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Abstract
In the inverse distance weighting interpolation the interpolated, value is a weighted
mean of the sampled values, with weights decreasing with the distances. The most
widely adopted class of distance functions is the class of negative powers of order
α and the appropriate choice of the smoothing parameter α is a crucial issue. In this
paper, we give sufficient conditions for the design-based consistency of the inverse
distance weighting interpolator when α is selected by cross-validation techniques,
and a pseudo-population bootstrap approach is introduced to estimate the accuracy of
the resulting interpolator. A simulation study is performed to empirically confirm the
theoritical findings and to investigate the finite-sample properties of the interpolator
obtained using leave-one-out cross-validation. Moreover, a comparison with the near-
est neighbor interpolator, which is the limiting case for α = ∞, is performed. Finally,
the estimation of the surface of the Shannon diversity index of tree diameter at breast
height in the experimental watershed of Bonis forest (Southern Italy) is described.
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1 Introduction

Successful management of natural, social and economic resources requires detailed
information about their spatial pattern. For example, mapping soil composition and
mineral concentration is essential in geology, and pollutants concentration in ecology,
while climatologists are interested in mapping atmospheric variables, such as temper-
ature, humidity, and precipitation. In these cases, the study region is constituted by a
continuous set of locations, conceptualized as a continuous spatial population, with
the density of the survey variable at each location giving rise to a surface. Occasion-
ally, the study area is partitioned into a finite population of areas, such as a network
of regular polygons, as frequently happens in forest inventories, or into a collection
of irregular patches, such as administrative districts. The survey variable is the total
amount of an attribute within each area, such as the tree biomass in forestry or the
volume of a specific agricultural production in economics. Finally, finite populations
of units scattered over the study region, such as the factories in a district, the shrubs
in a natural reserve, may be of interest. In this case, the survey variable is the value of
an attribute attached to each unit.

Spatial prediction enables estimating the value of the survey variable or of its density
at unsampled locations on the basis of a sample of locations, thus allowing to con-
struct wall-to-wall maps depicting the spatial pattern of the survey variable throughout
the whole study area. The inverse distance weighting (IDW) interpolation is a tech-
nique extensively applied by practitioners, also owing to the availability of GIS tools
automatically implementing the interpolation. Commonly, IDW interpolation is con-
sidered as a non-stochastic method of spatial prediction, and, as such, no uncertainty
is associated (Cressie 1993, Sect. 5.9). In the IDW interpolation, according to the
first law of geography by Tobler (1970), values recorded at sampled locations do not
contribute equally, since the interpolated value is achieved as a weighted mean of the
observed values, with weights decreasing with the distances to the location where
interpolation has to be performed. Any positive decreasing function of the distances
obviously allows giving less weight to observed values further away from the loca-
tion. In particular, the most widely adopted class of functions is the class of negative
powers distance functions of order α, φ(d) = d−α (see e.g., Gong et al. 2014; Noori
et al. 2014; Bărbulescu et al. 2021), where d is a positive real number representing the
distance and α is a positive real number playing the role of the smoothing parameter.
Therefore the appropriate choice of the smoothing parameter becomes a crucial issue.
A default value of 2 is commonly adopted when GIS software are used, nevertheless, it
can also be selected bymeans of cross-validation techniques, such as the leave-one-out
cross-validation (LOOCV) (see e.g., Hall and Robinson 2009; Wu et al. 2019).

Recently, the IDW interpolator has been approached under continuous populations
(Fattorini et al. 2018a), finite population of areas (Fattorini et al. 2018b) and finite
populations of units (Fattorini et al. 2019) in a design-based approach. In this frame-
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work, the uncertainty, which is associated to the interpolated values, only stems from
the probabilistic sampling scheme adopted to select locations.

Conditions ensuring design-based consistency of the IDW interpolator with nega-
tive power distance functions have been proven to hold for any fixed finite α > 2 and
also for α = ∞, which leads to the well-known nearest neighbour (NN) interpolator
(Fattorini et al. 2018a, b, 2019, 2021).

The purpose of this paper is to derive sufficient conditions to prove the design-
based asymptotic properties of the IDW interpolator when α is selected according
to LOOCV. In particular, asymptotic results are achieved in a unifying approach that
includes the three types of spatial populations, thus rendering the theoretical devel-
opments less burdensome. The finite-sample performance of the corresponding IDW
interpolator is empirically compared to that of the NN interpolator. Indeed the lat-
ter avoids the computational effort needed for implementing LOOCV, which can be
very time-consuming with large study areas where interpolation must be performed
for thousands of points, areas or units. Furthermore, a pseudo-population bootstrap
approach is introduced to obtain an estimator of the accuracy of the corresponding data
driven IDW interpolator. The paper is organized as follows. Notation and setting are
given in Sect. 2. In Sect. 3 the IDW interpolator is introduced in a unifying approach
for the three types of spatial populations. Section4 is devoted to the choice of the
smoothing parameter by means of LOOCV and to the design-based consistency of the
corresponding data driven IDW interpolator. In Sect. 5 a pseudo-population bootstrap
estimator of the precision of the data driven IDW interpolator is proposed. A simula-
tion and a case study are respectively described in Sects. 6 and 7, while concluding
remarks are reported in Sect. 8. The Appendix contains technical details and proofs.
Supplementary Information contains figures referring to the simulation study.

2 Notation and setting

Consider a study region A that is assumed to be a compact set of R2 and denote by
λ the Lebesgue measure on R

2. Interest is in the estimation of the value or density
of a survey variable Y on a subset B of A, where B can be a continuum of points,
a finite population of areas or a finite population of units. In order to deal with the
three types of spatial populations in a unifying approach, consider a function f related
to the Y -values, which, without loss of generality, is supposed to be a bounded and
measurable function with values on [0, L], with L ∈ R and L < ∞.

In the case of continuous populations, B coincides with A and f (p) is the density of
Y at anypoint p ∈ A.Whenfinite populations of areas are considered, B coincideswith
A and is partitioned into N areas a1, . . . , aN . In this framework, y j and f j = y j/λ(a j )

are the amount and the density of Y within a j , respectively and f turns out to be

f (p) =
N∑

j=1

f j I (p ∈ a j )
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for each p ∈ B, where I (E) is the indicator function of the event E . Since the area
size λ(a j ) is usually known for each j = 1, . . . , N , the knowledge of the piecewise
constant surface f (p) is equivalent to the knowledge of f1, . . . , fN . Finally, when
finite populations of units are considered, B is the set {p1, . . . , pN } of N unit locations
and y j = f (p j ) is the value of the survey variable for the unit j .

Let P1, . . . , Pn be n random variables with values in B that represent the n loca-
tions selected from B by means of a probabilistic sampling scheme. In the case of
continuous populations, P1, . . . , Pn denote n locations selected in the continuum B
and f (P1), . . . , f (Pn) are the densities of Y recorded at those locations. In the case of
finite populations of areas, P1, . . . , Pn denote the centroids identifying the n sampled
areas and f (P1), . . . , f (Pn) are the densities recordedwithin the corresponding areas.
Finally, in the case of finite populations of units, P1, . . . , Pn denote the locations of n
sampled units and f (P1), . . . , f (Pn) are the values of Y for these units. In all these
three settings, the goal is the estimation of f (p) for any p ∈ B on the basis of the
values of f recorded at the sampled locations P1, . . . , Pn .

3 The IDW interpolator under negative power distance functions

When mapping is considered in a design-based approach and, consequently, uncer-
tainty only stems from the adopted sampling scheme, the use of an assisting model
is necessary. Indeed, when estimating f (p) at a single location p ∈ B, either p is
sampled and there is no need for estimation, or p is unsampled, so that no information
about it is available for performing estimation. The very simple Tobler’s first law of
geography, i.e. units that are close in space tend to have more similar properties than
units that are far apart (Tobler 1970), can be exploited as assisting model. To this end,
let Qp = ⋃n

i=1 {Pi = c(p)}, where c(p) = p for continuous populations and pop-
ulations of units, while c(p) is the centroid of the area containing p for populations
of areas, and denote by φ : [0,∞) → R

+ a non-increasing continuous function on
(0,∞), with φ(0) = 0, lim

d→0+ φ(d) = ∞. The IDW interpolator can be expressed as

f̂ (p) = I (Qp) f (p) + I (Qc
p)

n∑

i=1

f (Pi )wi (p) (1)

with weights wi (p)s given by

wi (p) = φ(‖Pi − c(p)‖)∑n
l=1 φ(‖Pl − c(p)‖) .

The properties of the IDW interpolator have been investigated by Fattorini et al.
(2018a, b), Fattorini et al. (2019) for continuous populations, populations of areas and
populations of units, respectively. In particular, three asymptotic scenarios, all refer-
ring to the infill paradigm (Cressie 1993), have been considered and the design-based
asymptotic consistency of the IDW interpolator has been proved. Without entering
into technical details, design-based asymptotic consistency has been achieved at the
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cost of supposing: (i) some forms of smoothness of the survey variable throughout the
study region; (ii) the use of a sampling design able to asymptotically achieve spatial
balance of the selected locations, that is to ensure that the selected locations are well
spread throughout the study region; (iii) in the case of finite populations, some sort
of regularities, such as in the shape of areas; (iv) some mathematical properties of the
distance functions adopted for weighting sampled observations.

It must be pointed out that the previous conditions are likely to be satisfied in most
real environmental surveys. Indeed, the smoothness assumption (i) is very commonand
it is at the basis of most interpolation techniques (e.g., Cressie 1993, Sect. 3.1). More-
over, this assumption reasonably holds when dealing with natural phenomena where
the density of an attribute changes smoothly throughout space and when it changes
abruptly, that usually occurs along borders delineating variations in the characteristics
of the study region (e.g., forest-meadows). Obviously, design-based consistency does
not hold where discontinuities are present. However, since borders may be realistically
approximated by curves well approaching the theoretical condition of discontinuity
over a region of zero measure, design-based consistency is preserved on the whole.

Regarding condition (ii), the asymptotic spatial balance is ensured under the
schemes usually applied in environmental surveys. The achievement of spatial balance
has been the main target for long time and it is ensured under very complex schemes
(see e.g., Grafström and Tillé 2013; Stevens and Olsen 2004; Jauslin and Tillé 2020)
but also under some familiar, widely applied schemes such as systematic grid sampling
(SGS) and tesselation stratified sampling (TSS) when dealing with continuous pop-
ulations, one-per-stratum stratified sampling (OPSS) and systematic sampling (SYS)
when dealing with population of areas, stratified spatial sampling with proportional
allocation when dealing with population of units.

Furthermore, as to condition (iii), and in particular referring to the regularity of the
shape of areas, it is ensured by the fact that in most cases, especially in environmental
surveys, areas are regular polygons.

Finally, as to the choice of the distance function, the mathematical condition on φ

ensuring the design-based consistency of (1) is

lim
d→0+ d2φ(d) = ∞. (2)

Condition (2) does not actually constitute an assumption, since the distance function
is chosen by the user.

Awidely applied class of distance functions is the class of negative powers distance
functions of order α, given by

φα(d) = d−α

which, for any fixed α > 2, satisfies (2) and gives rise to weights of type

wi (p, α) = ‖Pi − c(p)‖−α

∑n
l=1 ‖Pl − c(p)‖−α

.
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Consequently, the corresponding IDW interpolator turns out to be

f̂α(p) = I (Qp) f (p) + I (Qc
p)

n∑

i=1

f (Pi )wi (p, α) (3)

which obvioulsy depends on the chosen α-value. The choice of φα(d) = d−α is
particularly appealing owing to its simplicity and because the interpretation of the α

parameter, as a smoothing parameter, is rather straightforward. Indeed, as the weights
are decreasing functions of α, the larger the values of α, the smaller the contributions
of the sampled points with larger distances from p. As a matter of fact, as argued by
Fattorini et al. (2021), for α → ∞, f̂∞(p) reduces to the well-known NN interpolator
in which the interpolated value of f (p) is the value observed at the sampled location
nearest to p. More precisely, the NN spatial interpolator of f is the piecewise constant
function given by

f̂∞(p) = I (Qp) f (p) + I (Qc
p)

Card(Hp)

∑

i∈Hp

f (Pi ) , p ∈ B (4)

where Hp = {i : ‖Pi − c(p)‖ = minh=1,...n‖Ph − c(p)‖} is the set of sampled
locations that are nearest to c(p). Fattorini et al. (2021) prove that the design-based
consistency of (4) continues to hold and therefore, any choice of α > 2, including
α = ∞, ensures the design-based consistency of the IDW interpolator to hold. To
avoid arbitrariness, the choice of α should be performed using data driven procedures.

4 The choice of the smoothing parameter

An intuitive and widely applied data driven procedure for choosing smoothing param-
eters can be based on LOOCVmethods (e.g., Giraldo et al. 2011; Ignaccolo et al. 2014;
Montanari and Cicchitelli 2014). LOOCV is a multipurpose general criterion consist-
ing in removing one sampled location from the dataset, interpolating the value or the
density of the Y -variable at the removed sampled location using all other locations
and then repeating this process for each sampled location. The interpolated values
are then compared with the actual values at the omitted locations. Compared to other
cross-validation techniques, LOOCV does not suffer of the random selection of the
so-called training set and interpolations at the removed sample locations are obtained
on the basis of a sample reduced by only one point. More precisely, according to the
LOOCV, α should be selected to minimize

n∑

i=1

[
f (Pi ) − f̂α,−i (Pi )

]2 (5)

where f̂α,−i (Pi ) is the IDW interpolated value by means of the sample of n − 1
locations obtained by deleting the i-sampled location. It is worth noting that (5), up
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to a multiplicative constant depending on n or N , can be considered a naïve estimator
of the overall measure of precision given by

∫

A
E
[
f̂α(p) − f (p)

]2
μ(dp) (6)

where μ is the Lebesgue measure when continuous populations and population of
areas are considered while it is the counting measure with population of units. In
particular, when dealing with continuous populations, (6) reduces to the design-based
counterpart of the mean integrated squared error. Furthermore, when population of
equal-sized areas are considered, (6) reduces to

λ(A)

N

N∑

j=1

E
[
f̂α(c j ) − f (c j )

]2 (7)

where c j is the centroid of a j . Finally, for population of units, (6) turns out to be

1

N

N∑

j=1

E
[
f̂α(p j ) − f (p j )

]2
. (8)

Therefore, the choice of α by means of LOOCV can be interpreted as a criterion
allowing to minimize the estimate of the overall precision measures. Finally, as (7)
and (8) up to the multiplicative constant represent totals of mean squared errors, an
alternative approach for choosing α can be based on the minimization of the Horvitz-
Thompson (HT) type estimate. In particular, the HT estimate is

1

N

n∑

i=1

[
f (Pi ) − f̂α,−i (Pi )

]2

πi
(9)

where πi is the first-order inclusion probability of the i-th area or of the i-th unit.
Note that if the sampling design adopted to select the areas or the units ensures equal
first-order inclusion probabilities the two approaches are identical.

In the following, the IDW interpolator where α is chosen by means of LOOCV
is denoted by f̂α̂ and henceforth, for sake of brevity, referred to as data driven (DD)
interpolator.

Thanks to Proposition 1, reported in the Appendix A, design-based consistency
results of the IDW interpolator obtained by Fattorini et al. (2018a, b, 2019) can be
extended to theDD interpolator.Moreover, Proposition 1 allows to broaden the asymp-
totic properties of the IDW interpolator with fixed α not only to the DD interpolator,
but also to the IDW interpolator when the smoothing parameter is chosen by any data
driven procedure.
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5 Pseudo-population bootstrap estimation of precision

Pseudo-population bootstrap is one of the bootstrap methods adopted in design-based
inference (Mashreghi et al. 2016). It is based on constructing a pseudo-population,
able to mimic the characteristics of the unknown population, from which bootstrap
samples are selected using the same sampling scheme adopted in the survey.

Recently, Conti et al. (2020) provided, in a unified framework, the theoretical jus-
tification of the use of pseudo-population bootstrap in a wide range of situations.
More precisely, they derived conditions on pseudo-populations, ensuring that the boot-
strap distributions of plug-in estimators, resampled from these pseudo-populations by
means of suitable resampling schemes, asymptotically coincide with the actual dis-
tributions of the estimators. However, the crucial condition is that, as the population
size increases, the sequence of designs converges to the rejective sampling design of
maximum entropy. Unfortunately, as pointed out by Franceschi et al. (2022), these
results cannot be exploited in spatial surveys. Indeed, the most effective sampling
designs are aimed at achieving spatial balance and do not generally converge to the
rejective design of maximum entropy. Thus, we propose to use the DD interpolator
for constructing the pseudo-population from which bootstrap samples are selected by
means of the sampling scheme adopted to select P1, . . . , Pn and to estimate the mean
squared error of f̂α̂(p) by means of the mean squared error of the bootstrap distribu-
tion. The intuition behind this proposal is that, under conditions ensuring consistency
of the DD interpolator, the pseudo-population converges to the true one in such a way
that the bootstrap distribution should converge to the true distribution, thus providing
reliable estimators of the mean squared error.

Accordingly, for each p ∈ B, the pseudo-population bootstrap estimator of the root
mean squared error of f̂α̂(p) is given by

V̂ ∗̂
α,M (p) = [ 1

M

M∑

m=1

{ f̂ ∗̂
α,m(p) − f̂α̂(p)}2]1/2 (10)

where M is the number of bootstrap samples and f̂ ∗̂
α,m(p) is the bootstrapped value of

the IDW interpolator at p ∈ B based on f̂α̂(P∗
1,m), . . . , f̂α̂(P∗

n,m), i.e. for any p ∈ B
and m = 1, . . . , M

f̂ ∗̂
α,m(p) = I (Q∗

p,m) f̂α̂(p) + I (Q∗c
p,m)

n∑

i=1

f̂α̂(P∗
i,m)w∗

i,m(p, α̂)

where P∗
1,m, . . . , P∗

n,m are the locations selected in them-th bootstrap resampling using
the scheme adopted to select the original sample, Q∗

p,m = ∪n
i=1{P∗

i,m = c(p)} and

w∗
i,m(p, α̂) = ‖P∗

i,m − c(p)‖−α̂

∑n
l=1 ‖P∗

l,m − c(p)‖−α̂
.
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where, with a slight abuse of notation, α̂ is the smoothing parameter selected bymeans
of LOOCV on the m-th bootstrap sample.

In Proposition 2 of the Appendix it is proven that, for n and M large enough, under
suitable conditions,

E{V̂ ∗̂
α,M (p)}

E[{ f̂α̂(p) − f (p)}2]1/2
≤ √

10 (11)

that is the pseudo-population bootstrap estimator (10) is not too conservative. Relation
(11) continues to hold for random size sampling designs (such as 3P sampling, imple-
mented in the simulation study for the population of units), when the expected value
of the reciprocal of the sample size is sufficiently small (see Remark in the Appendix).
Moreover, it is worth noting that (11) holds not only for DD but also for any IDW inter-
polator whatever data driven procedure is adopted to choose the smoothing parameter
and for any fixed α > 2.

Even if (11) may induce to suspect a large overestimation of the true mean squared
error, that may evenmask the effectiveness of the DD interpolator,

√
10 is just an upper

bound and, as such, it should be viewed as a threshold limiting possible overestimation.
As to the conditions for (11) to hold, the first concerns the sampling scheme adopted
to select the sample points and basically is satisfied by balanced spatial sampling
schemes under which the consistency of the DD interpolator is also ensured, while the
second is a mathematical condition on f needed in the case of continuous populations
and finite populations of areas. In particular, f is demanded to be differentiable at p
with ∇ f (p) �= 0. Finally, the requirement of M large enough can be readily satisfied
by simply increasing the computational effort.

6 Simulation studies

An extensive simulation study has been performed in order to empirically check the
theoretical findings on the design-based consistency of the DD interpolator and to
assess its finite-sample properties. Moreover, the performance of the DD interpolator
has been compared to that of the NN interpolator, which, in turn, avoids the inten-
sive computational efforts needed for the selection of the smoothing parameter. More
precisely, the simulation study aims to evaluate the absolute bias (AB) and root mean
squared error (RMSE) ofDDandNN interpolators for any locationwhere interpolation
is performed.

As to the estimation of the root mean squared error, the pseudo-population boot-
strap estimator (10) has not been implemented in the simulation study owing to the
unworkable increase of the computational effort, in addition to that involved in the
LOOCV. However, the performance of the pseudopopulation bootstrap estimator has
been already investigated by for the NN interpolator. In particular, referring to the
same three population scenarios and to the same artificial surfaces adopted in this sim-
ulation study, performed an intensive simulation study that suggested the conservative
nature of the pseudo-population bootstrap estimator.

The three artificial surfaces, Surf1, Surf2 and Surf3, used for generating continuous
populations, finite populations of areas and finite populations of units which, at any
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location p = (p1, p2), are respectively given by

f (p) = C1(sin
2 p1 + cos2 p2 + p1)

f (p) = C2(sin3p1 + sin23p2)

f (p) =
{
C3 p1 p2 if min(p1, p2) ≤ 1/2
C3(1 + p1 p2) otherwise

where the constants C1, C2 and C3 ensure a maximum value of 10. The three surfaces
are displayed in Fig. 1 of the Supplementary Information.

6.1 Continuous populations

Referring to the asymptotic scenario in Fattorini et al. (2018a), the three surfaces
represent artificial population densities on the squared study region (0, 1) × (0, 1)
and samples of increasing size are considered. In particular, sampling is performed by
selecting n = 16, 36, 64, 100 locations by means of URS, TSS and SGS, all ensuring
consistency of DD and NN interpolators. URS is the most straightforward scheme
which consists in randomly and independently selecting the n locations. TSS consists
of partitioning the study region into n spatial subsets of equal size and randomly and
independently selecting a location in each subset. Moreover, if a regular tessellation
of the study region into n regular polygons is considered, also SGS, which consists
of randomly selecting a location in one polygon and systematically repeating it in the
remaining polygons, can be performed.

For implementing the last two schemes, the unit square is partitioned into 4 × 4,
6 × 6, 8 × 8, 10 × 10 grids of equal-sized quadrats and a location is selected in each
quadrat.

6.2 Populations of areas

Following the asymptotic scenario in Fattorini et al. (2018b), the squared study region
(0, 1)×(0, 1) is partitioned into an increasing number N of areas of decreasing size and
samples of increasing size are selected. More precisely, for each artificial surface, four
populations of N = 100, 400, 900, 1600 areas are constructed by partitioning the unit
square into grids of 10×10, 20×20, 30×30, 40×40 quadrats and taking, as Y -values,
the integrals of the surfacewithin quadrats. TheY -values are rescaled in such away that
the maximum value is 10. Sampling is performed by selecting n = 0.1N quadrats by
means of simple random sampling without replacement (SRSWOR), OPSS and SYS,
all guaranteeing consistency. OPSS is implemented by partitioning the population
into n blocks/strata of contiguous areas and randomly selecting an area from each
block/stratum. When populations are constituted by grids of regular polygons, SYS
can be alternatively performed by randomly selecting a polygon in one block and then
repeating it in the remaining n − 1 blocks. The last two schemes are performed by
partitioning grids into blocks of 2×5 contiguous quadrats and selecting one quadrat
per block.
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6.3 Populations of units

According to the asymptotic scenario in Fattorini et al. (2019), nested populations and
samples of increasing size are considered on the study region (0, 1)×(0, 1). More pre-
cisely, three nested populations of N = 500, 1000, 1500 units are located on the unit
square in accordance with four spatial patterns referred to as regular, random, trended
and clustered. As to the regular pattern, populations are constructed independently
generating the first 500 locations at random but discarding those having distances
smaller than 0.5 × 500−1/2 to those previously generated, then adding further 500
locations at random but discarding those with distances smaller than 0.5 × 1000−1/2

to those previously generated, and, finally, randomly adding further 500 locations but
discarding those having distances smaller than 0.5 × 1500−1/2 to those previously
generated. As to the random pattern, populations are constructed by independently
generating 1500 locations at random and then assigning the first 500 to the smaller
population, the first 1000 to the second one and all of them to the largest. As to the
trended pattern, populations are constructed independently generating 1500 pairs of
random numbers u1, u2 uniformly distributed on [0, 1], performing the transformation
(1 − u21, 1 − u22) to determine locations, and then assigning the first 500 locations to
the smallest population, the first 1000 to the second one and all of them to the largest.
Finally, as to the clus pattern, populations are constructed independently generating
10 cluster centers at random and assign each cluster 50 locations generated from a
spherical normal distribution centerd at the cluster center with variance 0.025, adding
further 50 locations to each cluster from the same distribution and, at last, adding
further 50 locations to each cluster from the same distribution. Points falling outside
the unit square are discarded and newly generated. The three surfaces are used for
assigning the Y -values in the populations.

As to the choice of the sampling scheme, only 3P sampling, from the acronym
of “probability proportional to prediction", is considered. Indeed, some of the most
relevant populations of units, whose interpolation is of interest, are probably natural
populations such as trees or shrubs. In such situations the list and the units locations
are usually not available andmapping is commonly precluded. The sole cases in which
mapping is possible, occur for populations located in study regions of limited size and
all the units can be visited, and therefore located and listed. In this case, 3P sampling
is commonly performed.

Under 3P sampling, all the units of the population are visited by a crew of experts, a
prediction x j for the value of the survey variable is given by the experts for each unit j
of the population and units are independently included in the sample with probabilities
π j = x j/L∗ where L∗ must be large enough to ensure thatπ j ≤ 1 for each j (Gregoire
and Valentine 2008).

Following Kinnunen et al. (2007), experts’ predictions for the y j s are obtained by
assuming the existence of a maximum error rate of prediction ρ ∈ (0, 1), that occurs
at the extremes of the values of the survey variable, in such a way that small values
near the lower bound l are over evaluated and large values near the upper bound L are
under evaluated. In this case, prediction ranges from (1 + ρ)l to (1 − ρ)L when the
value of the survey variable is equal to l and L , respectively. Moreover, for simplicity,
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experts’ predictions for the y j s are generated using the relationship x j = a + by j
with b = 1 − ρ(L + l)/(L − l) and a = (1 + ρ)l − bl, where L = 10, ρ = 0.10
and l = 4. In this case, L∗ = 50 is adopted. Units with Y -value smaller than l = 4
are discarded from populations in order to ensure a lower bound of π0 = 0.08 for
the inclusion probabilities. Predictions, joined with choice of l, L and L∗, ensure an
expected sampling fraction ranging from about 12% to 15% in all cases, according to
the spatial units pattern.

6.4 Simulation implementation and results

For each combination of population, sampling scheme, and sample size, sampling is
replicated 10,000 times. At each simulation run, for each p ∈ B, the DD interpolator
is computed by considering the α value which minimizes (5) for α in {2, . . . , 21}.
In particular, for continuous populations, interpolation is performed on a regular grid
of 100 × 100 locations on (0, 1) × (0, 1). As to the population of units, inaccurate
and imprecise interpolations of the smallest values of the survey variable may occur
(Fattorini et al. 2020). To overcome this drawback, prediction errors, given by the
difference between the Y -values and the corresponding experts’ predictions, are inter-
polated. Thus, the interpolated Y -values are given by the sum of the expert predictions
and the interpolated errors.

Since for larger values of α the DD interpolator is practically indistinguishable from
NN interpolator, if theminimum is reached for α̂ = 21, NN interpolation is performed.
Notwithstanding for α = 2 the asymptotic properties of the IDW are not proven, the
value has been considered as it is a rather common choice for practitioners, being
the default value of some widely applied GIS software, such as ArcGIS and Surfer.
Furthermore, at each simulation run, the NN interpolator is also computed.

For each location where interpolation is performed, the AB and the RMSE of
DD and NN interpolators are computed from the Monte Carlo distributions of the
corresponding estimates. Furthermore, themode of theMonte Carlo distribution of the
finite values of α̂ selected bymeans of (5) and the percentage of simulation runs giving
rise to α̂ = ∞ (F∞) are calculated. For any combination of population, sampling
scheme and sample size, Tables 1, 2 and 3 report the minima, maxima and means of
AB and RMSE, together with the mode and F∞ for the DD interpolator.

Additionally, the performance of DD and NN interpolators is empirically com-
pared by computing, for each location, a measure of relative efficiency (RE) as the
ratio between the RMSE of the NN interpolator and of the DD interpolator. The cor-
responding cumulative distribution function are displayed in Figs. 1, 2 and 3. Figures
2–10 of the Supplementary Information show the spatial pattern of RE for all the
populations, sampling schemes and sample sizes.

The simulation results confirm the theoretical findings. Indeed, fromTables 1, 2 and
3, it is at once apparent that for each combination of population, surface and sampling
scheme, bothAB andRMSE generally decrease as the sample size increases, with very
few exceptions for population of areas when surface 3 and SYS are considered. As to
the choice of the smoothing parameter, for continuous populations and for populations
of areas, DD interpolator generally reduces to theNN interpolator under SGS and SYS,

123



Environmental and Ecological Statistics (2023) 30:103–129 115

Ta
bl
e
1

V
al
ue
s
of

m
od

e
of

α̂
di
st
ri
bu
tio

n
an
d
F
∞

to
ge
th
er

w
ith

pe
rc
en
ta
ge

va
lu
es

of
m
im

im
a,
m
ea
ns

an
d
m
ax
im

a
fo
r
A
B
an
d
R
M
SE

ac
hi
ev
ed

fo
r
co
nt
in
uo

us
po

pu
la
tio

ns

Po
p

Sc
he
m
e

n
D
D

N
N

α̂
A
B

R
M
SE

A
B

R
M
SE

m
od

e
F
∞

m
in

m
ea
n

m
ax

m
in

m
ea
n

m
ax

m
in

m
ea
n

m
ax

m
in

m
ea
n

m
ax

Su
rf
1

U
R
S

16
4

9
0

23
14

4
43

66
16

3
0

17
12

4
53

77
15

1

36
5

1
0

11
97

25
39

11
9

0
8

79
32

50
98

64
5

0
0

7
74

17
27

91
0

4
57

22
37

72

10
0

4
0

0
5

59
13

21
73

0
3

44
17

29
56

T
SS

16
5

2
0

15
10

6
29

46
12

1
0

15
94

34
60

10
8

36
5

0
0

8
69

16
28

79
0

8
59

21
40

69

64
5

0
0

5
51

11
20

60
0

6
43

15
29

50

10
0

5
0

0
4

41
8

15
48

0
4

33
12

23
39

SG
S

16
–

10
0

0
13

96
34

55
10

9
0

13
96

34
55

10
9

36
–

10
0

0
6

60
21

35
69

0
6

60
21

35
69

64
–

10
0

0
3

44
15

26
50

0
3

44
15

26
50

10
0

–
10

0
0

2
34

12
21

40
0

2
34

12
21

40

Su
rf
2

U
R
S

16
3

10
0

10
1

27
2

14
1

19
5

31
5

0
79

26
1

15
8

21
3

32
9

36
5

3
0

49
20

5
77

12
0

24
2

0
38

19
0

73
13

8
24

2

64
5

4
0

30
16

3
41

83
19

5
0

22
14

6
36

10
1

18
8

10
0

5
0

0
21

13
7

25
63

16
5

0
14

12
0

19
79

15
6

T
SS

16
5

7
0

69
25

7
69

14
9

29
7

0
59

25
7

69
16

9
31

1

36
5

0
0

32
18

6
22

86
21

7
0

29
18

5
23

10
9

22
4

64
5

0
0

20
14

5
10

60
17

0
0

18
14

1
10

81
17

2

10
0

5
0

0
14

11
8

5
45

13
9

0
13

11
3

5
64

13
9

SG
S

16
–

10
0

0
61

32
5

68
16

5
37

8
0

61
32

5
68

16
5

37
8

36
–

10
0

0
27

22
7

24
10

3
26

5
0

27
22

7
24

10
3

26
5

123



116 Environmental and Ecological Statistics (2023) 30:103–129

Ta
bl
e
1

co
nt
in
ue
d

Po
p

Sc
he
m
e

n
D
D

N
N

α̂
A
B

R
M
SE

A
B

R
M
SE

m
od

e
F
∞

m
in

m
ea
n

m
ax

m
in

m
ea
n

m
ax

m
in

m
ea
n

m
ax

m
in

m
ea
n

m
ax

64
–

10
0

0
15

17
1

11
74

20
1

0
15

17
1

11
74

20
1

10
0

–
10

0
0

9
13

3
6

58
15

8
0

9
13

3
6

58
15

8

Su
rf
3

U
R
S

16
3

17
8

66
36

4
26

12
4

41
4

0
50

36
3

16
12

6
44

0

36
4

11
4

43
36

5
12

79
40

9
0

31
36

4
7

83
43

6

64
4

9
2

33
35

6
7

59
40

0
0

23
35

5
4

62
42

8

10
0

4
7

2
26

35
0

5
47

39
4

0
18

34
9

3
50

42
3

T
SS

16
4

9
3

48
36

4
13

80
40

2
0

31
35

8
7

83
43

6

36
3

5
1

33
36

2
6

53
39

4
0

21
35

4
3

56
42

9

64
3

3
0

26
34

8
3

40
38

1
0

15
34

1
2

43
42

0

10
0

3
2

0
22

34
6

3
33

37
8

0
12

33
5

1
34

41
5

SG
S

16
–

10
0

0
37

36
1

7
84

43
6

0
37

36
1

7
84

43
6

36
–

10
0

0
24

35
9

3
56

43
1

0
24

35
9

3
56

43
1

64
–

10
0

0
17

35
7

2
42

42
8

0
17

35
7

2
42

42
8

10
0

–
10

0
0

14
35

0
1

34
42

2
0

14
35

0
1

34
42

2

123



Environmental and Ecological Statistics (2023) 30:103–129 117

Ta
bl
e
2

V
al
ue
s
of

m
od

e
of

α̂
di
st
ri
bu
tio

n
an
d
F
∞

to
ge
th
er

w
ith

pe
rc
en
ta
ge

va
lu
es

of
m
im

im
a,
m
ea
ns

an
d
m
ax
im

a
fo
r
A
B
an
d
R
M
SE

ac
hi
ev
ed

fo
r
po

pu
la
tio

ns
of

ar
ea
s
w
ith

10
%

sa
m
pl
in
g
fr
ac
tio

n

Po
p

Sc
he
m
e

G
ri
d

D
D

N
N

α̂
A
B

R
M
SE

A
B

R
M
SE

m
od

e
F
∞

m
in

m
ea
n

m
ax

m
in

m
ea
n

m
ax

m
in

m
ea
n

m
ax

m
in

m
ea
n

m
ax

Su
rf

1
SR

SW
O
R

10
×

10
4

18
0

32
13

9
57

87
17

7
0

27
12

4
68

95
16

0

20
×

20
5

1
0

10
73

22
35

95
0

8
58

29
45

78

30
×

30
4

0
0

5
50

13
21

66
0

4
39

18
29

53

40
×

40
4

0
0

3
39

9
15

52
0

3
28

13
22

38

O
PS

S
10

×
10

5
9

0
26

12
0

50
72

14
7

0
27

11
3

59
86

14
1

20
×

20
5

0
0

8
61

18
29

76
0

8
54

25
40

69

30
×

30
4

0
0

4
41

10
18

51
0

5
36

15
36

46

40
×

40
4

0
0

3
32

7
12

40
0

2
25

11
20

32

SY
S

10
×

10
–

10
0

0
45

15
9

76
11

0
18

6
0

45
15

9
76

11
0

18
6

20
×

20
–

10
0

0
13

79
33

50
93

0
13

79
33

50
93

30
×

30
–

10
0

0
6

55
20

32
65

0
6

55
20

32
65

40
×

40
–

10
0

0
4

40
15

24
48

0
4

40
15

24
48

Su
rf

2
SR

SW
O
R

10
×

10
2

14
5

13
7

26
4

16
5

23
4

33
6

0
11

3
22

6
21

3
25

7
31

9

20
×

20
5

3
0

42
14

6
67

10
8

19
2

0
33

13
1

64
12

5
19

4

30
×

30
5

0
0

22
11

1
28

65
14

5
0

16
97

22
80

14
2

40
×

40
5

0
0

14
90

14
46

11
8

0
9

75
10

59
10

8

O
PS

S
10

×
10

2
7

1
12

4
27

6
12

2
19

6
34

4
1

89
20

7
96

21
7

30
0

20
×

20
5

0
0

32
14

6
21

82
18

8
0

27
13

3
15

10
3

18
9

30
×

30
5

0
0

16
10

5
7

50
13

6
0

14
93

5
67

13
2

40
×

40
5

0
0

10
84

4
35

10
8

0
8

73
2

50
10

2

123



118 Environmental and Ecological Statistics (2023) 30:103–129

Ta
bl
e
2

co
nt
in
ue
d

Po
p

Sc
he
m
e

G
ri
d

D
D

N
N

α̂
A
B

R
M
SE

A
B

R
M
SE

m
od

e
F
∞

m
in

m
ea
n

m
ax

m
in

m
ea
n

m
ax

m
in

m
ea
n

m
ax

m
in

m
ea
n

m
ax

SY
S

10
×

10
–

10
0

11
11

9
45

0
64

20
0

53
1

11
11

9
45

0
64

20
0

53
1

20
×

20
–

10
0

3
51

28
1

14
10

2
34

2
3

51
28

1
14

10
2

34
2

30
×

30
–

10
0

0
22

19
4

4
59

23
7

0
22

19
4

4
59

23
7

40
×

40
–

10
0

0
17

15
0

2
46

18
2

0
17

15
0

2
46

18
2

Su
rf

3
SR

SW
O
R

10
×

10
3

25
14

81
29

2
40

15
5

37
5

0
61

30
5

26
15

4
41

4

20
×

20
4

11
3

38
28

9
10

71
35

6
0

28
30

3
6

74
40

1

30
×

30
4

9
2

26
29

0
5

47
35

2
0

16
25

6
3

48
36

5

40
×

40
4

7
0

20
28

8
3

36
34

8
0

15
30

3
2

40
39

4

O
PS

S
10

×
10

4
19

5
59

27
8

18
11

1
36

1
0

44
29

4
12

11
2

40
6

20
×

20
4

7
0

30
27

2
5

51
33

1
0

20
28

8
3

56
39

0

30
×

30
4

6
0

20
28

2
2

35
34

3
0

12
24

0
1

37
35

4

40
×

40
4

3
0

17
27

3
2

26
32

6
0

12
28

8
1

31
38

5

SY
S

10
×

10
–

10
0

0
58

36
6

11
10

6
44

6
0

58
36

6
11

10
6

44
6

20
×

20
6

0
0

28
28

2
2

50
34

5
0

30
35

7
3

58
43

1

30
×

30
5

0
0

16
27

7
1

34
35

2
0

14
20

7
1

31
33

6

40
×

40
5

0
0

14
28

5
1

25
34

0
0

16
35

2
1

32
42

5

123



Environmental and Ecological Statistics (2023) 30:103–129 119

Ta
bl
e
3

V
al
ue
s
of

m
od

e
of

α̂
di
st
ri
bu
tio

n
an
d
F
∞

to
ge
th
er

w
ith

pe
rc
en
ta
ge

va
lu
es

of
m
im

im
a,
m
ea
ns

an
d
m
ax
im

a
fo
rA

B
an
d
R
M
SE

ac
hi
ev
ed

fo
rp

op
ul
at
io
ns

of
un

its
un

de
r

di
ff
er
en
ts
pa
tia
lp

at
te
rn
s

Su
rf
ac
e

Pa
tte
rn

N
E
(n
)

D
D

N
N

α̂
A
B

R
M
SE

A
B

R
M
SE

m
od

e
F
∞

m
in

m
ea
n

m
ax

m
in

m
ea
n

m
ax

m
in

m
ea
n

m
ax

m
in

m
ea
n

m
ax

Su
rf

1
R
eg
ul
ar

35
8

45
.3

17
87

0
4

16
7

13
28

0
2

12
5

9
15

72
9

91
.6

16
98

0
1

9
5

7
14

0
1

9
5

6
11

11
02

13
8.
8

–
10

0
0

1
9

4
5

11
0

1
9

4
5

11

R
an
do

m
34

9
43

.7
18

86
0

4
17

7
13

29
0

2
11

6
9

15

71
1

88
.7

17
97

0
2

9
4

8
16

0
1

8
4

6
11

10
59

13
1.
5

18
99

0
1

7
4

6
11

0
1

7
3

5
9

T
re
nd

ed
40

4
54

.7
18

90
0

3
18

6
13

24
0

2
16

1
7

22

80
7

10
8.
7

18
98

0
1

12
3

7
15

0
1

11
1

5
15

12
31

16
5.
8

19
10

0
0

1
9

1
4

13
0

1
9

0
4

13

C
lu
st
er
ed

41
3

53
.2

18
93

0
2

12
2

8
18

0
1

10
1

3
17

82
7

10
6.
4

19
99

0
1

7
1

3
10

0
1

7
1

2
9

12
37

15
9.
4

–
10

0
0

1
6

1
2

7
0

1
6

1
2

7

Su
rf

2
R
eg
ul
ar

17
9

23
.1

8
56

0
17

38
19

31
50

0
11

40
8

27
50

38
7

50
.8

15
80

0
10

29
16

24
37

0
6

29
3

18
38

57
9

76
.0

13
91

0
6

26
13

19
32

0
4

25
2

15
32

R
an
do

m
17

9
22

.9
6

54
0

18
37

18
31

52
0

11
42

11
27

51

36
5

47
.0

12
75

0
10

32
14

24
39

0
6

31
5

19
40

57
1

74
.2

20
89

0
6

28
11

18
35

0
4

28
3

15
35

T
re
nd

ed
10

5
13

.4
5

42
0

22
43

20
36

59
0

16
43

14
35

58

21
0

26
.7

8
57

0
16

36
18

30
49

0
9

36
6

25
47

123



120 Environmental and Ecological Statistics (2023) 30:103–129

Ta
bl
e
3

co
nt
in
ue
d

Su
rf
ac
e

Pa
tte
rn

N
E
(n
)

D
D

N
N

α̂
A
B

R
M
SE

A
B

R
M
SE

m
od

e
F
∞

m
in

m
ea
n

m
ax

m
in

m
ea
n

m
ax

m
in

m
ea
n

m
ax

m
in

m
ea
n

m
ax

32
7

41
.7

14
70

0
12

35
14

25
42

0
7

35
4

20
44

C
lu
st
er
ed

15
4

18
.8

3
70

0
11

42
8

22
61

0
6

46
3

14
69

31
6

38
.5

14
86

0
5

19
4

14
34

0
3

17
2

8
34

47
3

57
.7

17
94

0
3

18
3

10
25

0
2

19
2

6
26

Su
rf

3
R
eg
ul
ar

13
1

19
.1

11
78

0
7

21
8

17
34

0
2

10
4

6
12

26
0

37
.9

18
92

0
3

9
5

11
20

0
1

5
3

4
7

37
3

54
.7

18
97

0
1

9
4

7
15

0
1

7
2

3
8

R
an
do

m
12

4
18

.1
10

76
0

7
20

9
18

33
0

2
8

4
6

11

25
1

36
.7

14
91

0
3

11
6

11
21

0
1

7
3

4
8

36
6

53
.4

18
96

0
1

7
4

8
14

0
1

6
2

3
7

T
re
nd

ed
25

1
39

.7
15

90
0

3
9

8
15

21
0

1
12

1
4

13

51
3

81
.1

18
99

0
1

7
4

6
9

0
1

7
0

3
9

78
3

12
3.
5

–
10

0
0

1
5

2
3

7
0

1
5

0
2

7

C
lu
st
er
ed

16
6

24
.9

16
85

0
5

10
11

16
22

0
1

6
1

2
8

33
9

50
.7

17
97

0
1

5
4

7
11

0
0

4
1

1
5

51
1

76
.3

18
99

0
0

4
2

4
6

0
0

4
0

1
4

123



Environmental and Ecological Statistics (2023) 30:103–129 121

0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

URS

RE

C
F

0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

RE

C
F

0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

RE

C
F

0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

TSS

RE

C
F

0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

RE

C
F

0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

RE

C
F

0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

SGS

RE

C
F

0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

RE

C
F

0.5 1.0 1.5 2.0

0.
0

0.
4

0.
8

RE
C
F

n = 16 n = 36 n = 64 n = 100

Fig. 1 Cumulative distribution functions (CF) of RE for each combination of surface (by row) and sampling
scheme (by column) for continuous populations. Line types correspond to the different sample sizes

respectively.When the two interpolators do not coincide, even if theAB averages tends
to be smaller for the NN interpolator, DD outperforms NN interpolator in terms of
averages of RMSE and in terms of RE. The performance of the two interpolators tend
to be more comparable under surface 3, which presents some discontinuities. Indeed,
from Figs. 1 and 2, it is at once apparent that, for surface 1 and surface 2, under URS
and TSS in case of continuous populations, and under SRSWOR and OPSS in case
of populations of areas, the percentage of points where RE is smaller than 1 is rather
low, while, for surface 3, the percentage is rather close to 50%.

When populations of units are considered, the percentage of simulation runs in
which DD and NN interpolators coincide is mostly higher than 70% for all combina-
tions of surfaces and sampling schemes (Table 3). However NN interpolator shows its
superiority in terms of AB, RMSE and RE (Table 3; Fig. 3).

Therefore, in order to give some practical recommendations, when dealing with
continuous populations and populations of areas, DD interpolator seems to be prefer-
able to NN interpolator, while, with a population of units, NN interpolator should be
adopted.

Finally, the DD interpolator is also implemented when α is chosen in order to
minimize (9) giving rise to very similar results, not reported for the sake of brevity.
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Fig. 2 Cumulative distribution functions (CF) of RE for each combination of surface (by row) and sampling
scheme (by column) for populations of areas. Line types correspond to the different sample sizes

7 Case study

The proposed mapping strategy was applied for the estimation of the surface of the
Shannon diversity index of tree diameter at breast height (DBH) in the experimental
watershed ofBonis forest (139 ha) located in themountain area of SilaGreca (Southern
Italy) and mainly characterized by pinewoods originating from artificial reforestation.
Mapping DBH Shannon diversity index is crucial for evaluating the re-naturalization
processes on-going at various degrees across thewatershed, which in turn are related to
structural heterogeneity. In particular, for any location p of the watershed, the surface
value, given by the DBHShannon diversity index computed on a circular plot of radius
20 m centered at p, was of interest.

Data from a survey implemented in 2016, shared by the Department for Innovation
in Biological, Agro-food and Forest Systems (University of Tuscia), were adopted.
More precisely, plot sampling was performed by locating 36 circular plots of radius
20m by means of URS (see Fig. 4). For each plot, DBHs were recorded and then
grouped into five diameter classes (less than 17.5cm, from 17.5 to 35cm, from 35 to
52.5cm, from 52.5 to 70cm) and the Shannon diversity index was determined.

Surface estimation was performed at the centroids of 10,000 equal-sized polygons
partitioning the study region by means of the IDW interpolator (3) with α̂ = 3 (see
Fig. 5a). The selected smoothing parameter was obtained by the LOOCV procedure

123



Environmental and Ecological Statistics (2023) 30:103–129 123

Fig. 3 Cumulative distribution functions (CF) of RE for each combination of surface (by row) and pattern
(by column) for population of units. Line types correspond to the different sample sizes

described in Sect. 4. From the resulting surface, 1000 bootstrap samples of size 36
were selected according to URS to estimate RMSEs by means of (10).

Owing to the relationship between the re-naturalization process and the structual
heterogeneity, Fig. 5a allows identifying areas characterized by more or less advanced
re-naturalization. Furthermore, low values of uncertainties in a very large portion of
the study region can be easily detected from Fig. 5b. Therefore, the estimated map
can be reasonably considered as a very helpful tool for investigating re-naturalization
processes and, more in general, for watershed management.

8 Conclusions

As pointed out by Maleika (2020) and Joseph and Kang (2011), a common choice
for α is 2, which also constitutes the default value in widely applied GIS software
and also smaller α-values are considered in the literature (see e.g., Bărbulescu et al.
2021). Often, the value of α is selected either by a visual inspection of the result-
ing map or by using a cross-validation approach. If the value is arbitrarily selected
by the researcher, only values of α > 2 should be considered as they guarantee the
design-based consistency of the IDW interpolator (Fattorini et al. 2018a, b, 2019).
In this paper, design-based consistency is proven to hold for α > 2 also when α

is obtained by optimizing any function of the sampled locations. In particular, when
cross-validation techniques are adopted, minimization of the summary statistics quan-
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Fig. 4 Borders of the Bonis forest watershed in Sila Greca (Southern Italy) and the 36 sample plots centers

(a)

0.00

0.33

0.66

0.99

1.32

(b)

0.00

0.09

0.18

0.27

0.36

Fig. 5 Maps of the estimated diversity surface (a) and of the RMSE estimates (b) in the Bonis forest
watershed

tifying the discrepancy between observed and predicted values should be performed
only consideringα values greater than 2. Indeed, these achieved consistency results add
statistical rigor to extensively adopted cross-validation techniques for implementing
IDW interpolation.Moreover, empirical results suggest that, for finite sample sizes, the
performance of the DD interpolator seems to be superior to that of the NN interpolator
when continuous populations and populations of areas are considered. However, their
performance seems to be more comparable when discontinuities are present and no
systematic designs are considered. Thus, with real populations, where discontinuities
are present but the set of discontinuity points has measure zero, both interpolators are
still consistent from a design-based perspective but probably the behavior of the NN
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interpolator may become to be competitive. Finally, for the considered populations of
units, under 3P sampling, the NN interpolator is undoubtedly preferrable.
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Appendix A

In order to derive the asymptotic design-based unbiasedness and consistency of the
DD interpolator following the proofs by Fattorini et al. (2018a, b, 2019) it is enough
to prove Proposition 1.

Proposition 1 Suppose there exists α0 > 2 such that α̂ > α0. For any δ, δ′ > 0 with
δ′ < δ and for each p ∈ B

E[
n∑

i=1

I (Ai (p, δ))wi (p, α̂)] ≤ n
(δ′

δ

)α0 + P(Bn(δ
′, p)) (A1)

where Ai (p, δ) = Qc
p∩{‖c(p) − Pi‖ > δ} and Bn(δ

′, p) = ⋂n
i=1{‖c(p)−Pi‖ > δ′}.

Moreover, it holds

E[supp∈D
n∑

i=1

I (Ai (p, δ))wi (p, α̂)] ≤ n
(δ′

δ

)α0 + P
( ⋃

p∈D
Bn(δ

′, p)
)

(A2)

where D is a suitable countable subset of B.

Proof Since α̂ ≥ α0 and it holds

I (Bc
n(δ

′, p) ∩ Ai (p, δ))wi (p, α̂) ≤ I (Bc
n(δ

′, p) ∩ Ai (p, δ))
(δ)−α̂

∑n
i=1 ‖Pi − p‖−α̂

≤ (δ)−α̂

(δ′)−α̂
,
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for any i = 1, . . . , n, then

I
(
Bn(δ

′, p)
) n∑

i=1

I (Ai (p, δ))wi (p, α̂) ≤ I
(
Bn(δ

′, p)
)

(A3)

and

I
(
Bc
n(δ

′, p)
) n∑

i=1

I (Ai (p, δ))wi (p, α̂) ≤ n(δ)−α̂

(δ′)−α̂
≤ n

(δ′

δ

)α0 . (A4)

Adding (A3) and (A4) and taking expectation, inequality (A1) immediately follows.
Similarly, inequality (A2) holds because

I
(
Bn(δ

′, p)
) n∑

i=1

I (Ai (p, δ))wi (p, α̂) ≤ I
( ⋃

p∈D
Bn(δ

′, p)
)

and

I
(
Bc
n(δ

′, p)
) n∑

i=1

I (Ai (p, δ))wi (p, α̂) ≤ n(δ)−α̂

(δ′)−α̂
≤ n

(δ′

δ

)α0

which imply

sup
p∈D

n∑

i=1

I (Ai (p, δ))wi (p, α̂) ≤ n
(δ′

δ

)α0 + I
( ⋃

p∈D
Bn(δ

′, p)
)
.

��

Appendix B

Proposition 2 Suppose that, for a given sample size n, the sampling design ensures
the existence of δn > 0 such that

Pr{
n⋂

i=1

{‖Pi − c(p)‖ > δn}} = 0 (B5)

with limn δn = 0 and that there exist a vector a ∈ R
2, a �= 0 and a function q �→

o(‖q − p‖) negligible with respect to ‖q − p‖, such that

f (Pi ) = f (p) + 〈a, Pi − c(p)〉 + o(‖Pi − c(p)‖), i = 1, . . . , n. (B6)

Then, there exists n0 such that for any n ≥ n0 and for M large enough, it holds

E[V̂ ∗̂
α,M (p)]

E[{ f̂α̂(p) − f (p)}2]1/2
≤ √

10.
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Proof Since (P∗
1,m, . . . P∗

n,m) for m = 1, . . . , M are independent and identically dis-
tributed random vectors, owing to the strong law of large numbers, conditional to
P1, . . . , Pn , as M increases, V̂ ∗̂

α,M (p) converges almost surely to

V ∗̂
α (p, P1, . . . , Pn) =

(
E∗[{ f̂ ∗̂

α,1(p) − f̂α̂(p)}2
])1/2

where E∗ denotes expectation conditional to P1, . . . , Pn .
Now consider the ratio

r̂ ∗̂
α(p) = {V̂ ∗̂

α,M (p)}2
E[{ f̂α̂(p) − f (p)}2]

= {V̂ ∗
α̂,M (p)}2 − {V ∗̂

α (p, P1, . . . , Pn)}2
E[{ f̂α̂(p) − f (p)}2]

+ {V ∗̂
α (p, P1, . . . , Pn)}2

E[{ f̂α̂(p) − f (p)}2]

that, for M sufficiently large, is equivalent to

r ∗̂
α(p, P1, . . . , Pn) = {V ∗̂

α (p, P1, . . . , Pn)}2
E[{ f̂α̂(p) − f (p)}2]

since V̂ ∗̂
α,M (p) converges almost surely to V ∗̂

α (p, P1, . . . , Pn).

From the elementary inequality (a + b)2 ≤ 2(a2 + b2) it follows that

r ∗̂
α(p, P1, . . . , Pn) ≤ 2E∗[{ f̂ ∗̂

α,1(p) − f (p)}2]
E[{ f̂α̂(p) − f (p)}2]

+ 2
{ f̂α̂(p) − f (p)}2

E[{ f̂α̂(p) − f (p)}2]
.

Since

E{
√
r̂ ∗̂
α(p)} ≤ E{r̂ ∗̂

α(p)}1/2 ≈ E{r ∗̂
α(p, P1, . . . , Pn)}1/2

≤
(2E[{ f̂ ∗̂

α,1(p) − f (p)}2]
E[{ f̂α̂(p) − f (p)}2]

+ 2
)1/2

it is enough to prove that

E[{ f̂ ∗̂
α,1(p) − f (p)}2]

E[{ f̂α̂(p) − f (p)}2]
≤ 4

To this aim, note that

f̂ ∗̂
α,1(p) − f (p) = I (Q∗c

p,1)

n∑

i=1

{ f̂α̂(P∗
i,1) − f (p)}w∗

i,1(p, α̂) = X + Y ,
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where

X = I (Q∗c
p,1)

n∑

i=1

{ f (P∗
i,1) − f (p)}w∗

i,1(p, α̂),

Y = I (Q∗c
p,1)

n∑

i=1

{ f̂α̂(P∗
i,1) − f (P∗

i,1)}w∗
i,1(p, α̂).

Since α̂ = φ(P1, . . . , Pn) and, for large n, α̂ ≈ φ(P∗
1,1, . . . , P

∗
n,1) it follows

E[X2] ≈ E[I (Qc
p)[

n∑

i=1

{ f (Pi ) − f (p)}wi,1(p, α̂)]2] = E[{ f̂α̂(p) − f (p)}2].

Thanks to (B5) and (B6), the function f can be considered linear and, in this case,

E[Y 2] ≈ E[{ f̂α̂(p) − f (p)}2].

Then, for large n, it holds

E[{ f̂ ∗̂
α,1(p) − f (p)}2]

E[{ f̂α̂(p) − f (p)}2]
= E[(X + Y )2]

E[{ f̂α̂(p) − f (p)}2]
≤ 2E[X2] + 2E[Y 2]

E[{ f̂α̂(p) − f (p)}2]
≈ 4.

The proposition is so proven. ��
Remark When a random size sampling design is considered, Proposition 2 continues
to hold under (B5) and (B6) if the expected value of the reciprocal of the sample size
is sufficiently small. Indeed, let N the r.v. denoting the sample size. Then

P
(
N ≤ n0

)
= P

( 1

N ≥ 1

n0

)
≤ E

( 1

N
)
n0

in such a way that the probability that N is greater than the threshold n0 is large.
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