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Towards a fast machine-learning-assisted
prediction of the mechanoelectric response in
organic crystals†
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Organic semiconductors can improve the performance of wearable electronics, e-skins, and pressure

sensors by exploiting their mechanoelectric response. However, identifying new materials for these

applications is challenging due to the lack of fast and reliable computational protocols, whose major

limitation is the computational burden required to evaluate the relevant figures of merit from first principles.

To overcome this challenge, we present a new protocol that combines molecular dynamics, density

functional theory, machine learning, and kinetic Monte Carlo simulations. The fast machine learning model

enables the evaluation of millions of specific electronic interactions between molecules and their thermal

fluctuations, which play a key role in modulating charge transport. We use this protocol to study the

dependence of charge mobility on mechanical deformations for C10-DNBDT-NW. Several analyses are

performed to rationalise and predict the impact of strain on the material in a reduced amount of time. The

predictions are consistent with experimental measurements, indicating its potential for screening the

mechanoelectric response to identify materials with the desired properties. This new protocol presents an

effective approach to predict the performance of organic semiconductors under external mechanical strain,

which could lead to the discovery of new materials for advanced technologies.

One of the most praised advantages regarding the adoption of
organic semiconductors (OSCs) is their flexibility.1 This property,
a consequence of the fact that aggregates of organic molecules
are held together by weak van der Waals interactions, enables a
range of applications that are not possible with other types of
substrates, ranging from already commercial devices, such as
flexible OLED displays,2–4 to more specialized applications,5–7

such as skin-wearable solar cells,8 biosensors,9 stretchable
transistors,10–12 flexible actuators,13 which are still under study.
Apart from specific applications where flexibility is required,
mechanical strain can also be used as an ingenious way to
modify the electronic properties of a material: examples of
performance increase upon mechanical deformation are well

known and commercially practicable for silicon-based devices,14

where increases of electron and hole mobilities up to 100% have
been achieved.15

The understanding of the interplay between mechanical and
electronic properties of OSCs is fundamental for many reasons:
first of all, it is desirable to not deteriorate the performance of
the OSC upon deformation. Additionally, a molecular under-
standing of the structural parameters regulating such interplay
is crucial to design new materials with better performances.
Some indications that the variation of transfer integrals may
have a stronger impact than phonon modes on the perfor-
mances was recently obtained,16 but its magnitude may
strongly depend on the molecule of interest. On the other side,
several studies have highlighted the importance of dynamic
disorder17,18 and how a single vibrational ‘‘killer mode’’ can be
identified as responsible for limiting transport,19,20 with
mechanical perturbations as a tool to limit such vibrations.11

Seminal studies investigating mechanoelectric properties
of organic compounds focused on polycrystalline semi-
conductors,21–23 which, however, do not allow to investigate the
intrinsic behaviour of the material, since electrical properties are
mainly dominated by extrinsic effects like grain size and defects.
For this reason, in the last years, experimental and theoretical
research focused on highly purified single crystals, which
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represent the ideal system to isolate the intrinsic relationship
between charge transport and mechanical strain. Several organic
semiconductors have been investigated, such as tetracene,24

pentacene,23,25,26 TIPS-pentacene,27–30 C10-DNBDT-NW,11 and
in particular rubrene,31–36 which has emerged as the material
of election in light of its attractive properties, such as high hole
mobility (exceeding 15 cm2 V�1 s�1 have been reported),37,38 ease
of obtaining large high-purity crystals and quite good flexibility.
Among the molecules that have been studied, up to 70% hole
mobility increase upon mechanical strain of 3% was reported for
a single crystal of an organic material, C10-DNBDT-NW.11 This
molecule was originally designed for applications in OFETs39

and, while the unsubstituted p-conjugated core yielded satisfac-
tory performances, modifying the crystal packing by adding
alkyl substituents to the core resulted in a high mobility two-
dimensional transport material. The experimental finding of
increased hole mobility upon compression was justified in ref. 11
through the aid of first principles methods, with a suppression of
molecular vibrations induced by the mechanical deformation.

These studies indicate that inducing mechanical perturbations
on already known molecules could lead to an improvement in
their charge carrier mobility. This represents an alternative path
for the development of more performing devices to the much more
popular approach of identifying novel materials with higher
mobility. This last approach has been largely based on empirical
intuition and on trial and error research,39 although several
systematic theoretical studies were recently carried out,40–44 show-
ing the importance of computational studies for the identification
of new organic semiconductors with enhanced performances in
reduced amount of time.40,41 Seminal computational studies have
been also performed concerning the impact of strain on the
mobility of organic materials.30,33,45–47 However, the vast majority
of these works focused on 1–2 molecules at most in light of the

high computational cost of computing phonons for crystals with
hundreds of atoms in the unit cell.47,48

To solve this drawback, recently, some of us developed a fast
computational protocol capable to quantitatively predict the
mobility variations induced in organic crystals by directional
mechanical strain, reproducing the experimental trends for
rubrene and TIPS-pentacene at a significantly reduced compu-
tational cost.16 This approach allowed to study the impact of
deformations on 3 molecules in a reasonable amount of time.
Nevertheless, to study the effect of strain on a wide database of
organic molecules, it is necessary to further lower the computa-
tional time. With this goal in mind, in this work we combine
state-of-the-art approaches, i.e. Molecular dynamics (MD), den-
sity functional theory (DFT), Fermi’s Golden Rule (FGR),
Machine Learning (ML), graph theory, and kinetic Monte Carlo
(kMC) simulations to develop such a protocol. We apply it to the
case of C10-DNBDT-NW, showing how it leads to charge mobi-
lity predictions in line with experimental findings, indicating
the suitability of this protocol for the screening of the mechano-
electric response of organic semiconductors.

Charge transfer pathways in the crystal

We start by characterising charge transfer pathways in the
crystal.49,50 This was achieved by identifying all non-
equivalent homodimers formed by a given molecule with its
nearest neighbours and computing the corresponding electro-
nic couplings. The C10-DNBDT-NW crystal (see Fig. 1) shows
the typical herringbone structure of polycyclic aromatic hydro-
carbons, where each molecule is surrounded by six nearest
neighbours. Symmetry reduces the non-equivalent dimers to
two pairs, associated to the two possible charge transfer

Fig. 1 Top left: Structure of C10-DNBDT-NW. Top right: Unique charge transfer pathways and associated transfer integrals J identified in the crystal
structure. Bottom: View of the 1 � 5 � 19 supercell used for MD simulations in this study (side chains omitted), along with a sketch of the crystallographic
axes.
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pathways, one directed along the crystallographic c axis (J1),
and the other with components along both the crystallographic
b and c axes (J2, see Fig. 1).

We computed transfer integrals between frontier orbitals as
Jij = hfi|F̂|fji, where fi and fj are the unperturbed HOMO
orbitals of the isolated monomers, respectively, and F̂ is the
Fock operator of the dimer.40,50–52 In qualitative agreement
with previous studies,39 we find that the two pathways have
similar transfer integral values, resulting in a two-dimensional
transport for C10-DNBDT-NW in the (b, c) plane, while along
the a axis aromatic cores are isolated by alkyl side chains: this is
a common feature of acenes, which in most instances have a
crystal structure with a high-mobility plane, while the charge
mobility perpendicular to this plane is 1–2 orders of magnitude
smaller.53,54 From the quantitative point of view, the computed
values of J1 and J2 (E75 and E60 meV, respectively) are slightly
higher with respect to what found in the past, which could be a
consequence of the geometries used (optimised rather than
experimental), of the chosen computational method, of the
different strategy in cropping (or not) alkyl side chains, or a
combination of those. With available transfer integrals values,
together with additional geometry optimisation and frequency
calculations, it is possible to obtain hole transfer rates accord-
ing to Fermi’s Golden Rule (FGR),

kij ¼
2p
�h

Jij
�� ��2F DEij ;T

� �
; (1)

where F(DEij,T) is the Franck–Condon Weighted Density of
States (FCWD), which can be evaluated from the geometry and
frequencies of the neutral and charged states55–58 (see Section
S1.6.1 in the ESI†). We chose FGR to evaluate the rates because,
with respect to the widely used classical Marcus theory, it allows
taking into account tunneling effects and frequency changes
between initial and final electronic states, including the whole
set of normal modes in the computation,55–59 leading to extre-
mely reliable rates of radiative and non-radiative electronic
transitions.43,57,59,60

Predicted charge transfer rates were used to estimate the
drift mobility of holes m according to Einstein–Smoluchowski’s
relation

m ¼ eD

kBT
; (2)

where, following ref. 59 we evaluate the diffusion coefficient as

D ¼ 1

2n

P
i

ri
2kiPi; where n is the spatial dimensionality, ri is the

distance between centres of mass of the interacting molecules,

ki is the hole hopping rate, Pi ¼
kiP
j

kj
is the probability of the

hop along the i-th pathway, and the summation runs over the two
charge transfer pathways. The results of these calculations,
reported in Table 1, are in good agreement with experiments.11

It should be noted that eqn (2) implies the adoption of a hopping
transport mechanism, whose applicability to organic crystals
where J E l is highly debated.61–65 However, hopping models
are known to give quantitatively comparable results to more
physically plausible mechanisms,43,63 such as Transient Localisa-
tion Theory (TLT, see Section S1.6.2 in the ESI†). Indeed, we also
computed hole mobilities resorting to TLT,66 obtaining quantita-
tively comparable results, as shown in Table 1.

At first sight, the good agreement between FGR and TLT may
appear surprising, since these two theories have been devel-
oped in quite different regimes (localised vs. partially deloca-
lised picture). Nevertheless, as remarked in some works,67,68 in
spite of its limitations, the hopping model leads to mobilities
in very good agreement with experimental ones and with the
ones obtained with more rigorous approaches, at least at room
temperature, to which our discussion is limited. Moreover,
both localised (Marcus) and semiclassical dynamics models
predict similar mobilities, even if charge delocalisation at room
temperature is considered.69 As a side note, it has been pointed
out that the inclusion of quantum mechanical effects in the
hopping rates (such as in the case of FGR) does not lead to
thermally activated mobilities.59,70 That is an important point,
since the hopping mechanism cannot be ruled out only on the
basis of the observed decreasing of the mobility with tempera-
ture. This ensures the adequacy of FGR for the system under
study, a fundamental point since we plan to evaluate the rates
along MD trajectories for subsequent kMC calculation (vide
infra), where TLT is not applicable.

Finally, we notice that both FGR and TLT mobilities are
smaller than the experimental one, even though the opposite is
usually expected, since even the best materials are subject to
extrinsic disorder and the measured mobility is commonly
smaller than computed ones. This difference is probably due
to the fact that the experimental crystal structure used in our
simulations has been measured at 240 K (see ESI†). The low
temperature probably results in shorter intermolecular dis-
tances, which have a trivial impact on the computed diffusion
coefficient and in turn on the mobility. Indeed, kMC calcula-
tions on MD snapshots (i.e. after relaxing the structure at room
temperature), lead to values slightly higher than the experi-
mental mobility, as expected.

Table 1 Characterisation of charge transfer pathways in the C10-DNBDT-NW crystal. l: internal reorganisation energy for the hole transfer reaction, r:
distance between centres of mass of the monomers, J: hole transfer integral, k: reaction rate evaluated with Fermi’s Golden Rule (superscript FGR) at
300 K, m: hole mobility evaluated according to Einstein’s formula from FGR rates at 300 K, or with Transient Localisation Theory (superscript TLT), LL2:
localisation length for TLT

Path l (meV) r (Å) J (meV) kFGR (s�1) mFGR (cm2 V�1 s�1) LL2 (Å2) mTLT (cm2 V�1 s�1) m (cm2 V�1 s�1)

J1 93.9 6.13 75.34 3.56 � 1014 5.85 529 7.87 9.711

J2 4.92 61.41 2.36 � 1014
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Effect of mechanical strain

There are several strategies to evaluate the effect of mechanical
strain on charge transfer. A first possibility entails first-principles
optimisation of the unit cell, artificially varying the size of the
simulation box, before recomputing electronic interactions.16,47

However, the calculation of electron–phonon couplings can be
computationally expensive in this case. Another strategy is based
on MD methods, either DFT-based Born–Oppenheimer MD (BO-
MD)45 or classical MD,33 where an MD trajectory is computed at
each value of strain, obtained by artificially varying the simula-
tion box, or through an external force.

To develop a protocol with the lowest possible computational
cost, we decided to resort to classical MD with a quantum-
mechanically derived force field (QMD-FF),50,71 which leads to
an accurate description of the dynamics of the chromophore at
a much lower cost than BO-MD. We parameterised quantum-
mechanically derived force fields (QMD-FFs) with the Joyce
software,72–74 see Section S1.2 in the ESI,† for information on
the parameterisation procedure and the validation.

Simulations were run for 20 ns for each value of strain (see
Fig. 2). We used the last 10 ns of each simulation to evaluate
transfer integrals J1 (for one dimer) and J2 (for one dimer) and
their fluctuations, extracting snapshots every 50 ps, cropping
side chains after the first carbon atom, so as to leave the DNBDT
core substituted with methyl groups, in analogy to our previous
works50,75 and to what similarly done by others,76–78 before

running DFT computations of transfer integrals. This results
in 200 evaluations of each transfer integral, at each strain.

Furthermore, for each snapshot, we evaluate intermolecular
distances r1 and r2 associated to transfer integrals, for all pairs
of first neighbour dimers of either type. The values of transfer
integrals J1 and J2 (for one specific pair of molecules each) and
of associated intermolecular distances r1 and r2 (for all pairs of
molecules of the same type), along with their fluctuations, as a
function of strain are reported in Fig. 2, where the amount of
percentage strain induced along the crystal axis j is defined as

ej ¼
Lj � L0

j

� �
L0
j

� 100; (3)

where Lj and L0
j are the axial length in presence and absence of

mechanical deformation, respectively. We explored the range
�3% r e r 3% as a plausible interval of experimentally
feasible strain,16 since more severe perturbations lead to cracks
in the material.11 We highlight that the strain applied on the
transistor in experiments is a bending strain (emax = 3%),11

while the one proposed in our protocol is a uniaxial shear or
orthogonal strain. We justify this choice noting that (i) MD
simulations applying a bending strain require much bigger
deformations to observe significant effects79 and (ii) possibly a
flexible support for the material is required to apply a bending
deformation, making simulations more complicated,79 as a

Fig. 2 (a) and (d): pictorial representation of positive (elongation) and negative (compression) strain (e) along the two crystallographic axes (b on the top,
c on the bottom). (b) and (e): dependence of the two types of transfer integrals J1 and J2 on the strain e along the two crystallographic axes (b on the top, c
on the bottom). DFT transfer integrals were computed only for one pair of molecules, while ML transfer integrals were averaged over all pairs of the same
type in the simulation box. Dashed lines and shaded areas represent the best line fit, along with its 95% confidence interval. (c) and (f): dependence of the
distance between centres of mass of monomers involved in the two types of transfer integrals on the strain e along the two crystallographic axes (b on the
top, c on the bottom), averaged over all pairs of the same type in the simulation box. Dashed lines and shaded areas represent the best line fit, along with
its 95% confidence interval.
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three-point strategy80 leads to no difference with respect to
simulations in absence of any perturbation (results not shown).

On the basis of the directionality of charge transfer paths
(see Fig. 1), one would expect that applying a compression
along the c axis (Fig. 2d and e) results in a significant increase
of J1, and a modest increase of J2, while the opposite would
occur for elongation. On the other side, applying strain along
the b axis (see Fig. 2a and b) should not significantly affect J1,
while we expect a noticeable increase (decrease) of J2 upon
compression (elongation). However, inspection of Fig. 2 shows
that, while DFT calculations of J1 along the MD trajectories at
various values of strain e agree with expectations, as well as
intermolecular distances r1 and r2, the hole transfer integral J2

is characterised by significant deviations from what we
expected. For example, elongation along the c axis results in
an increase of J2, while applying strain along the b axis overall
has a negligible effect.

This observation could be related to the fact that transfer
integral variations due to strains along different crystallo-
graphic directions are sensitive not only to variations in the
intermolecular distance between adjacent monomers but can
also depend on variations in their relative orientation.33,46

A detailed analysis of relative orientations along the trajectories
highlighted a significant change in the pitch angle between the
monomers involved in hole transfer integral J2 (see Section S2
in the ESI†). However, this change is registered only for the
specific pair of monomers that we picked to compute at DFT
level transfer integral J2, and does not reflect a collective
behaviour of the aggregate, at least from a geometrical point
of view (see Section S2 in the ESI†). Thus, to significantly
expand the statistics for transfer integrals, we resorted to a
Machine Learning (ML) model, as outlined in the next section.

Machine learning model

We developed a machine learning (ML) model starting from a
Coulomb matrix representation of dimer geometries,81 provid-
ing a rotationally and translationally invariant representation of
molecules that requires as input the same data used for typical
quantum chemical calculations,82 i.e. atomic numbers and
coordinates. In particular, since it is well known that transfer
integrals are mostly affected by inter-molecular motions,83 to
reduce the number of points in the training set and the
parameters of the ML model to avoid overfitting, it is possible
to use as input to the ML model only one of the two equivalent
off-diagonal inter-molecular blocks of the Coulomb matrix (see
Section S3 in the ESI†), as shown in the literature, obtaining
great performances in terms of errors and speed in the calcula-
tion of transfer integrals for case-study molecules.84–86 We
highlight that, since Coulomb matrix elements depend on
pairwise distances between atoms, this particular choice of
input makes the model sensitive to tilt angles between mono-
mers in a much more sensitive way than describing rigid
monomers through their principal axes of inertia as initially
done by others,87 as shown by Wang.84,85

Adopting these ideas and using the E10 000 DFT calcula-
tions of J1 and J2 reported in Fig. 2 as training set for an ML
protocol described in detail in Section S3 (ESI†), we identified a
stacked estimator88 combining predictions from a Random
Forest and a Kernel Ridge Regression model,89,90 with an
overall performance comparable both in terms of speed and
accuracy to other computational procedures devised to speed
up charge transfer integrals evaluation.91,92 Moreover, we point
out that the only input required for the ML algorithm is the
geometry of the dimer, while other fast methods reported in the
literature need Kohn–Sham orbitals,18,63 whose computation
time should be considered in the total effort required to obtain
the transfer integral.

On the other side, ML models require ad hoc procedures to
check the consistency of the sign of the coupling,75,84 a built-in
feature of other methods.91,92 As suggested by Wang,84 our ML
model was trained on the absolute value of transfer integrals
|J|, and the signs were kept consistent with the ones computed
in the crystal from first principles. However, it should be noted
that, while a correct prediction of the sign is important to
generalise the applicability of ML-computed transfer integrals
to approaches such as TLT or band transport, in the FGR model
used here the sign of transfer integrals is not important as the
rate depends on J2 (eqn (1)). Using ML instead of DFT leads to
significant saving in computational time: in our case, DFT
calculations for each transfer integral require E1.5 CPU hours,
while a single ML evaluation requires E30 ms, a speed-up of
five orders of magnitude, with a mean absolute error (E5 meV)
that is much lower than the fluctuation of the transfer integrals
along an MD trajectory, and comparable to other literature
methods,85,87,91–94 showing errors in the range E5–15 meV.
The main limitation in the adoption of an ML model lies in the
fact that, any time a new material has to be studied, one has to
build a data set to train the model, which should be larger the
more atoms the new molecule has. This limitation might be
overcome once a large enough data set has been built to train a
more general or transferable model,95 for which data availabil-
ity in the community is critical. The accuracy and speed of our
ML model allowed us to evaluate the transfer integrals for all
pairs of nearest neighbours for all the snapshots of our MD
simulations performed so far, a total of E1.5 million calcula-
tions, with an estimated computational effort, had we adopted
DFT, amounting to E2.25 � 106 CPU hours, a task clearly
unfeasible for quantum chemical calculations.

The results for all pairs of first neighbours were grouped by
type of interaction and are reported in Fig. 2, labelled as
JML
1 and JML

2 . The trends obtained for JML
1 and JML

2 upon applying
strain along the b and c axes are now perfectly in line with
expected trends discussed in the previous paragraph, i.e. J2

increases upon compression both along c and along b, the latter
being bigger than when applying strain along c, because J2 is
mainly directed along b. Apart from obtaining more reasonable
trends, resorting to a faster ML approach enables a plethora of
additional analyses, which require a high amount of data and can
shed light on additional details of the transport mechanism, as
we will discuss in the next sections.
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Electron–phonon coupling

The overall sensitivity of transfer integrals to nuclear motions
(i.e. electron–phonon coupling) can be evaluated from the
fluctuations of transfer integrals themselves. However, much
more information can be extracted from the Fourier Transform
(FT) of the autocorrelation function R(t) of transfer integrals,45,96

i.e. its spectral density S(o), defined as97

SðoÞ ¼ o
kBTp

ð1
0

RiðtÞ cosotdt (4)

Calculations of spectral densities are typically computationally
expensive because time series of several hundreds elements are
required, thus this analysis is usually performed only for a
specific transfer integral.48 Conversely, in our case, the adoption
of a fast ML algorithm allowed us to compute their time series
for all nearest neighbours pairs, evaluating transfer integrals
every 10 fs over 10 ps MD trajectories for each value of strain,
resulting in a total of E7.5 million evaluations, with an
estimated computational effort, had we adopted DFT, amounting
to E11.25 � 106 CPU hours, an impossible task for quantum
chemical methods.

We computed average autocorrelation functions R(t) either
for all transfer integrals, or grouping them by type ( J1 or J2),
reporting the corresponding S(o) in Fig. 3 (further details can
be found in Section S5 in the ESI†).

Inspection of Fig. 3 shows the physical soundness of the
outputs of our ML model, since no vibration above 700 cm�1 is
responsible for variations in the transfer integrals. Additionally,
we see that, as compression increases, coupling with vibrations
at E150 cm�1, E220 cm�1, E400 cm�1, and E600 cm�1 shifts
at slightly higher frequencies (by E10 cm�1), for both J1 and J2,
regardless of the axis along which strain is applied. This is
compatible with the observations reported in the experimental

study of mechanical perturbations applied to this material:11

calculations of specific intermolecular motions as a function of
mechanical strain showed a narrower potential energy surface
at higher values of strain, i.e. a higher frequency of the specific
motion investigated. Nevertheless, the changes observed in the
spectral density are too small to be responsible for a significant
increase in hole mobility upon strain. In agreement with recent
findings,16 we speculate that the increased hole mobility can be
ascribed to enhanced transfer integrals, rather than to a
decrease in dynamic disorder, as will be further analysed in
the next section.

Interaction networks

Some years ago Savoie100 proposed a new point of view on
charge transport in terms of graph descriptors,101 formulating a
numerical index (the Kirchoff Transport index KT) in qualitative
agreement with experimental mobilities to compare different
materials. The evaluation of KT requires all electronic interac-
tions between nearest neighbours in the aggregate, a compu-
tationally intensive task usually performed by Extended Hückel
Theory. However, our ML algorithm allows the same analysis
with a much greater accuracy (see Fig. S5 in the ESI†) and
comparable (or possibly superior) speed.

We computed the electronic interaction network along the
trajectories, and the graph obtained averaging over time is
reported in Fig. 4. In particular, we report the largest subgraph
identified for various thresholds JT (i.e. all the sites connected
by | J| 4 JT) as a function of mechanical strain e. This repre-
sentation allows to gain insights into the properties of charge
transport when mechanical perturbations are applied: from
Fig. 4 it is evident that either elongation along b or compression
along c leads to a network of strong transfer integrals along the
c axis. Furthermore, the largest subgraph of molecules con-
nected by | J| 4 JT gets larger with compression, indicating a
better charge transport. Network analyses have also been used
to study p-stacking patterns in amorphous aggregates of
polymers,102 where the size of the largest cluster was suggested
as a target descriptor to drive molecular design.

Concerning the Kirchoff Transport Index (KT), a figure of
merit related to the description of the aggregate as a graph (see
Section S6 in the ESI†), a higher value of KT is correlated with
better transport properties for both amorphous and crystalline
materials, as demonstrated in the past for a series of electron
acceptors ranked according to their electron transport
capability.101 The description of the aggregate interaction net-
works can be analysed in terms of overall transport properties
of the material from the trend of the relative variation of

KT DKT ¼
KT � K0

T

K0
T

� �
with respect to the strain e.

A careful inspection of Fig. 4 allows to appreciate the
influence of strain on the direction of the charge transport.
Elongation along the b axis (e 4 0), results in an essentially

unaffected transport due to J1 DKJ1
T � 0

� �
; while transport due

to J2 strongly decreases (DKJ2
T decreases to �15%). On the

Fig. 3 Spectral densities computed from the average autocorrelation
function for all transfer integrals (Total), or grouping them by type (either
J1 or J2) for strain applied along the b (left top) or c (left bottom) crystal-
lographic axes, and selected normal modes obtained from a 1 � 2 � 2
supercell optimisation at DFTB level98,99 (see Section S1.5 ESI†) at E150
cm�1 and E220 cm�1.
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contrary, compression along b (e o 0) results is a network of
strong transfer integrals along the b axis. This results in

transport due to J1 unchanged DKJ1
T � 0

� �
; while transport

due to J2 increases strongly (DKJ2
T increases to 15%).

When we compress along the c axis (e o 0), the result is a
strong network of transfer integrals along the c axis: transport
due to both J1 and J2 increases, although the former is much

more affected (DKJ1
T increases to 25%, DKJ2

T to 5%). Finally,
elongation along c (e 4 0) leads to a network of strong transfer
integrals with components along both b and c crystallographic
axes: the result is an overall decrease of transport due to both J1

and J2, although the former is much more reduced (DKJ1
T

decreases to �15%, DKJ2
T to �5%). This analysis suggests the

possibility of controlling in a precise manner the charge
migration direction in the material through application of
strain, and confirms the recent assignment of a stronger
sensitivity of the mechanoelectric response to transfer integrals
rather than dynamic disorder.16

Kinetic Monte Carlo charge mobility

Finally, we focus on the computation of charge mobility m through a
kinetic Monte Carlo approach. Although kMC in its simplest flavour
implies the adoption of a hopping model,49,87 more advanced
implementations of this computational approach have been
recently introduced to deal with delocalised charge carriers typical
of organic materials.103,104 However, due to the reasonable agree-
ment shown in Table 1 between charge mobilities obtained in a
hopping and a partially delocalised framework, we opted to adopt
kMC in its simplest hopping variant, similarly to other works.49,87

The computation of m and its agreement with experimental findings
allows to check the reliability of our whole procedure, ensuring
that it can be used for the search of novel materials with the
desired properties, incorporating it in screening or optimisation
frameworks.40,105,106

We carried out kMC simulations at each value of strain on
snapshots extracted from classical MD trajectories at that value
of strain. Since boxes from classical MD simulations are
too small to perform statistically meaningful simulations, we
combined 200 snapshots extracted from classical MD trajectories
as described in ref. 87 (see Section S1.6.3 in the ESI†), to obtain a
larger system (38 000 sites, in a E2400 � E400 Å lattice). For
each snapshot our ML-computed transfer integrals allowed to
evaluate on-the-fly the corresponding hopping rates between
nearest neighbours sites according to FGR (eqn (1)). The kMC
trajectories are stopped after 0.1 ps, and we compute the diffu-
sion coefficient D of the charge as

D ¼ 1

2n
lim
t!1

rðtÞ � rð0Þh i2
t

; (5)

where the h� � �i denotes the mean squared displacement obtained
averaging over 10 000 independent kMC trajectories. The diffu-
sion coefficient D is then used to compute the hole mobility m
according to eqn (2). We notice that eqn (5), when applied on
the perfect crystal arrangement, leads to a value of mobility
(m E 8.1 cm2 V�1 s�1) in good agreement with data in Table 1,
ensuring the consistency of the approaches used in this work.

The results in Fig. 5 show that strain applied along the c axis
results in a monotonic increase of mobility with compression
and a monotonic decrease with elongation, while deformation
along b results in a non-monotonic milder variation. This
difference is probably related to the fact that, while strain
applied along c axis results in both transfer integrals J1 and J2

varying in the same direction (they increase with compression
and decrease with elongation, see Fig. 2), strain along b axis
induces opposite variation for J1 and J2.

This study allows to check the accuracy of all our methodol-
ogy: we can compare our results for compression along the c
axis with the experimental values reported in ref. 11. Our
simulations predict a 37% relative increase in charge mobility

Dm ¼ m� m0

m0

� �
for an e = �3% compression along c, in good

Fig. 4 Left panel: Effect of mechanical strain along crystallographic axes b (top) and c (bottom) on the largest network of electronic interactions (blue
surface). Right panel: relative variation of the Kirchoff Index on the mechanical strain along crystallographic axes b (top) and c (bottom).
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agreement with ref. 11, where a relative increase in the mobility
ranging from 43% to 70% was reported, thus indicating the
reliability of our approach for the study of mechanoelectric
response in organic crystals.

Conclusions

In this work, we present a novel computational protocol that
combines a series of state-of-the-art techniques, i.e. molecular
dynamics, DFT, machine learning, Fermi’s Golden Rule, and
kinetic Monte Carlo. The final goal is to develop a fast and
reliable protocol to predict the impact of deformations applied
along different crystallographic axes in organic semiconductors,
and to obtain quantitative estimation of charge carrier mobilities.

The integration of a fast machine learning model allowed us
to evaluate millions of specific electronic interactions between
molecules, a task otherwise unfeasible with quantum chemical
methods. This capability enabled us to consider thermal fluc-
tuations of transfer integrals, a critical factor in determining
charge transport at intermediate regimes, in a highly specific
manner. These data can be combined with various theoretical
frameworks to predict charge carrier mobility.66,103

Furthermore, our methodology provides a large number of
specific electronic interactions that allow for improved characterisa-
tion of charge transport features, such as spatial directionality or
electron–phonon couplings. The main improvements over existing
literature are (i) the application of ML predictions of transfer
integrals to a qualitative (interaction networks) and quantitative
(kMC) evaluation of charge transport dependent on mechanical
deformations, rather than to model systems aimed at verifying its
scope;84–87,94 (ii) the aggregate analyses of electron–phonon cou-
plings through millions of transfer integral evaluations enabled the
ML model. These novelties will be further exploited through devel-
opment of transferable95 and differentiable107 ML models in future
work. Our approach yields good agreement with available experi-
mental results for a typical organic semiconductor, as demonstrated
by a kMC scheme. Eventually, it will be possible to adopt kMC
flavours more in line with the physical mechanism underpinning
charge transport in the intermediate regime.103,104

The protocol is both fast and reliable, although it requires
parameterisation of a QMD-FF and training an ML model, steps
that apparently prevent its transferability to new materials. We
are currently working on the automatic parameterisation
of QMD-FFs108 and on the development of transferable and
differentiable ML models,95,107 which will allow overcoming these
limitations. This is a significant step towards fully exploiting the
inherent flexibility of organic materials in cutting-edge technolo-
gies requiring either preservation of material properties under
deformation, such as wearable electronics and flexible solar cells,
or conversely a strong response to external pressure, such as tactile
sensors or e-skins.
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