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Abstract
We show how to construct a stick figure of lines in P

3 using the Hadamard product of
projective varieties. Then, applying the results of Migliore and Nagel, we use such a stick
figure to build a Gorenstein set of points with given h−vector h. Since the Hadamard product
is a coordinate-wise product, we show, at the end, how the coordinates of the points, in the
Gorenstein set, can be directly determined.

1 Introduction

In the last few years, the Hadamard products of projective varieties have been widely studied
from the point of view of Projective Geometry and Tropical Geometry. In fact, the Hadamard
products of projective varieties and the Hadamard powers of a projective variety are well-
connected to other operations of varieties: they are the multiplicative analogs of joins and
secant varieties, and in tropical geometry, tropicalized Hadamard products equal Minkowski
sums. It is natural to study properties of this new operation, and see its effects on various
varieties.

From the point of view of Projective Geometry, several directions of research have been
considered. The paper [1], where Hadamard product of general linear spaces is studied,
can be considered the first step in this direction. Successively, the first author, with Calussi,
Fatabbi and Lorenzini, in [2], address the Hadamard product of linear varieties not neces-
sarily in general position, obtaining, in P

2 a complete description of the possible outcomes.
Then, in [3], they address the Hadamard product of not necessarily generic linear varieties
and show that the Hilbert function of the Hadamard product X�Y of two varieties, with
dim(X), dim(Y ) ≤ 1, is the product of the Hilbert functions of the original varieties X and Y
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and that the Hadamard product of two generic linear varieties X and Y is projectively equiv-
alent to a Segre embedding. An important result contained in [1] concerns the construction
of star configurations of points, via Hadamard product. This result found a generalization in
[4] where the authors introduce a new construction, using the Hadamard product, to obtain
star configurations of codimension c of Pn and which they called Hadamard star configura-
tions. Successively, Bahmani Jafarloo and Calussi, in [5], introduce a more general type of
Hadamard star configuration; any star configuration constructed by their approach is called
a weak Hadamard star configuration.

The use of Hadamard products in this context permits a complete control both in the
coordinates of the points forming the star configuration and the equations of the hyperplanes
involved on it. Thus, the question if other interesting geometrical objects can be obtained by
Hadamard products naturally arises. In this paper, we give a first positive answer showing how
to construct a Gorenstein set of points in P3 with given h−vector, via Hadamard products.

Our approach is related to the well-known construction of Migliore and Nagel [6], based
on Liasion Theory, where the Gorenstein set of points is obtained as the intersection of two
aCM curves, linked by a complete intersection which is a stick figure of lines. We want to
point out, one more time, that our method permits a complete control of the coordinates of
the points in the Gorenstein set, and, moreover, this allows one to build such set in an easy
algorithmic way. Briefly speaking, we use suitable values A = {αi , βi }, i = 0, . . . , 3 to
define a line LA and two sets of collinear points {PA

i } and {QA
j }. In Theorem 4.7 we prove

that the set ZA
a,b, consisting of the Hadamard products PA

i �QA
j , for a suitable choice of

indices i and j , is a planar complete intersection. As pointed out in Remark 4.8, it is not true,
in general, that the Hadamard product of two sets of collinear points, in P

3, gives rise to a
planar complete intersection. As a matter of fact, the result follows from an ad hoc choice of
the points PA

i and QA
j . Successively, we compute the Hadamard product ZA

a.b�L
A and, in

Theorem 5.7, we prove that ZA
a.b�L

A is a stick figure of lines, which is exactly the required
one for the construction of the Gorenstein set of points in [6].

The paper is organized in the following way.
In Sect. 2 we recall the definitions of a Hadamard product of varieties and Hadamard

powers. We recall some results about Hadamard transformations, contained in [7], leading
to Theorem 2.10, which proves the connection between the ideals of V and P�V , where
V ⊂ P

n is a variety and P ∈ P
n is a point without zero coordinates.

In Sect. 3 we recall the construction of a Gorenstein set in P
3 from the h−vector, as

introduced in [6].
In Sects. 4 and 5 we define the objects LA, PA

i and QA
j involved in our construction. We

also show some preliminary results about these objects. These results lead to Theorem 4.7
stating that ZA

a,b is a planar complete intersections and to Theorem 5.7, stating that ZA
a,b�L

A
is a stick figure of lines.

Finally, in Sect. 6 we describe the Gorenstein set of points obtained from ZA
a,b�L

A by the
method of Migliore and Nagel.

During the whole paper, we work over the complex field C.
We wish to thank the referee for his/her very accurate reading of the paper and for his/her

helpful suggestions.
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2 Basic facts on Hadamard product of varieties

The Hadamard product of points in a projective space is a coordinate-wise product as in the
case of the Hadamard product of matrices.

Definition 2.1 Let p, q ∈ P
n be two points with coordinates [p0 : p1 : · · · : pn] and

[q0 : q1 : · · · : qn] respectively. If piqi �= 0 for some i , the Hadamard product p�q of p and
q , is defined as

p�q = [p0q0 : p1q1 : · · · : pnqn].
If piqi = 0 for all i = 0, . . . , n then we say p�q is not defined.

This definition extends to the Hadamard product of varieties in the following way.

Definition 2.2 Let X and Y be two varieties in P
n . Then the Hadamard product X�Y is

defined as

X�Y = {p�q : p ∈ X , q ∈ Y , p�q is defined}.
Remark 2.3 The Hadamard product X�Y can be given in terms of composition of the Segre
product and projection. Consider the usual Segre product

X × Y ⊂ P
N

([α0 : · · · : αn], [β0 : · · · : βn]) �→ [α0β0 : α0β1 : · · · : αnβn]
and denote with zi j the coordinates in P

N . Let π : PN ��� P
n be the projection map from

the linear space � defined by equations zii = 0, i = 0, . . . , n. The Hadamard product of X
and Y is

X�Y = π(X × Y ),

where the closure is taken in the Zariski topology.

Remark 2.4 Let K[x] = K [x0, . . . , xn] be a polynomial ring over an algebraically closed
field.

Let I1, I2, . . . Ir be ideals in K[x]. We introduce (n + 1)r variables, grouped in r vectors
y j = (y j0, . . . , y jn), j = 1, 2, . . . , r and we consider the polynomial ring K[x, y] in all
(n + 1)(r + 1) variables.

Let I j ( y j ) be the image of the ideal I j in K[x, y] under the map x �→ y. Then the
Hadamard product I1�I2� · · · �Ir is the elimination ideal

(
I1( y1) + · · · + Ir ( yr ) + 〈xi − y1i y2i · · · yri | i = 0, . . . , n〉) ∩ K[x].

The defining ideal of the Hadamard product X�Y of two varieties X and Y , that is, the ideal
I (X�Y ), equals the Hadamard product of the ideals I (X)�I (Y ) [1, Remark 2.6].

As in [1] we give the following definition.

Definition 2.5 Let Hi ⊂ P
n, i = 0, . . . , n, be the hyperplane xi = 0 and set

�i =
⋃

0≤ j1<...< jn−i≤n

Hj1 ∩ . . . ∩ Hjn−i .
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In other words, �i is the i−dimensional variety of points having at most i + 1 non-zero
coordinates. Thus �0 is the set of coordinates points and �n−1 is the union of the coordinate
hyperplanes. Note that elements of �i have at least n − i zero coordinates. We have the
following chain of inclusions:

�0 = {[1 : 0 : · · · : 0], · · · , [0 : · · · : 0 : 1]} ⊂ �1 ⊂ . . . ⊂ �n−1 ⊂ �n = P
n . (1)

We end this section recalling some useful results contained in [7] and [1].

Lemma 2.6 Let L ⊂ P
n be a linear space of dimension m. Then, for a point P ∈ P

n, P�L is
either empty or it is a linear space of dimension atmostm. If P /∈ �n−1, then dim(P�L) = m.

Lemma 2.7 Let L ⊂ P
n be a linear space of dimension m < n and consider points P, Q ∈

P
n \ �n−1. If P �= Q, L ∩ �n−m−1 = ∅, and 〈P, Q〉 ∩ �n−m−2 = ∅, then P�L �= Q�L.

Lemma 2.8 Let P, Q1, Q2 be three points in P
n with P /∈ �n−1. Then P�Q1 = P�Q2 if

and only if Q1 = Q2.

If I = (i0, . . . , in) is a vector of nonnegative integers, we denote by X I the monomial
xi00 xi11 · · · xinn and by |I | = i0 + · · · + in . Similarly, if P is a point of Pn of coordinates

[p0 : p1 : · · · : pn], we denote by P I the monomial X I evaluated at P , that is pi00 pi11 · · · pinn .
Definition 2.9 Let f ∈ k[x0, . . . , xn] be a homogenous polynomial, of degree d , of the form
f = ∑

|I |=d αI X I and consider a point P ∈ P
n \ �n . The Hadamard transformation of f

by P is the polynomial

f �P =
∑

|I |=d

αI

P I
X I .

Theorem 2.10 Let V ⊂ P
n be a variety and consider a point P ∈ P

n \ �n. If f1, . . . , fs ⊂
k[x0, . . . , xn] is a generating set for I (V ), that is I (V ) = 〈 f1, . . . , fs〉, then f �P

1 , . . . , f �P
s

is a generating set for I (P�V ).

Corollary 2.11 Let V ⊂ P
n be a variety. Then for any point P ∈ P

n \ �0 one has Q ∈ V if
and only if P�Q ∈ P�V .

3 Gorenstein points in P
3 from the h-vector

If X is a subscheme of Pn with saturated ideal I (X), and if t ∈ Z then the Hilbert function
of X is denoted by

hX (t) = dim(k[Pn]t ) − dim(I (X)t ).

If X is arithmetically Cohen-Macaulay (aCM) of dimension d then A = k[Pn]/I (X) has
Krull dimension d + 1 and a general set of d + 1 linear forms forms a regular sequence for
A. Taking the quotient of A by such a regular sequence gives a zero-dimensional Cohen-
Macaulay ring called the Artinian reduction of A. The Hilbert function of the Artinian
reduction of k[Pn]/I (X) is called the h−vector of X . This is a finite sequence of integers.
The h−vector can be also defined as the (d + 1)-th difference of the Hilbert function of X .
Thus, when X is a set of points, its h−vector is the first difference of its Hilbert function.
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Let n and i be positive integers. The i−binomial expansion of n is

n(i) =
(
ni
i

)
+
(
ni−1

i − 1

)
+ · · · +

(
n j

j

)
,

where ni > ni−1 > · · · > n j ≥ j ≥ 1. The i−binomial expansion of n is unique (see, e.g.
[8, Lemma 4.2.6]). Hence we may define

n<i>
(i) =

(
ni

i + 1

)
+
(
ni−1

i

)
+ · · · +

(
n j + 1

j + 1

)
.

Definition 3.1 Let h = (h0, h1, . . . , hi , . . . ) be a finite sequence of nonnegative integers.
Then h is called an O-sequence if h0 = 1 and hi+1 ≤ h<i>

i for all i .

By Macaulay’s theorem we know that O−sequences are the Hilbert functions of standard
graded k-algebras.

Definition 3.2 Let h = (1, h1, . . . , hs−1, 1) be a sequence of nonnegative integers. Then h
is an SI-sequence if:

• hi = hs−i for all i = 0, . . . , s,
• (h0, h1 − h0, . . . , ht − ht−1, 0, . . . ) is an O-sequence, where t is the greatest integer

≤ s
2 .

Stanley, in [9], characterized the h-vectors of all graded Artinian Gorenstein quotients of
k[x0, x1, x2], showing that these are SI−sequence and, moreover, any SI−sequence, with
h1 = 3, is the h-vector of some Artinian Gorenstein quotient of k[x0, x1, x2].

Geramita and Migliore [10], show that every minimal free resolution which occurs for a
Gorenstein artinian ideal of codimension 3, also occurs for some reduced set of points in P3,
a stick figure curve in P

4 and more generally a “generalized” stick figure in P
n . In this case

the points in P
3, with such minimal free resolution, can be found as the intersection of two

stick figures (defined below) which are arithmetically Cohen-Macaulay. It is, however, very
hard to see where these points live, that is describe them in term of their coordinates.

We start recall some basic definitions and results that we find in [6], [11], and [9].

Definition 3.3 A generalized stick figure is a union of linear subvarieties of Pn , of the same
dimension d , such that the intersection of any three components has dimension at most d −2
(the empty set has dimension -1).

In particular, sets of reduced points are stick figure, and a stick figure of dimension d = 1
is nothing more than a reduced union of lines having only nodes as singularities.

Definition 3.4 Let C1, C2 and X be subschemes of Pn of the same dimension, where X is
a Complete Intersection (arithmetically Gorenstein) such that IX ⊂ IC1 ∩ IC2 . Then C1 is
directly CI-linked (directly G-linked) to C2 by X , if

IX : IC1 = IC2 and IX : IC2 = IC1 .

If C1 is directly linked to C2 by X , we will write C1
X∼ C2 and two schemes C1 and C2

are said to be residual to each other. If, in addition, C1 and C2 have no common components
then we say that they are geometrically linked by X .

There is a important fact that we will use about Liaison: the possibility to built arithmeti-
cally Gorenstein zeroscheme starting from two schemes linked by a Complete Intersection.
In fact we have the following theorem.
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Theorem 3.5 (Theorem 4.2.1 in [12]) Let C1, C2 be two aCM subschemes of Pn of codimen-
sion c, with no common components and saturated ideals IC1 and IC2 . If we suppose that
X = C1 ∪ C2 is a codimension c arithmetically Gorenstein scheme, then IC1 + IC2 is the
saturated ideal of a codimension c + 1 arithmetically Gorenstein scheme Y .

Now we recall how Migliore and Nagel, in Sect. 6 of [6], find a reduced arithmetically
Gorenstein zeroscheme, for the case of P3, with given h−vector. This set of points will
result from the intersection of two arithmetically Cohen-Macaulay curves in P3, linked by a
complete intersection curve which is a stick figure.

Let

h = (h0, h1, . . . , hs) = (1, 3, h2, . . . , ht−1, ht , ht , . . . , ht , ht−1, . . . , h2, 3, 1)

be a SI−sequence, and consider the first difference

�h = (1, 2, h2 − h1, . . . , ht − ht−1, 0, 0, . . . , 0, ht−1 − ht , . . . ,−2,−1).

Define two sequences a = (a0, . . . , at ) and g = (g0, . . . , gs+1) in the following way:

ai = hi − hi−1 for 0 ≤ i ≤ t (2)

and

gi =

⎧
⎪⎨

⎪⎩

i + 1 for 0 ≤ i ≤ t

t + 1 for t ≤ i ≤ s − t + 1

s − i + 2 for s − t + 1 ≤ i ≤ s + 1

. (3)

We observe that a1 = g1 = 2, a is a O−sequence since h is a SI−sequence and g is the
h-vector of a codimension two complete intersection. So, we would like to find two curves
C1 and X in P3 with h-vector respectively a and g. In particular it is easy to see that, for that
h-vector g, X is a complete intersection of two surfaces in P3 of degree t + 1 and s − t + 2.

We can get X as a stick figure by taking, as equations of those surfaces, two polynomials
which are the product, respectively, of A0, . . . , At and B0, . . . , Bs−t+1, all generic linear
forms. Considering the entries of a = (a0, . . . at ), Migliore and Nagel build the stick figure
C1 (embedded in X ), as the unionofai consecutive lines in Ai = 0 (always thefirst in B0 = 0),
that is they take a0 lines given by the intersections of A0 = 0 with B0 = 0, . . . , Ba0−1 = 0,
then a1 lines given by the intersections of A1 = 0 with B0 = 0, . . . , Ba1−1 = 0. Here
consecutive is referred to the indices of the forms B0, . . . , Bs−t+1: two lines are consecutive
if they are given by the intersections of a certain Ai = 0 with Bj = 0 and Bj+1 = 0 for
a given j with 0 ≤ j ≤ s − t . Migliore and Nagel proved that C1, build in this way, is
an aCM scheme with h-vector a (Corollary 3.7 in [6]). In this way, if we consider C2, the
residual of C1 in X , the intersection of C1 and C2 is an arithmetically Gorenstein scheme Y
of codimension 3, by Theorem 3.5. This is also a reduced set of points because X , C1 and
C2 are stick figures and it has the desired h-vector by the following theorem:

Theorem 3.6 (Lemma 2.5 in [6]) Let C1, C2, X and Y be defined as above. Let g =
(1, c, g2, . . . , gs, gs+1) be the h-vector of X, and let a = (1, a1, . . . , at ) and b =
(1, b1, . . . , bl) be the h-vectors of C1 and C2, then

bi = gs+1−i − as+1−i

for i ≥ 0. Moreover the sequence di = ai + bi − gi is the first difference of the h-vector
h = (h0, h1, . . . , hs) of Y .

As a matter of fact we have di = hi − hi−1 since:
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• for 0 ≤ i ≤ t we have di = ai = hi − hi−1;
• for t + 1 ≤ i ≤ s − t we have di = bi − gi = 0;
• for s − t + 1 ≤ i ≤ s + 1 we have di = bi − gi = −as+1−i = −(hs+1−i − hs−i ).

Example 3.7 Let h = (1, 3, 4, 3, 1) be a SI-sequence. Consider the first difference of h, i.e.
�h = (1, 2, 1,−1,−2,−1).

So, t = 2 and g = (1, 2, 3, 3, 2, 1) is the h-vector of X , a stick figure which is the
complete intersection of F1 = ∏2

i=0 Ai and F2 = ∏3
i=0 Bi , where Ai and Bi are general

linear forms.
Now, we call Li, j the intersection between Ai = 0 and Bj = 0. Since a = (1, 2, 1), then

C1 = L0,0 ∪ L1,0 ∪ L1,1 ∪ L2,0 is the scheme, in X , with h-vector a.
So, it is clear that the residual C2 of C1 in X is the union of the lines of X which aren’t

components in C1. Then the reduced set of points Y with h-vector (1, 3, 4, 3, 1) consists of
12 points which exactly are:

• 3 points on L0,0, intersections between L0,0 and L0,1, L0,2 and L0,3;
• 2 points on L1,0, intersections between L1,0 and L1,2, L1,3;
• 4 points on L1,1, intersections between L1,1 and L1,2, L1,3, L0,1 and L2,1;
• 3 points on L2,0, intersections between L2,0 and L2,1, L2,2 and L2,3.

4 Planar complete intersections via Hadamard product

In this section we show how to get a zero-dimensional planar complete intersection ZA
a,b, as

the product of two sets of collinear points. Observe that, by Corollary 4.5 in [2], if the two sets
of collinear points lie in two general lines, in P

3, then their Hadamard product gives points
on a quadric. However, this could also happen when the lines are coplanar, as explained in
the following Remark 4.8. Hence, for our construction of ZA

a,b it is mandatory to carefully

choose the coordinates of the points. We start by considering four points in P
1 without zero

coordinates.
Let A be a collection of four distinct points Ai = [αi : βi ] in P

1 \ �0, for i = 0, . . . , 3,
and let {

α0x0 + α1x1 + α2x2 + α3x3 = 0

β0x0 + β1x1 + β2x2 + β3x3 = 0
(4)

be the equations of a line LA in P
3.

We define two families of points in P3 associated to the setA (and hence to the line LA):

PA
k =

[
α0 + kβ0

α0
: α1 + kβ1

α1
: α2 + kβ2

α2
: α3 + kβ3

α3

]
k ∈ N

and

QA
k =

[
kα0 + β0

β0
: kα1 + β1

β1
: kα2 + β2

β2
: kα3 + β3

β3

]
k ∈ N.

Note that PA
0 = QA

0 = [1 : 1 : 1 : 1].
Example 4.1 Consider A0 = [1 : 1], A1 = [1 : 2], A2 = [1 : 3], and A3 = [1 : 4] giving, by
(4), the line

LA :
{
x0 + x1 + x2 + x3 = 0

x0 + 2x1 + 3x2 + 4x3 = 0
.
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One has

PA
1 = [2 : 3 : 4 : 5] , PA

2 = [3 : 5 : 7 : 9] , PA
3 = [4 : 7 : 10 : 13] ,

PA
4 = [5 : 9 : 13 : 17] , . . .

and

QA
1 =

[
2 : 3

2
: 4
3

: 5
4

]
, QA

2 =
[
3 : 2 : 5

3

3

2

]
, QA

3 =
[
4 : 5

2
: 2 : 7

4

]
,

QA
4 =

[
5 : 3 : 7

3
: 2
]

, . . .

Remark 4.2 The condition that the four points Ai are distinct implies αi
βi

�= α j
β j

for any

0 ≤ i < j ≤ 3. In particular this fact assure us that LA ∩ �1 = ∅. As a matter of fact,
suppose that, for example, LA intersects �1 in the point [0 : 0 : γ2 : γ3], with γi �= 0, for
i = 2, 3. Then, from (4), we get

{
α2γ2 + α3γ3 = 0

β2γ2 + β3γ3 = 0

which gives

α2

α3
= −γ3

γ2
= β2

β3

or equivalently α2
β2

= α3
β3

which implies A2 = A3.

Notice that

PA
k = [1 + k β0

α0
: 1 + k β1

α1
: 1 + k β2

α2
: 1 + k β3

α3
] =

= (1 − k)[1 : 1 : 1 : 1] + k[1 + β0
α0

: 1 + β1
α1

: 1 + β2
α2

: 1 + β3
α3

] =

= (1 − k)PA
0 + kPA

1

and similarly QA
k = (1 − k)QA

0 + kQA
1 , for all k ≥ 2. Hence the points PA

k lie in the line
	P spanned by PA

0 and PA
1 and the points QA

k lie in the line 	Q spanned by QA
0 and QA

1 .
In particular, for any fixed k, the points PA

0 , . . . , PA
k are collinear and, similarly, the points

QA
0 , . . . , QA

k are collinear.
Consider now the matrices

M =
⎛

⎝
α0β0 α1β1 α2β2 α3β3

α2
0 α2

1 α2
2 α2

3
β2
0 β2

1 β2
2 β2

3

⎞

⎠ N =
(

α0 α1 α2 α3

β0 β1 β2 β3

)

and denote by |M(i)| the determinant of the submatrix of M with the i−th column removed
and by |N (i, j)| the determinant of the submatrix of N with the i−th and j−th columns
removed.

Proposition 4.3 The defining equations in k[P3] of the lines of 	P and 	Q are:

	P :
{∑3

t=0(−1)t+1αtβt |M(t + 1)|xt = 0
∑3

t=1(−1)tαt |N (1, t + 1)|xt = 0
,
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Gorenstein points in P3 via... 513

	Q :
{∑3

t=0(−1)t+1αtβt |M(t + 1)|xt = 0
∑3

t=1(−1)tβt |N (1, t + 1)|xt = 0
.

Moreover 	P and 	Q are two distinct coplanar lines.

Proof We prove the first part of the statement only for 	p since the proof is identical for 	Q .
The equations of 	P are given by the equation of the plane through PA

0 , PA
1 and QA

1 ,
∣
∣
∣
∣
∣
∣
∣
∣

x0 x1 x2 x3
1 1 1 1

1 + β0
α0

1 + β1
α1

1 + β2
α2

1 + β3
α3

1 + α0
β0

1 + α1
β1

1 + α2
β2

1 + α3
β3

∣
∣
∣
∣
∣
∣
∣
∣

= 0

which is, up to rescaling,

3∑

t=0

(−1)t+1αtβt |M(t + 1)|xt = 0

and by the equation of the plane through PA
0 , PA

1 and [1 : 0 : 0 : 0]
∣∣∣∣∣∣∣∣

x0 x1 x2 x3
1 1 1 1

1 + β0
α0

1 + β1
α1

1 + β2
α2

1 + β3
α3

1 0 0 0

∣∣∣∣∣∣∣∣

= 0,

which is, up to rescaling

3∑

t=1

(−1)tαt |N (1, t + 1)|xt = 0.

To prove the second part of the statement notice that 	P and 	Q intersect at [1 : 1 : 1 : 1].
Thus it is enough to prove that 	P and 	Q are distinct. To this aim, observe that the point
SP = [ β0

α0
: β1

α1
: β2

α2
: β3

α3
] = PA

1 − PA
0 lies in 	P and the point SQ = [α0

β0
: α1

β1
: α2

β2
: α3

β3
] =

QA
1 − QA

0 lies in 	Q . Suppose that 	P = 	Q . Then the points [1 : 1 : 1 : 1], SP and SQ
would be collinear, that is the matrix

⎛

⎜
⎝

1 1 1 1
β0
α0

β1
α1

β2
α2

β3
α3

α0
β0

α1
β1

α2
β2

α3
β3

⎞

⎟
⎠

would have rank 2. Applying the operations R2 − β0
α0
R1 → R2 and R3 − α0

β0
R1 → R3 (and

then Ci − C1) we get the matrix
⎛

⎜
⎝

1 0 0 0
0 α0β1−α1β0

α0α1

α0β2−α2β0
α0α2

α0β3−α3β0
α0α3

0 −α0β1−α1β0
β0β1

−α0β2−α2β0
β0β2

−α0β3−α3β0
β0β3

⎞

⎟
⎠ .

Then we apply the operation R3 + α0α1
β0β1

R2 → R3 obtaining
⎛

⎜
⎝

1 0 0 0
0 α0β1−α1β0

α0α1

α0β2−α2β0
α0α2

α0β3−α3β0
α0α3

0 0 (α0β2−α2β0)(α1β2−α2β1)
α2β0β1β2

(α0β3−α3β0)(α1β3−α3β1)
α3β0β1β3

⎞

⎟
⎠ .
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Since α0
β0

�= α1
β1
, by hypothesis, we can simplify the second row obtaining
⎛

⎜
⎝

1 0 0 0
0 α0β1−α1β0

α0α1
0 0

0 0 (α0β2−α2β0)(α1β2−α2β1)
α2β0β1β2

(α0β3−α3β0)(α1β3−α3β1)
α3β0β1β3

⎞

⎟
⎠ .

Thus the matrix would have rank 2 if and only if

(α0β2 − α2β0)(α1β2 − α2β1) = 0 and (α0β3 − α3β0)(α1β3 − α3β1) = 0.

Such equalities are verified in the following cases

• α0
β0

= α2
β2

= α3
β3
,

• α1
β1

= α2
β2

= α3
β3
,

• α0
β0

= α3
β3

and α1
β1

= α2
β2
,

• α0
β0

= α2
β2

and α1
β1

= α3
β3
,

which give contradictions since the points Ai are distinct. ��
By the previous proposition, we immediately get the following

Corollary 4.4 One has PA
i �= QA

j , for every i, j ≥ 1.

Proof Suppose that, for some i, j ≥ 1 one has PA
i = QA

j . Then 	P and 	Q would intersect

in the points [1, 1, 1, 1] and PA
i (= QA

j ) giving 	P = 	Q , which is a contradiction, by
Proposition 4.3. ��
Example 4.5 Consider Example 4.1. In this case one has

M =
⎛

⎝
1 2 3 4
1 1 1 1
1 4 9 16

⎞

⎠ N =
(
1 1 1 1
1 2 3 4

)

from which we get

|M(1)|:= − 2 |M(2)|:= − 6 |M(3)|:= − 6 |M(4)|:= − 2

and

|N (1, 2)|:=1 |N (1, 3)|:=2 |N (1, 4)|:=1 .

Hence the line 	P through the points PA
k is defined, up to rescaling, by the equations

	P :
{
2x0 − 12x1 + 18x2 − 8x3 = 0

−x1 + 2x2 − x3 = 0

and the line 	Q through the points QA
k is defined, up to rescaling, by the equations

	Q :
{
2x0 − 12x1 + 18x2 − 8x3 = 0

−2x1 + 6x2 − 4x3 = 0
.

We add, now, another condition on the points in A. Let Wi be the point [1 : −i], then we
define the set of points W as

W =
⋃

i∈N∗

(
Wi ∪ W 1

i

)

where N∗ = N \ {0}.
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Remark 4.6 It is easy to verify that if Ai /∈ W , for i = 0, . . . , 3, then PA
i /∈ �2, for any i ,

and QA
j /∈ �2, for any j , that is such points do not have any zero coordinate. This fact will

be fundamental in the successive parts of the paper in order to apply Lemmas 2.6, 2.7 and
2.8. Clearly, Ai /∈ W if its coordinates are both strictly positive.

Denote by I(n) = {i0, i1, . . . , in−1} a set of nonnegative integers with 0 = i0 < i1 <

· · · < in−1. Given positive integers a and b, we define the set of points ZA
a,b by the pair-wise

Hadamard product of points PA
i and QA

j as

ZA
a,b = {PA

i �QA
j : i ∈ I(a), j ∈ I(b)}.

We can represent these sets in matrix form as:
⎛

⎜
⎜
⎜
⎜
⎝

PA
i0

�QA
i0

PA
i0

�QA
i1

· · · PA
i0

�QA
ib−1

PA
i1

�QA
i0

PA
i1

�QA
i1

· · · PA
i1

�QA
ib−1

...
...

. . .
...

PA
ia−1

�QA
i0

PA
ia−1

�QA
i1

· · · PA
ia−1

�QA
ib−1

⎞

⎟
⎟
⎟
⎟
⎠

.

Observe that, by the conditions on I(a) and I(b) one has

PA
i0 = PA

0 = [1 : 1 : 1 : 1] = QA
0 = QA

i0 .

Theorem 4.7 If Ai /∈ W , for i = 0, . . . , 3, then, for any positive integers a and b, ZA
a,b is a

planar complete intersection of ab points.

Proof Consider i, k ∈ I(a) and j, l ∈ I(b). We prove first that PA
i �QA

j = PA
k �QA

l if and

only if i = k and j = l, implying that ZA
a,b is a set of cardinality ab.

Suppose that PA
i �QA

j = PA
k �QA

l and distinguish two cases. First, we consider the
case in which two indices are equal. Suppose, for example, that i = k and j �= l, i.e.
PA
i �QA

j = PA
i �QA

l . Since, by Remark 4.6, PA
i /∈ �2, one has, by Lemma 2.8, that

QA
j = QA

l , which is a contradiction since j �= l. The same approach works if i �= k and
j = l. Let us consider the case i �= k and j �= l. Looking at the coordinates, the condition
PA
i �QA

j = PA
k �QA

l , is

[
(α0+iβ0)( jα0+β0)

α0β0
: (α1+iβ1)( jα1+β1)

α1β1
: (α2+iβ2)( jα2+β2)

α2β2
: (α3+iβ3)( jα3+β3)

α3β3

]
=

=
[

(α0+kβ0)(lα0+β0)
α0β0

: (α1+kβ1)(lα1+β1)
α1β1

: (α2+kβ2)(lα2+β2)
α2β2

: (α3+kβ3)(lα3+β3)
α3β3

]

or equivalently

(αs + iβs)( jαs + βs)

(αs + kβs)(lαs + βs)
= λ for s = 0, . . . , 3

for some λ �= 0. This implies

(α0 + iβ0)( jα0 + β0)

(α0 + kβ0)(lα0 + β0)
= (αs + iβs)( jαs + βs)

(αs + kβs)(lαs + βs)
for s = 1, . . . , 3.

Hence [α0 : β0], [α1 : β1], [α2 : β2] and [α3 : β3] must satisfy

(α0+iβ0)( jα0+β0)(αs+kβs)(lαs+βs)−(αs+iβs)( jαs+βs)(α0+kβ0)(lα0+β0) = 0 (5)
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for s = 1, . . . , 3. If we rewrite (5) as an equation in αs , we get τ2α2
s + τ1αs + τ0 = 0 where

τ2 = (α0 + iβ0)( jα0 + β0)l − (α0 + kβ0)(lα0 + β0) j,

τ1 = [(α0 + iβ0)( jα0 + β0)(kl + 1) − (α0 + kβ0)(lα0 + β0)(i j + 1)]βs,

τ0 = [(α0 + iβ0)( jα0 + β0)k − (α0 + kβ0)(lα0 + β0)i]β2
s .

The discriminant of τ2α
2
s + τ1αs + τ0 turns to be equal to

β2
s ( jα

2
0 − lα2

0 − i jlα2
0 + jklα2

0 + 2 jkα0β0 − 2ilα0β0 − iβ2
0 + kβ2

0 + i jkβ2
0 − iklβ2

0 )
2

which gives, after some tedious computation, the solutions of αs as

αs = α0βs

β0
or αs = ρβs, for s = 1, . . . , 3,

where

ρ = ( jk − il)α0 + (i jk − i − ikl + k)β0

(i jl − j + l − jkl)α0 + (il − jk)β0
.

Computing the solutions of (5) for s = 1, . . . , 3, we obtain that PA
i �QA

j = PA
k �QA

l if one
of the following cases is verified

(i) α1 = α0β1
β0

, α2 = α0β2
β0

, α3 = α0β3
β0

;

(ii) α1 = α0β1
β0

, α2 = α0β2
β0

, α3 = ρβ3;

(iii) α1 = α0β1
β0

, α2 = ρβ2, α3 = α0β3
β0

;

(vi) α1 = α0β1
β0

, α2 = ρβ2, α3 = ρβ3;

(v) α1 = ρβ1, α2 = α0β2
β0

, α3 = α0β3
β0

;

(vi) α1 = ρβ1, α2 = α0β2
β0

, α3 = ρβ3;

(vii) α1 = ρβ1, α2 = ρβ2, α3 = α0β3
β0

;
(viii) α1 = ρβ1, α2 = ρβ2, α3 = ρβ3.

However, all cases implies that there are at least two pairs of indices (ρ1, ρ2) and (ρ3, ρ4)

with
αρ1
βρ1

= αρ2
βρ2

and
αρ3
βρ3

= αρ4
βρ4

which is a contradiction since the points Ai must be distinct.

Hence PA
i �QA

j = PA
k �QA

l if and only if i = k and j = l and then ZA
a,b consists of ab

points.
To prove that ZA

a,b is a planar complete intersection, notice first that, since, PA
i /∈ �2, for

i ∈ I(a) and QA
j /∈ �2 for j ∈ I(b), we can apply Lemma 2.6 obtaining that PA

i �	Q is a

line for i ∈ I(a) and QA
j �	P is a line for j ∈ I(b). Moreover, by Corollary 2.11, one has

PA
i �QA

j ∈ QA
j �	P for i ∈ I(a)

PA
i �QA

j ∈ PA
i �	Q for j ∈ I(b)

that is the points PA
i0

�QA
j , . . . , PA

ia−1
�QA

j lie in the line Q j�	
P , for j ∈ I(b) and similarly

the points PA
i �QA

i0
, . . . , PA

i �QA
ib−1

lie in the line Pi�	Q , for i ∈ I(a).

For any i and j the lines Pi�	Q and Q j�	
P clearly intersect in the point PA

i �QA
j , hence,

as i varies in I(a) and j varies in I(b), the ab intersections Pi�	Q ∩ Q j�	
P give the ab

points in ZA
a,b. ��
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(iii) (iv)
Fig. 1 Four examples of ZAa,b for different choices of I(a) and I(b)

In Fig. 1 we can see four different examples of ZA
a,b. The example in (i) is for a = b = 2

with I(a) = I(b) = {0, 1} and the white points are represented to show the behaviour
of the families of points PA and QA. The example in (i i) is for a = 4 and b = 5 with
I(a) = {0, 1, 2, 3} and I(b) = {0, 1, 2, 3, 4}. The examples in (i i i) and (iv) are for a = 2
and b = 3, but, while in (i i i) we use I(a) = {0, 1} and I(b) = {0, 1, 2}, in (iv) we use
I(a) = {0, 2} and I(b) = {0, 2, 4}.

Remark 4.8 In [2], the authors prove that the Hadamard product of two generic lines is a
quadric surface. This leads to the question if the Hadamard product of two coplanar lines is
a plane. The following example shows that even when the lines 	 and 	′ are coplanar, 	�	′
might still be a quadric. Consider the points

S1 = [1, 1, 1, 1], S2 =
[
3,

3

2
, 5,

7

2

]
, S3 =

[
3

2
, 3,

4

3
,
7

5

]

and the coplanar lines

	 = S1S2 	′ = S1S3.
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One has

	 :
{
3x1 + 4x2 − 7x3 = 0

7x0 − 4x1 − 3x2 = 0

	′ :
{
x1 + 24x2 − 25x3 = 0

10x0 − x1 − 9x2 = 0
.

Using the Singular procedure HPr, described in Sect. 5 of [2], we can easily see that
	�	′ is a quadric:
> ring R=0,(x(0..3)),dp;
> ideal J1=3*x(1)+4*x(2)-7*x(3),7*x(0)-4*x(1)-3*x(2);
> ideal J2=x(1)+24*x(2)-25*x(3), 10*x(0)-x(1)-9*x(2);
> ideal K=HPr(J1,J2,3);
> K;
K[1]=1120*x(0)ˆ2-68*x(0)*x(1)+x(1)ˆ2+1056*x(0)*x(2)-
-30*x(1)*x(2)+216*x(2)ˆ2-3500*x(0)*x(3)+110*x(1)*x(3)-
-1530*x(2)*x(3)+2625*x(3)ˆ2

On the other hand, our construction shows that there are cases in which 	�	′ is a plane.
As an example consider the points

A0 = [1, 2], A1 = [2, 1], A2 = [1, 3], A3 = [2, 5]
giving

PA
0 = QA

0 = [1, 1, 1, 1], PA
1 = [3, 3

2
, 4,

7

2
], QA

1 = [3
2
, 3,

4

3
,
7

5
].

For the lines 	P = PA
0 PA

1 and 	Q = QA
0 QA

1 , we know, by Theorem 4.7 that 	�	′ is a plane.
If we write down the equations of the two lines

	P :
{
x1 + 4x2 − 5x3 = 0

5x0 − 2x1 − 3x2 = 0

	Q :
{
x1 + 24x2 − 25x3 = 0

10x0 − x1 − 9x2 = 0
.

we can do a direct check in Singular:
> ring R=0,(x(0..3)),dp;
> ideal I1=x(1)+4*x(2)-5*x(3),5*x(0)-2*x(1)-3*x(2);
> ideal I2=x(1)+24*x(2)-25*x(3), 10*x(0)-x(1)-9*x(2);
> ideal K=HPr(I1,I2,3);
> K;
K[1]=40*x(0)-x(1)+36*x(2)-75*x(3)

Hence we have two examples of coplanar lines with different behaviour of their Hadamard
product. In these examples the lines are are generated by respectively the following points

S1 = [1, 1, 1, 1], S2 = [
3, 3

2 , 5,
7
2

]
, S3 = [ 3

2 , 3,
4
3 ,

7
5

]

PA
0 = [1, 1, 1, 1], PA

1 = [
3, 3

2 , 4,
7
2

]
, QA

1 = [ 3
2 , 3,

4
3 ,

7
5

]
.

Notice that S1 = PA
0 , and S3 = QA

1 while S2 and PA
1 differ only by an entry.
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Corollary 4.9 Let ZA
a,b as in Theorem 4.7, and let

h = ∑3
t=0(−1)t+1αtβt |M(t + 1)|xt = 0

f = ∑3
t=1(−1)tαt |N (1, t + 1)|xt = 0

g = ∑3
t=1(−1)tβt |N (1, t + 1)|xt = 0.

Then the ideal of ZA
a,b is generated by h, f

�QA
i0 · · · f �QA

ib−1 , g
�PA

i0 · · · g�PA
ia−1 .

Proof Recall that h and f are the equation of 	P and h and g are the equations of 	Q . By

Theorem 2.10, the equations of QA
j �	P are given by h�QA

j and f �QA
j and the equations

of PA
i �	Q are given by h�PA

i and g�PA
i . By Theorem 4.7, since all the lines QA

j �	P and

PA
i �	Q are coplanar, then one of the generators for the ideal of each of them can be chosen

to be the equation of the plane H where they lie. Since this plane contains PA
0 �QA

0 = [1 :
1 : 1 : 1], PA

i1
�QA

0 = PA
i1

and PA
0 �QA

i1
= QA

i1
, we get that the equation of H is exactly

h. Thus the ideal of QA
j �	P is generated by h and f �QA

j , while the ideal of PA
i �	Q is

generated by h and g�PA
i , from which we get, by Theorem 4.7, that ZA

a,b is generated by

h, f
�QA

i0 · · · f �QA
ib−1 , g

�PA
i0 · · · g�PA

ia−1 . ��

5 Stick figures of lines via Hadamard product

In this section we show how to get, via the Hadamard product, the stick figure of lines, in
P
3, required for the construction in [6].
To this aim, we consider, for a suitable choice of I(a) and I(b), the set ZA

a,b defined in

the previous section, and the line LA defined in (4) and we take their Hadamard product
ZA
a,b�L

A.

Before proving that ZA
a,b�L

A is a stick figure, we need two preliminary lemmas.

Lemma 5.1 If Ai /∈ W , for i = 0, . . . , 3, then 	P ∩ �0 = ∅ and 	Q ∩ �0 = ∅.

Proof We prove the statement only for the 	P since the proof is identical for 	Q . Suppose
that, for example, 	P intersects �0 in the point E0 = [1 : 0 : 0 : 0]. Notice that PA

j �= E0,

for all j , since Ai /∈ W for i = 0, . . . , 3. In particular, PA
1 has all coordinates different from

zero. Since we are assuming that E0 ∈ 	P , E0 can be written as a linear combination of PA
0

and PA
1 , that is

[1 : 0 : 0 : 0] = λ[1 : 1 : 1 : 1] + μ

[
1 + β0

α0
: 1 + β1

α1
: 1 + β2

α2
: 1 + β3

α3

]
(6)

which is possible only if

λ

μ
= −β1 + α1

α1
and

α1

β1
= α2

β2
= α3

β3

which is a contradiction since the points Ai are distinct. ��
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Lemma 5.2 Let ri jkl be the line through PA
i �QA

j and PA
k �QA

l . If Ai /∈ W , for i = 0, . . . , 3,
then ri jkl ∩ �0 = ∅.
Proof We distinguish three cases:

(1) i = k and j �= l,
(2) i �= k and j = l,
(3) i �= k and j �= l.

If we are in case (1), the line through PA
i �QA

j and PA
i �QA

l is the line PA
i �	Q which does

not intersects �0 by Corollary 2.11 and Lemma 5.1. Similarly, if we are in case (2), the line
through PA

i �QA
j and PA

k �QA
j is the line QA

j �	P which, again, does not intersects �0 by
Corollary 2.11 and Lemma 5.1.

For case (3), suppose that ri jkl intersects �0 in E0 = [1 : 0 : 0 : 0] (the other cases being
similar). Notice that PA

i �QA
j �= E0, and PA

k �QA
l �= E0 since Ai /∈ W for i = 0, . . . , 3.

Since we are assuming that E0 ∈ ri jkl , E0 can be written as a linear combination of PA
i �QA

j

and PA
k �QA

l

[1 : 0 : 0 : 0] =

λ
[

(α0+iβ0)( jα0+β0)
α0β0

: (α1+iβ1)( jα1+β1)
α1β1

: (α2+iβ2)( jα2+β2)
α2β2

: (α3+iβ3)( jα3+β3)
α3β3

]
+

μ
[

(α0+kβ0)(lα0+β0)
α0β0

: (α1+kβ1)(lα1+β1)
α1β1

: (α2+kβ2)(lα2+β2)
α2β2

: (α3+kβ3)(lα3+β3)
α3β3

]

(7)

and looking at all the coordinates but the first, this means

λ
(αs + iβs)( jαs + βs)

αsβs
= −μ

(αs + kβs)(lαs + βs)

αsβs
for s = 1, 2, 3

or equivalently

− μ

λ
= (αs + iβs)( jαs + βs)

(αs + kβs)(lαs + βs)
for s = 1, 2, 3 (8)

which gives rise to the same set of equations (5) of Theorem 4.7. Arguing as in the proof
of Theorem 4.7, but considering that now we have one less equation (since we are not
considering the first coordinate), we get that any non-zero solution of (8) requires that there
is a pair (i1, i2) of indices such that

αi1
βi1

= αi2
βi2

which is a contradiction since the points Ai

are distinct. ��
Coming back to ZA

a,b�L
A, we first prove that no pairs of points PA

i �QA
j , PA

k �QA
l ∈ ZA

a,b

can give PA
i �QA

j �LA = PA
k �QA

l �LA.

Proposition 5.3 In the same hypothesis of Theorem 4.7, ZA
a,b�L

A is a set of ab distinct lines,
for any choice of positive integers a and b and sets I(a) and I(b).

Proof Since, by hypothesis, PA
i �QA

j /∈ �2, by Lemma 2.6, one has that PA
i �QA

j �LA is a

line for all i and j with i ∈ I(a) and j ∈ I(b). Let us show now that if PA
i �QA

j �= PA
k �QA

l

then PA
i �QA

j �LA �= PA
k �QA

l �LA. We distinguish three cases.

If i = k and j �= l then PA
i �QA

j �= PA
i �QA

l . By Lemma 5.1, 	Q ∩ �0 = ∅ which

implies PA
i �	Q ∩ �0 = ∅. Since

(i) PA
i �QA

j , PA
i �QA

l /∈ �2,
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(ii) LA /∈ �1,
(iii) 〈PA

i �QA
j , PA

i �QA
l 〉 = PA

i �	Q ,

we can apply Lemma 2.7, obtaining PA
i �QA

j �LA �= PA
i �QA

l �LA.
The case i �= k and j = l is similar to the previous one. The same proof, but using the

line 	P , gives PA
i �QA

j �LA �= PA
k �QA

j �LA.

Finally if i �= k and j �= l then PA
i �QA

j �= PA
k �QA

l . By Lemma 5.2, ri jkl ∩ �0 = ∅.
Since

(i) PA
i �QA

j , PA
k �QA

l /∈ �2,

(ii) LA /∈ �1,
(iii) 〈PA

i �QA
j , PA

k �QA
l 〉 = ri jkl .

we can again apply Lemma 2.7, obtaining PA
i �QA

j �LA �= PA
k �QA

l �LA.

Thus we conclude that ZA
a,b�L

A consists of ab distinct lines. ��

We study now the intersection properties of the set ZA
a,b�L

A. More precisely we have the
following.

Proposition 5.4 Assume that 1 /∈ I(a) ∪ I(b). In the same hypothesis of Theorem 4.7, let
PA
i �QA

j and PA
k �QA

l in ZA
a,b. Then PA

i �QA
j �LA ∩ PA

k �QA
l �LA �= ∅ if and only if i = k

or j = l. Moreover,

(i) if j �= l, the intersection PA
i �QA

j �LA ∩ PA
i �QA

l �LA is given by

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

− (α0+iβ0)( jα0+β0)(lα0+β0)
α0β0(α0β1−α1β0)(α0β2−α2β0)(α0β3−α3β0)

(α1+iβ1)( jα1+β1)(lα1+β1)
α1β1(α0β1−α1β0)(α1β2−α2β1)(α1β3−α3β1)

− (α2+iβ2)( jα2+β2)(lα2+β2)
α2β2(α0β2−α2β0)(α1β2−α2β1)(α2β3−α3β2)

(α3+iβ3)( jα3+β3)(lα3+β3)
α3β3(α0β3−α3β0)(α1β3−α3β1)(α2β3−α3β2)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

; (9)

(ii) if i �= k, the intersection PA
i �QA

j �LA ∩ PA
k �QA

j �LA is given by

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

− (α0+iβ0)(α0+kβ0)( jα0+β0)
α0β0(α0β1−α1β0)(α0β2−α2β0)(α0β3−α3β0)

(α1+iβ1)(α1+kβ1)( jα1+β1)
α1β1(α0β1−α1β0)(α1β2−α2β1)(α1β3−α3β1)

− (α2+iβ2)(α2+kβ2)( jα2+β2)
α2β2(α0β2−α2β0)(α1β2−α2β1)(α2β3−α3β2)

(α3+iβ3)(α3+kβ3)( jα3+β3)
α3β3(α0β3−α3β0)(α1β3−α3β1)(α2β3−α3β2)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

. (10)

Proof By Theorem 2.10 one has that the equations of PA
i �QA

j �LA are

{
(α0x0 + α1x1 + α2x2 + α3x3)

�(PA
i �QA

j ) = 0

(β0x0 + β1x1 + β2x2 + β3x3)
�(PA

i �QA
j ) = 0
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which can be written explicitly as
⎧
⎨

⎩

α2
0β0

(α0+iβ0)( jα0+β0)
x0 + α2

1β1
(α1+iβ1)( jα1+β1)

x1 + α2
2β2

(α2+iβ2)( jα2+β2)
x2 + α2

3β3
(α3+iβ3)( jα3+β3)

x3 = 0
α0β

2
0

(α0+iβ0)( jα0+β0)
x0 + α1β

2
1

(α1+iβ1)( jα1+β1)
x1 + α2β

2
2

(α2+iβ2)( jα2+β2)
x2 + α3β

2
3

(α3+iβ3)( jα3+β3)
x3 = 0

.

Similarly the equations of PA
k �QA

l �LA are
{

(α0x0 + α1x1 + α2x2 + α3x3)�(P
A
k �QA

l ) = 0

(β0x0 + β1x1 + β2x2 + β3x3)�(P
A
k �QA

l ) = 0

which can be written explicitly as
⎧
⎨

⎩

α2
0β0

(α0+kβ0)(lα0+β0)
x0 + α2

1β1
(α1+kβ1)(lα1+β1)

x1 + α2
2β2

(α2+kβ2)(lα2+β2)
x2 + α2

3β3
(α3+kβ3)(lα3+β3)

x3 = 0
α0β

2
0

(α0+kβ0)(lα0+β0)
x0 + α1β

2
1

(α1+kβ1)(lα1+β1)
x1 + α2β

2
2

(α2+kβ2)(lα2+β2)
x2 + α3β

2
3

(α3+kβ3)(lα3+β3)
x3 = 0

.

Passing to the system of the two lines PA
i �QA

j �LA and PA
k �QA

l �LA

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α2
0β0

(α0+iβ0)( jα0+β0)
x0 + α2

1β1
(α1+iβ1)( jα1+β1)

x1 + α2
2β2

(α2+iβ2)( jα2+β2)
x2 + α2

3β3
(α3+iβ3)( jα3+β3)

x3 = 0
α0β

2
0

(α0+iβ0)( jα0+β0)
x0 + α1β

2
1

(α1+iβ1)( jα1+β1)
x1 + α2β

2
2

(α2+iβ2)( jα2+β2)
x2 + α3β

2
3

(α3+iβ3)( jα3+β3)
x3 = 0

α2
0β0

(α0+kβ0)(lα0+β0)
x0 + α2

1β1
(α1+kβ1)(lα1+β1)

x1 + α2
2β2

(α2+kβ2)(lα2+β2)
x2 + α2

3β3
(α3+kβ3)(lα3+β3)

x3 = 0
α0β

2
0

(α0+kβ0)(lα0+β0)
x0 + α1β

2
1

(α1+kβ1)(lα1+β1)
x1 + α2β

2
2

(α2+kβ2)(lα2+β2)
x2 + α3β

2
3

(α3+kβ3)(lα3+β3)
x3 = 0

(11)

one has the following matrix of coefficients

M =

⎛

⎜⎜⎜⎜⎜
⎝

α2
0β0

(α0+iβ0)( jα0+β0)

α2
1β1

(α1+iβ1)( jα1+β1)

α2
2β2

(α2+iβ2)( jα2+β2)

α2
3β3

(α3+iβ3)( jα3+β3)
α0β

2
0

(α0+iβ0)( jα0+β0)

α1β
2
1

(α1+iβ1)( jα1+β1)

α2β
2
2

(α2+iβ2)( jα2+β2)

α3β
2
3

(α3+iβ3)( jα3+β3)
α2
0β0

(α0+kβ0)(lα0+β0)

α2
1β1

(α1+kβ1)(lα1+β1)

α2
2β2

(α2+kβ2)(lα2+β2)

α2
3β3

(α3+kβ3)(lα3+β3)
α0β

2
0

(α0+kβ0)(lα0+β0)

α1β
2
1

(α1+kβ1)(lα1+β1)

α2β
2
2

(α2+kβ2)(lα2+β2)

α3β
2
3

(α3+kβ3)(lα3+β3)

⎞

⎟⎟⎟⎟⎟
⎠

.

Clearly this matrix has rank greater than or equal to 3, otherwise the two lines PA
i �QA

j �LA

and PA
k �QA

l �LA will be coincident, in contradiction with Proposition 5.3.
Computing the determinant of M one has

det(M) =
(∏3

t=0 atbt
) (∏

0≤s<r≤3(asbr − arbs)
)
(i − k)( j − l)( jk − 1)(il − 1)

∏3
t=0

(
(at + ibt )(at + kbt )( jat + bt )(lat + bt )

) .

By definition of the points Ai and by Remark 4.2 we know that the two terms
(∏3

t=0 atbt
)

and
(∏

0≤s<r≤3(asbr − arbs)
)
are different from 0. By the condition 1 /∈ I(a) ∪ I(b) one

as that ( jk − 1)(il − 1) �= 0 for all i, k ∈ I(a) and all j, l ∈ I(b). Hence M has rank 4
when i �= k and j �= l and has rank 3 when i = k or j = l, which concludes the first part of
the proof. The second part of the proof follows directly substituting the values in (9) in the
system (11) taking i = k, and the values in (10) in the same system (11) but taking j = l. ��
Remark 5.5 Although, by Proposition 5.3, any choice of the sets I(a) and I(b) always gives
a set of ab distinct lines, the condition 1 /∈ I(a) ∪ I(b) of the previous proposition is
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Gorenstein points in P3 via... 523

mandatory to avoid extra intersections among the lines in ZA
a,b�L

A. In fact, without this

condition ZA
a,b�L

A could be still a stick figure, but it is not complete intersection.

As a corollary we get the following fact.

Corollary 5.6 Assume that 1 /∈ I(a) ∪ I(b). With the same hypothesis of Theorem 4.7, one
has:

• PA
i0

�QA
j �LA, . . . , PA

ia−1
�QA

j �LA are coplanar for all j ∈ I(b);

• PA
i �QA

i0
�LA, . . . , PA

i �QA
ib−1

�LA are coplanar for all i ∈ I(a).

We have now all ingredients to state the main result of this section.

Theorem 5.7 Assume that 1 /∈ I(a) ∪ I(b). With the same hypothesis of Theorem 4.7,
ZA
a,b�L

A is a stick figure of ab lines in P
3. Moreover ZA

a,b�L
A is a complete intersection.

Proof By Proposition 5.3, we know that ZA
a,b�L

A consists of ab distinct lines. By Corollary

5.6, it follows that ZA
a,b�L

A is a complete intersection. By the first part of Proposition 5.4,

we know that two lines in ZA
a,b�

A intersect in a space of dimension at most 0. By the second
part of Proposition 5.4, we know that the coordinates of the point of intersection of two lines
PA
i �QA

j �LA and PA
i �QA

l �LA (resp. PA
i �QA

j �LA and PA
k �QA

j �LA ) are dependent of

the indices i, j and l (resp. i, j and k) assuring us that three lines in ZA
a,b�L

A intersect in a

space of dimension at most -1. Hence ZA
a,b�L

A satisfies the conditions to be a stick figure of
lines and the statement is proved. ��

6 Gorenstein sets of points

As a final step of our construction, we apply the procedure described in Sect. 3 to our stick
figure to get a Gorenstein set of points in P

3 with a given h−vector.
Again, let

h = (h0, h1, . . . , hs) = (1, 3, h2, . . . , ht−1, ht , ht , . . . , ht , ht−1, . . . , h2, 3, 1)

be a SI-sequence, and consider the first difference

�h = (1, 2, h2 − h1, . . . , ht − ht−1, 0, 0, . . . , 0, ht−1 − ht , . . . ,−2,−1).

Define the two sequences a = (a0, . . . , at ) and g = (g0, . . . , gs+1) as expressed in (2)
and (3). As already said in Sect. 3, g is the h-vector of a complete intersection, X , of two
surfaces in P

3 of degree t + 1 and s − t + 2.
Hence we consider, as X , the stick figure ZA

t+1,s−t+2�L
A (for a suitable choice of A,

I(t + 1) and I(s − t + 2) with the hypotheses of Theorems 4.7 and 5.7).
If we set

I(t + 1) = {u0, . . . , ut } and I(s − t + 2) = {v0, . . . , vs−t+1}, (12)

then the aCM scheme C1 with h−vector a is given by the following set of lines in
ZA
t+1,s−t+2�L

A:

PA
ui �Q

A
v j

�LA for j = 0, . . . , ai − 1 and i = 0, . . . , t .

and, obviously, the residual scheme C2 is the set of lines in ZA
t+1,s−t+2�L

A and not in C1.
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We use the following notation for the points of intersections of lines in the stick figure
ZA
t+1,s−t+2�L

A:

Gi{ j,k} = PA
ui �Q

A
v j

�LA ∩ PA
ui �Q

A
vk

�LA

and

G{i,k} j = PA
ui �Q

A
v j

�LA ∩ PA
uk �Q

A
v j

�LA.

Theorem 6.1 Let h, a and g be as above. Then the set of points
⎧
⎪⎨

⎪⎩

Gi{ j,k} with 0 ≤ j ≤ ai − 1 and ai ≤ k ≤ s − t + 1 for i = 0, . . . , t

G{i,k} j with min{ai , ak} ≤ j ≤ max{ai , ak} − 1 for 0 ≤ i < k ≤ t

is a Gorenstein zeroscheme with h−vector h.

Proof This follows directly from Theorem 3.5 and Theorem 3.6. ��

Using the description, in Proposition 5.4, of intersections in the stick figure, we can state
the previous theorem in terms of the coordinates of the points in the desired Gorenstein set.

Consider I(t + 1) and I(s − t + 2) as in (12). Denote by [Vi{ j,k}] the point whose
coordinates are

[Vi{ j,k}]0 = − (α0 + uiβ0)(v jα0 + β0)(vkα0 + β0)

α0β0(α0β1 − α1β0)(α0β2 − α2β0)(α0β3 − α3β0)

[Vi{ j,k}]1 = (α1 + uiβ1)(v jα1 + β1)(vkα1 + β1)

α1β1(α0β1 − α1β0)(α1β2 − α2β1)(α1β3 − α3β1)

[Vi{ j,k}]2 = − (α2 + uiβ2)(v j jα2 + β2)(vkα2 + β2)

α2β2(α0β2 − α2β0)(α1β2 − α2β1)(α2β3 − α3β2)

[Vi{ j,k}]3 = (α3 + uiβ3)(v jα3 + β3)(vkα3 + β3)

α3β3(α0β3 − α3β0)(α1β3 − α3β1)(α2β3 − α3β2)

(13)

and by [V{i,k} j ] the point whose coordinates are

[V{i,k} j ]0 = − (α0 + uiβ0)(α0 + ukβ0)(v jα0 + β0)

α0β0(α0β1 − α1β0)(α0β2 − α2β0)(α0β3 − α3β0)

[V{i,k} j ]1 = (α1 + uiβ1)(α1 + ukβ1)(v jα1 + β1)

α1β1(α0β1 − α1β0)(α1β2 − α2β1)(α1β3 − α3β1)

[V{i,k} j ]2 = − (α2 + uiβ2)(α2 + ukβ2)(v jα2 + β2)

α2β2(α0β2 − α2β0)(α1β2 − α2β1)(α2β3 − α3β2)

[V{i,k} j ]3 = (α3 + uiβ3)(α3 + ukβ3)(v jα3 + β3)

α3β3(α0β3 − α3β0)(α1β3 − α3β1)(α2β3 − α3β2)
.

(14)

Corollary 6.2 Let h be an admissible h−vector for a Gorenstein zeroscheme in P
3 of the

form h = (h0, . . . , hs) = (1, 3, h2, . . . , ht−1, ht , ht , . . . , ht , ht−1, . . . , 3, 1) and let ai =
hi − hi−1 for 0 ≤ i ≤ t . Fix four distinct points Ai = [αi : βi ] in P

1 \ (�0 ∪ W),
for i = 0, . . . , 3 and fix the sets of nonnegative integers I(t + 1) = {u0, . . . , ut } and
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I(s−t+2) = {v0, . . . , vs−t+1}with 0 ∈ I(t+1)∩I(s−t+2) and 1 /∈ I(t+1)∪I(s−t+2).
Then the set of points

⎧
⎪⎨

⎪⎩

[Vi{ j,k}] with 0 ≤ j ≤ ai − 1, ai ≤ k ≤ s − t + 1, for i = 0, . . . , t

[V{i,k} j ] with min{ai , ak} ≤ j ≤ max{ai , ak} − 1, for 0 ≤ i < k ≤ t

is a Gorenstein zeroscheme with h−vector h.

Example 6.3 Let h be h-vector (1, 3, 4, 3, 1) of Example 3.7. One has t = 2, s = 4 and
a = (1, 2, 1).

Fix

A0 = [1 : 1], A1 = [1 : 2], A2 = [1 : 3], A3 = [1 : 4]
and

I(t + 1) = {u0, u1, u2} = {0, 2, 4}

I(s − t + 2) = {v0, v1, v2, v3} = {0, 2, 4, 6}.
Substituting these values in (13) and (14) we get, by Corollary 6.2, that the Gorenstein set of
points with h-vector (1, 3, 4, 3, 1) is given by

[Vi{ j,k}] =

⎡

⎢⎢⎢
⎣

− (2k+1)(2 j+1)(2i+1)
6

(2k+2)(2 j+2)(4i+1)
4

− (2k+3)(2 j+3)(6i+1)
6

(2k+4)(2 j+4)(8i+1)
24

⎤

⎥⎥⎥
⎦

with 0 ≤ j ≤ ai − 1, ai ≤ k ≤ 3, for i = 0, 1, 2

and

[V{i,k} j ] =

⎡

⎢⎢⎢
⎣

− (2k+1)(2 j+1)(2i+1)
6

(4k+1)(2 j+2)(4i+1)
4

− (6k+1)(2 j+3)(6i+1)
6

(8k+1)(2 j+4)(8i+1)
24

⎤

⎥⎥⎥
⎦

with min{ai , ak} ≤ j ≤ max{ai , ak} − 1,

for 0 ≤ i < k ≤ 2.

that is
[
− 1

2 : 2 : − 5
2 : 1

]
,

[
− 5

6 : 3 : − 7
2 : 4

3

]
,

[
− 7

6 : 4 : − 9
2 : 5

3

]
,

[
− 5

2 : 15 : − 49
2 : 12

]
,
[− 7

2 : 20 : − 63
2 : 15] ,

[
,− 15

2 : 30 : − 245
6 : 18

]
,

[
− 21

2 : 40 : − 105
2 : 45

2

]
,
[
− 5

2 : 18 : − 65
2 : 17

]
,
[
− 25

6 : 27 : − 91
2 : 68

3

]
,

[
− 35

6 : 36 : − 117
2 : 85

3

]
,
[
− 3

2 : 5 : − 35
6 : 9

4

]
,
[
− 15

2 : 45 : − 455
6 : 153

4

]
.

We can check in Singular if this set of points is Gorenstein. The procedure IP(n,M)
computes the ideal of a set of points given in matrix form M , where each column of M
represents a point. The procedureHF(n,I,t) computes theHilbert function of an ideal I , in
degree t . The integer n refers to the number of variables in the polynomial ring k[x0, . . . , xn].
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int n=3; ring R=0,(x(0..n)),dp;

matrix G[4][12]=-1/2,-5/6,-7/6,-5/2,-7/2,-15/2,-21/2,-5/2,
-25/6,-35/6,-3/2,-15/2,2,3,4,15,20,30,40,18,27,36,5,45,
-5/2,-7/2,-9/2,-49/2,-63/2,-245/6,-105/2,-65/2,-91/2,
-117/2,-35/6,-455/6,1,4/3,5/3,12,15,18,45/2,17,68/3,85/3,
9/4,153/4;

ideal I=IP(n,G);

HF(n,I,0);
1
HF(n,I,1);
4
HF(n,I,2);
8
HF(n,I,3);
11
HF(n,I,4);
12

Hence, the first difference of the Hilbert function fo this set of points is exactly (1, 3, 4, 3, 1).
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