predicate Trα. This latter
GBC model satisfies GBC + ETR<Ord by theorem 22, since one has an α-iterated
truth predicate with respect to any class that arises. �

One may undertake similar arguments to separate many other levels of the ETRΓ

hierarchy. For example, ETRω is not provable in GBC, since one can use it to
construct a truth predicate for first-order truth. But ETRω does not establish
ETRω2 , since ETRω2 is enough to construct an ω-iterated truth predicate, and
then one can take the classes definable from a proper initial segment of it. This
will be a GBC model that satisfies ETRω, but not ETRω2 .

14. Final remarks

We have now proved all the implications necessary to establish the main theorem.
Let us make a few final remarks on the topic of the class forcing theorem.

First, we should like to call attention to the fact that only some of the implica-
tions in the main theorem hold on a case-by-case basis for the various class forcing
notions P and class parameter A. For example, if P admits a forcing relation for
atomic formulas, then by theorems 5 and 12 we get a scheme of forcing relations
for first-order assertions and also a uniform forcing relation for the quantifier-free
infinitary forcing language LOrd,0(∈, V

P, Γ̇0, . . . , Γ̇m), but we do not generally get a
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uniform forcing relation for the first-order language of set theory or for the stronger
infinitary languages. To see this, consider a very nice forcing notion, such as the
Easton forcing to control the GCH pattern or even trivial forcing, in a model of
GBC having only its definable classes. There is a definable forcing relation for
atomic formulas in this model, but there can be no uniform forcing relation for
first-order assertions, since from such a relation we could define a truth predicate
for the ground model, which is impossible as the model has only definable classes.
To get the uniform forcing relation for a class P, what one needs is an instance of
ETROrd relative to the forcing relation as a class parameter. In order to complete
the cycle of implications in the main theorem, therefore, one applies the statements
with stronger and more robust class parameters.

Second, an observant reader might have noticed that we established the equiv-
alences of the main theorem mainly by appealing to an instance of class forcing,
the forcing FA, which probably one would rarely want to perform, since this forcing
is highly destructive, collapsing the entire universe to become countable, and not
just making all sets countable, but rather making V itself countable. Perhaps the
reader may wonder if the strength of the class forcing theorem is ETROrd simply
because one is including these strange notions of forcing, and that with a more
well-behaved collection of class forcing, the principle might be weaker.

In a sense, the objection is correct. To see this, consider the pretame class forcing
notions, a prominent collection of well-behaved class forcing notions (see [HKS17]).
When forcing over the countable transitive models of GB, it turns out that pretame-
ness is equivalent to the preservation of the axioms of GB−, that is, GB without the
power set axiom. Furthermore, Maurice Stanley has proved that the class forcing
theorem holds outright for all pretame class forcing (see [HKS17] for the case of
forcing over a countable transitive model of set theory; the argument works gener-
ally in GBC and in fact already in GB−). The class forcing theorem for pretame
forcing, consequently, has no extra consistency strength beyond the base theory.

Meanwhile, if one attempts to move beyond pretame class forcing, then we claim
that one is immediately again in the realm of the analysis of this article, with highly
destructive forcing notions such as FA. The reason is that [HKS17, lemmas 2.6, 2.7]
shows that if a class forcing notion P is not pretame, then there is some cardinal δ
and a class P-name Ḟ forced to be a surjection from δ to V . In other words, any
class forcing notion that is not pretame necessarily collapses the entire universe V
to a cardinal. Furthermore, making use of the class P-name Ḟ , an easy reworking
of the arguments of section 8 shows that for every proper class A, the forcing P is
dense in a notion of class forcing QA that can be used in place of the forcing FA
in the argument of theorem 17. So if we consider any natural collection of class
forcing notions that goes strictly beyond pretame forcing and which includes a
forcing notion whenever it includes a dense subclass of that forcing, then the class
forcing theorem for this collection will already be as strong as the class forcing
theorem for the collection of all class forcing notions.

Let us provide a rough sketch of the reworking idea we mentioned. Suppose that
P is a non-pretame notion of class forcing and that Ḟ is a P-name for a surjection
from a cardinal δ to Ord. Given a proper class A, we construct the forcing QA from
P in the same manner that we had constructed FA from Coll(ω, V ) in section 8.
Namely, we add the conditions en,m as before, as upper bounds for the conditions

forcing Ḟ (ň) ∈ Ḟ (m̌), but we do this now for all n,m < δ, and we similarly add
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the conditions an for n < δ as upper bounds for the conditions forcing Ḟ (ň) ∈ A.
In addition, we add a condition (n 7→ a), for every set a and n < δ, which will be

the supremum of all conditions forcing that ň is the least ordinal with Ḟ (ň) = ǎ.

Since Ḟ is only a surjection and not necessarily a bijection, we define ṅa so that it
is the name of the least ordinal n < δ that will get mapped to a. Under this setup,
we may carry out the analogue of the proof of theorem 17, replacing FA by QA and
ω by δ, respectively. One minor change consists of isolating a least, rather than an
arbitrary, ordinal n < δ for which q forces ¬ϕ∗(ň, ṅa) in the quantifier case in the
proof of lemma 17.1; this ensures that we can choose q and find some set b so that
q forces ň = ṅb, as in the corresponding step in the proof of lemma 17.1.

In summary, the class forcing theorem for pretame forcing is provable in GBC,
but for any sufficiently robust collection of class forcing notions going beyond the
pretame forcing, the class forcing theorem will have the full strength of ETROrd

and all the other statements of the main theorem.
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