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On the fluorescence enhancement of arch
neuronal optogenetic reporters

Leonardo Barneschi1, Emanuele Marsili 1,2,7, Laura Pedraza-González 1,8,
Daniele Padula 1, Luca De Vico 1, Danil Kaliakin 3,
Alejandro Blanco-González 3, Nicolas Ferré4, Miquel Huix-Rotllant 4,
Michael Filatov 5 & Massimo Olivucci 1,3,6

The lack of a theory capable of connecting the amino acid sequence of a light-
absorbing protein with its fluorescence brightness is hampering the devel-
opment of tools for understanding neuronal communications. Here we
demonstrate that a theory can be established by constructing quantum che-
mical models of a set of Archaerhodopsin reporters in their electronically
excited state. We found that the experimentally observed increase in fluores-
cence quantum yield is proportional to the computed decrease in energy
difference between the fluorescent state and a nearby photoisomerization
channel leading to an exotic diradical of the protein chromophore. This find-
ing will ultimately support the development of technologies for searching
novel fluorescent rhodopsin variants and unveil electrostatic changes that
make light emission brighter and brighter.

The imaging of neural activity requires bright fluorescent probes
localized in the neuron membrane. Rhodopsins are membrane pro-
teins that can be expressed in neurons and used for triggering, silen-
cing and reporting on neuronal action potentials1,2. The prototypical
fluorescent reporter is Archaerhodopsin-3 (Arch3), an archaeal rho-
dopsin from Halorubrum sodomense3–5. However, the fluorescence of
Arch3 is extremely dim; its quantum yield (FQY) of ca. 1.1·10−4 is almost
four orders of magnitude lower than that of the green fluorescent
protein (GFP)6–11. Furthermore, the fluorescence does not come from
the dark-adapted state but rather from a photochemically produced
photocycle intermediate that cannot deliver a prompt emission
signal11. These facts not only make single neuron studies impossible
with common microscopy techniques, but impair the investigation of
neural activity at the population level as wide-field imaging techniques
require improved spatial and temporal resolution12. In order to achieve
better reporters, Arch3 has been engineered via directed evolutionary
approaches and random mutagenesis, ultimately discovering variants

such as the Archers13, the QuasArs12, the Archons14, Arch5 and Arch713.
Recently, Hegemann and coworkers have investigated new Archon1
variants to elucidate the mechanism of fluorescence voltage
sensitivity15. These variants feature a higher 10−3−10−2 FQYs enabling,
among other applications, the imaging of neuronal activity in living
mammals and invertebrates16–18. It has also been suggested that such
enhanced fluorescence originates, in contrast to Arch3, from a one-
photon electronic excitation and, therefore, must come from the
protein dark-adapted state12,14,15. Here we report on a (mechanistic)
theory that explains how one-photon FQY is enhanced in Arch3 var-
iants. We demonstrate that, to be predictive, such theory requires the
mapping of an isomerization path producing a twisted intramolecular
diradical intermediate (TIDIR) located in proximity of a conical inter-
section (CoIn). The energy difference between TIDIR and the emissive
planar fluorescent state (FS), or ΔETIDIR-FS, controls the magnitude and
positions of the S1 photoisomerization barrier (Ef

S1) that, in turn,
determines the FQY.
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Based on the above result, we show that the increased FQY dis-
played by certain Arch3 variants is determined by inhibiting an elec-
trostatic barrier suppression mechanism operating in the naturally
occurring progenitor.

Results and discussion
Arch photoisomerization mechanism and S1 PES topography
The function of rhodopsins is triggered by the photoisomerization of
their retinal chromophores (Fig. 1A) that also operate as
fluorophores19. Consistently with previous studies on fluorescent
proteins20, we hypothesize that the competition between isomeriza-
tion and light emission determines the FQY value (see Supplementary
Methods 3). This can be understood by examining a schematic
representation of the chromophore excited state isomerization path
(Fig. 1B) leading to a CoIn between the excited (S1) and the ground (S0)
states where excited state decay occurs. From the scheme it is evident
that the isomerization barrier (Ef

S1) located along the potential energy
surface of the spectroscopically allowed S1 state is a critical quantity.
The higher Ef

S1 is, the slower the isomerization is. Consequently, paths
with high Ef

S1 will feature an approximately planar fluorescent state FS
with long S1 lifetimes and, thus, high FQY. Below, we demonstrate a
proportionality between computed Ef

S1 and observed FQY by con-
structing multi-configurational quantum-chemical based models
(MCQC) of the dark-adapted state of a set of Arch3 variants called the
Arch-set (Supplementary Methods 1–3 and Supplementary Figs. 1–3).
We will also show that the proportionality between computed Ef

S1 and
observed FQY remains valid when Ef

S1 is replaced by the isomerization
energy ΔETIDIR-FS. Our MCQC models employ the well-established
CASSCF21 zeroth-order wavefunction defined by the selection of a

(12,12) active space including all the π-electrons and orbitals of the
retinal chromophore. Although the trends in spectral properties dis-
cussed throughout the text are well reproduced at this level, we dis-
cuss the results obtained after multi-state (XMS-CASPT2)22,23 energy
and geometrical corrections to the CASSCF geometries.

Before focusing on the relationship between Ef
S1 and FQY, it is

useful to describe the changes of the all-trans retinal chromophore of
Archaearhodopsins24 along the isomerization path computed using
the constructed Arch3 model. It is established that at least two geo-
metrical coordinates are implicated in rhodopsin S1 isomerization
coordinates (Fig. 1C)25–27. The first describes the chromophore initial
relaxation from the Franck-Condon (FC) point and corresponds to a
bond length alternation (BLA) stretch. The second is the twisting (α) of
the reactive trans C13 = C14 bond ultimately leading to the 13-cis con-
figuration. As shown in Fig. 2A and consistently with the scheme of
Fig. 1B, such relaxation leads to the potentially emissive FS inter-
mediate. This process is followed by progression along a flat potential
energy region characterized by a monotonic decrease in α and con-
necting FS to a TIDIR intermediate located close to a sloped28 CoIn. As
it will be explained below, this previously unreported intermediate
differs, in terms of electronic structure and topography, from the
locally excited (LE) intermediate identified in a ring-locked derivative
of bovine rhodopsin by Laricheva et al.29.

Electronic character of the S1 PES
In Fig. 2B we show that such a progression is replicated by the MCQC
model of the top fluorescent variant Arch7. However, the comparison
between the Arch3 and Arch7 S1 energy profiles shows a significantly
increased Ef

S1 in the latter. Such an increase is seen in both the zeroth-
order wavefunction calculation and in the more quantitative profiles
obtained after applying geometrical and multi-state second-order
perturbative correction (Supplementary Methods 4 and 5, Supple-
mentary Figs. 4–7). Due to the high computational cost of QM/MM
analytical Hessians, the TSs discussed throughout the text are
approximated by the energy maxima along the relaxed scan con-
necting FS and TIDIR. These TSsmust be considered approximate as it
has not been possible to carry out a geometry optimization starting
from a computed Hessian matrix as well as to compute a Hessian
matrix at the end of the TS search. Furthermore, despite the increased
FQY of the investigated Arch variants, recent measurements of the
excited state lifetime (ESL) of some of the variants were found to be in
the time range of picoseconds30,31. For this reason, we don’t account in
our calculation for T1/S1 intersystem crossing (ISC) as a viable com-
petitive process to S1 emission also considering that T1 is a π-π* state
with orbitals parallel (non-orthogonal) to those characterizing the S1
state. Therefore, the singlet to triplet transition would be “forbidden”
by the El-Sayed rule.

The progression along α is documented in Fig. 2C, D where we
report the values of the relevant geometrical parameters of FS and
TIDIR aswell as the charge residing on the Schiff basemoiety C14-C15-N.
In fact, the geometrical changes are accompanied by variations of the
chromophore electronic character. These can be conveniently fol-
lowed by computing the fraction of positive charge and free valence
(NUE)32 residing on C14-C15-N (Supplementary Methods 6 and Supple-
mentary Figs. 4, 7, 9 and 10). Following a recent report on the variants
of DRONPA220, a soluble GFP-like protein, we interpret the results in
Fig. 2A, B in terms of mixing of two diabatic states describing the
covalent (1Ag) and charge-transfer (1Bu) characters of polyenes

33. The
computed C14-C15-N charge and NUE progression point to an S1 state
initially dominated by the 1Bu charge transfer character as already
reported for other rhodopsins. However, such character decreases
when relaxing to an FS that features a larger 1Ag weight, then con-
stantly increasing all along the isomerization path. In summary, the
electronic character evolves from mixed charge-transfer/covalent
1Ag/1Bu characters at FC and FS, to a substantially pure 1Ag character at
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Fig. 1 | Photoisomerization mechanism of Archaerhodopsins. A Lewis formula
representing the initial S1 chromophore structure. B Representation of the chro-
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TIDIR that features an α value of ca. −90°, two spin-paired, but non-
interacting, radical centers located on twoorthogonalπ-systems and a
positive charge fully confined on C14-C15-N. This process is accom-
panied by a change in the S1-S0 oscillator strength (fS1-S0) along α, from
values typical of allowed electronic transitions to a forbidden transi-
tion at TIDIR.

The evolution going from a mixed 1Ag/1Bu character at FS to a
1Ag covalent/diradical character at TIDIR, provides information on
the origin of the Ef

S1 barrier. As illustrated in Fig. 2E the electronic
coupling between the 1Ag and 1Bu diabatic states (represented, for
simplicity, by the Lewis formula of a methylimine cation model)
would initially increase due to the decrease in their energy gap.
However, when α approaches orthogonality, the coupling decreases
rapidly and becomes negligible at TIDIR. The negligible coupling at
TIDIR is related to the vicinity of a CoIn (see Fig. 2F) where the 1Ag/1Bu

coupling is zero. A CoIn deformation along the negative BLA direc-
tion lifts the degeneracy and intercepts TIDIR (see Supplementary
Methods 7 and Supplementary Figs. 11 and 12). Notice that the same
deformation along the S0 potential energy surface achieves the

twisted intramolecular charge transfer TICT structure34 corre-
sponding to the transition state driving the chromophore thermal
isomerization also documented for bovine rhodopsin33. In conclu-
sion, we associate the variation in the magnitude and position of Ef

S1

(i.e., of TSS1 in Fig. 1B) with the variation along α of the 1Ag and 1Bu

diabatic energies and their 1Ag/1Bu coupling.

S1 isomerization barrier determines an increased FQY in the
Arch variants
We now show that the isomerization mechanism above provides the
basis for understanding the FQY variations along the Arch-set. To do
so, we first demonstrate the existence of a correlation between
computed Ef

S1 and observed FQY values and then rationalize it based
on FS and TIDIR charge distributions (or 1Ag and 1Bu character) cal-
culated by constructing the MCQM models of all variants and using
them to map the progression along α. The model accuracy is docu-
mented in Fig. 3A where we compare, after multi-state perturbative
correction, the computed and observed trends of absorption
(ΔEa
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energies. The analysis of the results demonstrates that, in all variants,
FS and TIDIR feature the same distinct charge distributions (Sup-
plementary Figs. 4 and 7).

The bottom panel of Fig. 3B shows that computed Ef
S1 and

observed FQY variations are directly proportional. If one assumes that
the Hammond-Leffler postulate35,36 is valid for an S1 isomerization, Ef

S1

and ΔETIDIR-FS (i.e., the reaction endothermicity or, simply, isomeriza-
tion energy in Fig. 1B) must also correlate. This leads to the conjecture
that ΔETIDIR-FS is proportional to FQY. The bottom panel of Fig. 3B
demonstrates that such proportionality exists. In other words, a pro-
gressive stabilization of the “reactant” FS and/or destabilization of the
“product” TIDIR, must lead to higher FQYs. The relationship between
the computed Ef

S1 andΔETIDIR-FS for the entire Arch-set canbemodeled
by using a basic two-state one-mode Hamiltonian that fits the com-
puted S1 and S0 energy profiles along mode α in terms of 1Ag and 1Bu

diabatic energies and a harmonic 1Ag/1Bu coupling function (Supple-
mentary Methods 8 and Supplementary Fig. 12). The maximum along
the resulting S1 energy profile represents TSS1 and, as demonstrated in
Fig. 3D for Arch3, QuasAr1 and Arch7, replicates the computed MCQC
S1 energy profiles. As shown in Fig. 3C themodel Hamiltonian supports
the existence of a proportionality between Ef

S1 (top panel) and the TSS1
position Xf

S1 (bottom panel) and ΔETIDIR-FS. We stress that this

mechanistic model assumes no “a priori” relationship between dia-
batics energy difference and diabatic coupling, but is a simple valence-
bond type description of our adiabatic S1 PES, assuming two pure
resonance formulas (1Ag and 1Bu), whose weights are associated to the
documented variation in positive charge distribution along the
reaction path.

The ΔETIDIR-FS increases along the Arch-set may originate from
either FS stabilization or a TIDIR destabilization effects (or from both
effects). In Fig. 3Ewe show that thefirst effect (i.e., substantially the0-0
excitation energy) shows a decrease until Arch5 that has the lowest
excitation energy and then increase up to Archon2. In contrast, the
TIDIR destabilization with respect to the same reference (i.e., the
destabilization of the photoisomerization channel) increases almost
monotonically indicating a higher sensitivity of FQY to mutations
changing ΔETIDIR-FS rather than the difference in energy between FC
and FS. The described ΔETIDIR-FS changes are confirmed by probing the
light-induced dynamics of the Arch-set. To do so we employed the
variants MCQC models to propagate a quantum-classical trajectory
released from the FC point with zero initial nuclear velocities (Sup-
plementary Methods 9 and Supplementary Figs. 14 and 15). As dis-
cussed in the literature, these trajectories mimic the evolution of the
center of the S1 population and are useful to detect barrierless or
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nearly barrierless isomerization paths and validate the accuracy of
computed torsional scans27,37.

Consistently with the trend in Ef
S1 values, the Arch3 trajectory

reaches the CoIn region and decays to S0 on a sub-500 fs timescale via
a C13 = C14 isomerization pointing to species that do not display sig-
nificant fluorescence. In contrast, the QuasAr1 and Arch7 trajectories
representing the remaining variants, orbit in the FS region for the
entire 450 fs simulation time.

Molecular determinants of the isomerization barrier
Above we have demonstrated that our MCQM models produce a
ΔETIDIR-FS trend proportional to the observed FQYs for the entire Arch-
set. We now focus on the limiting cases of Arch3 and Arch7 to show
that the proportionality between ΔETIDIR-FS and FQY is linked to the
variations in the protein (opsin) sequence. This is possible because, as
seen in Fig. 2C, D, the FS and TIDIR retinal chromophores have distinct
charge distributions and, therefore, ΔETIDIR-FS must be sensitive to the
protein electrostatics. In other words, an opsin electrostatic potential
(ESPopsin) stabilizing FS or/and destabilizing TIDIR would produce a

larger ΔETIDIR-FS value and, in turn, enhance FQY. Such effect has been
investigated by recomputing the S1 energy profiles along α after set-
ting to zero the opsin charges of the MCQC models (Supplementary
Methods 10 and Supplementary Figs. 15–17). It is apparent from
inspectionof the energy profiles in Fig. 4A, B that, in the absenceof the
protein electrostatics, both Arch3 and Arch7 display a sizable energy
barrier along α. However, the left panel of Fig. 4A demonstrates
(compare the full model with the charges-off energy profiles) that, in
Arch3, the opsin charges stabilize TIDIR with respect to FS yielding a
lowΔETIDIR-FS value and, consequently, a negligible E

f
S1. In contrast, the

right panel of Fig. 4A shows that, in Arch7, the opsin charges have the
opposite effect. We can conclude that in the absence of the protein
electrostatics, the geometrical deformation imposed by the opsin
cavity on the chromophore backbone leads to a sizable Ef

S1 value.
Notice that the geometrical deformation is the result of both cavity
steric and electrostatic effects on the chromophore isomerization
coordinate and that these effects are common to Arch3 and Arch7, as
well as to all members of the Arch-set (Supplementary Methods 10).
This has been confirmed by recomputing the same energy profile in
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vacuo (i.e., in absence of the VdW interaction between protein cavity
and chromophore) that still show a barrier in all cases.

The described electrostatic stabilization of TIDIR relative to FS in
Arch3, and the consequent disappearance of the barrier, has been
rationalized by mapping the ESPopsin on the chromophore solvent
accessible surface (Fig. 4B, top). The map shows a prevalent negative
ESPopsin value in the area surrounding the Schiff base moiety whose
effect along the isomerization coordinate is described by plotting the
difference (ΔESPopsin) between the Arch3 and Arch7 electrostatics. In
fact, theΔESPopsinmapped along a cross-section roughly parallel to the
FS (Fig. 4C, left) and TIDIR (Fig. 4C, right) chromophore backbones,
demonstrates that the opsin of Arch3 preferentially stabilizes the
positive charge fully confined on the Schiff basemoiety of TIDIR while
the opsin of Arch7 better stabilizes the delocalized charge spread
towards the β-ionone of FS. These effects can be also discussed using
the model Hamiltonian presented above where the 1Bu diabatic dom-
inates the FS while the 1Ag diabatic dominates the TIDIR. Since a Schiff
base confined charge is a characteristic of 1Ag, the Arch3 electrostatics
must stabilize the covalent/diradical 1Ag character at TIDIR while the
Arch7 electrostatics destabilizes it consistentlywith thediabaticmodel
of Fig. 3D. It is possible to demonstrate that this effect remains valid
whenoneuses amore realistic two-state two-modeHamiltonianmodel
generating two-dimensional adiabatic energy surfaces function along
both BLA and α (Supplementary Methods 8).

Role of the main counterion in the barrier generation or
suppression
At this point we propose an atomistic mechanism for the Arch3 barrier
suppression. The differences in the ESPopsin of Arch3 and Arch7 is a
product of the protein sequence variation and, more specifically, from
the seven residue replacements displayed at the bottom of Fig. 4B. In
our MCQC models, the ESPopsin is produced by the point charges
centered on the atoms of each protein residue (Supplementary
Methods 2). Therefore, the ΔESPopsin of Fig. 4C must reflect the dif-
ference in point charges before and after the residue replacements.
The effect of such difference has been investigated by recomputing
ΔETIDIR-FS after setting the point charges of residues 59, 60, 95, 99, 196,
222, 225 as a group or individually. The results in Fig. 4D show that
when setting to zero the charges of all residues, the ΔETIDIR-FS of Arch3

and Arch7 become similar. More specifically and consistently with the
results in Fig. 4A, B, theArch3point chargesmust cause a ca. 9 kcalmol
−1 decrease inΔETIDIR-FS while the corresponding Arch7 residues do not
seem to affect the original ca. 6 kcalmol−1 ΔETIDIR-FS value. From the
analysis of the individual residues, it is apparent that the counterion at
position 222 dominates the Arch3 electrostatics. Indeed, during the
Arch3 toArch7 transition the counterion ismoved fromposition 222 to
position 95while the position 222 is taken by anuncharged cysteine. In
conclusion, the counterion relocation appears to be the main
mechanism for the ΔETIDIR-FS modulation. This is not a general
mechanism. In fact, other members of the Arch-set all have the coun-
terion in position 222 (Supplementary Methods 1) but display a reg-
ularly increasing ΔETIDIR-FS value. In these cases, the effect of the
residue replacements must cause a ESPopsin change that partially
screen the counterion effect found in Arch3, whichmay be interpreted
in terms of a “virtual relocation” of the counterion as explained below.

We propose that this relocation and “diffusion” of the negatively
charged counterion (a virtual counterion), coupled with a delocaliza-
tion-then-confinement mechanism of the positive charge of the chro-
mophore, explains the regular change in isomerization barriers. In
brighter Arch-3 variants (Arch-5 and Arch-7) the virtual counterion is
increasingly distant and more diffuse from the Schiff base moiety. In
these variants, at α =0° the chromophore positive charge is deloca-
lized, and its centroid is close to the counterion, leading to a stabili-
zation of FS. As soon as α progresses and approaches a 90° twist, the
confinement of the chromophore charge on the Schiff base moiety
gradually increases, causing its centroid to drift away from the virtual
counterion, inevitably determining a de-stabilization of TIDIR.

To support this conclusion, we developed a basic model that
allows to compute (i.e., optimize) the protein charge distribution
inducing a specific ΔETIDIR-FS value. This is done by allowing the relo-
cation and fragmentation (i.e., diffusion) of the negative charge of the
main counterion to other cavity residue positions, to mimic what
observed in Fig. 4E. This can be achieved by defining a scalar function
of the cavity residue charge vector (q) which returns ΔETIDIR-FS.
Such ΔETIDIR-FS(q) function is differentiated numerically to study how
ΔETIDIR-FS responds to q. As detailed in SupplementaryMethods 11, the
problem of determining q can be formulated as a constrained opti-
mization. In Fig. 5, we show how the optimization modifies the charge
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change along the optimization steps leading from theArch3 to theArch7 value. The
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part ii and ΔE*TIDIR-FS is above a selected threshold, i-ii are repeated. The circles
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relaxation of part ii. B Final charge distribution obtained after convergence of the
optimization above. Two-dimensional representation of the fraction of negative
charges residing in the cavity residues is proportional to the radius of the blue
circles (the main counterion D222 final charge is indicated). The barycenter of the
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distribution of Arch3 to reproduce the ΔETIDIR-FS value computed for
Arch7 at the zeroth-order level. The resulting q shows that, for Arch3 to
reproduce Arch7 excited state properties, a relocation of ca. 50% of
D222 negative charge to other cavity residues is necessary, thus sup-
porting the conclusion that a relocation and diffusion of the coun-
terion is indeed a determinant of the TIDIR destabilization in the
Arch-set.

Conclusions
The engineering of efficient, rhodopsin-based action-potential repor-
ters (also called Genetically Encodable Voltage Indicators or GEVIs in
the literature) is a challenge currently addressed by experimentally
investigating the fluorescence and voltage sensitivity mechanisms15

and by tuning the protein fluorescence via several rounds of random
mutagenesis and/or directed evolution. Above we have investigated
the increase in fluorescence intensity in a set of Arch3 variants using
MCQC models with second order perturbative corrections. The key
results are: (i) the FQY is primarily determined by the competition
between S1 emission and isomerization extending the mechanism
reported for DRONPA220 to retinal proteins, (ii) the isomerization rate
is governedby the stability of the rather exotic TIDIR intermediatewith
respect to the fluorescent state, (iii) the TIDIR stability ismodulated by
the electrostatics of the protein that increasingly offset the S1 iso-
merization energy barrier when going from Arch7 to Arch3.

The atomisticmechanism for the TIDIR stabilization appears to be
a consequence of the cavity electrostatics on the distinct charge dis-
tributions of the FS and TIDIR chromophores. As schematically (top
schemes) and computationally (bottom plots) displayed in Fig. 4E, the
chromophore positive charge is largely delocalized in the FS but
confined on the C14-C15-N fragment in the TIDIR. In this situation the
described change in electrostatics from Arch3 to Arch7 leads to a
reduced stabilization of the Schiff base confined with respect to the
delocalized charge. In simple terms, the effect of the amino acid (and
atomic point charges) replacement resulting in the Arch3 to Arch7
progressive TIDIR destabilizing along the Arch-set, can be interpreted
as the gradual relocation of a negative charge from the Schiff base
region to a region closer to the β-ionone ring.

The presented mechanism has both methodological and biologi-
cal implications. The first is related to the fact that TIDIR and FS, being
energyminima on the S1 potential energy surface, are computationally
fast to locate. It is thus possible to envision the development of a tool
for the in silico selection of highlyfluorescent Arch3 variants. Such tool
would bebasedon the automated38 construction ofMCQCmodels and
the calculation of the corresponding ΔETIDIR-FS value to be maximized
via in silico mutational experiments. The biological implication is
instead related to the hypothesis that the changes in sequence, and
thus electrostatics, leading to a negligible Arch3 fluorescence could
have occurred also in nature through a natural selection process aimed
at increasing the protein photoisomerization rate and improve the
protein function. We cannot exclude that the samemechanism plays a
role in other microbial rhodopsin evolution. On the other hand, an
inverse natural selection process leading to the suppression of the
photoisomerization, andmaximizationof thefluorescenceoutputmay
have generated the recently discovered Neorhodopsin from Rhizo-
closmatium globosum39 that displays an intense fluorescence with a ca.
0.2 FQY and therefore much closer to that of DRONPA2 and other
optimized green fluorescent protein variants.

Methods
The three-dimensional structures of the Arch-set proteins were
obtained either from the corresponding crystallographic structures
deposited in the ProteinDataBank (Arch2 andArch3with PDB ID:3WQJ
and 6GUX, respectively) or via the comparative model (the Arch3
variants) approach described in Supplementary Methods 1. The cor-
responding QM/MM models were constructed from the obtained

three-dimensional structures according to the a-ARMbased protocol38

discussed in Supplementary Methods 2 with the QM and MM sub-
systems interacting via anelectrostatic embedding scheme. The retinal
chromophore atoms, the chromophore-bound lysine side chain atoms
starting from the N-terminal to the Cε and the hydrogen link atom
(HLA) are included in the QM subsystem and treated at the multi-
configurational (CASSCF) level, while the rest of the atoms of the
model are treated at the MM level using the AMBER94 force field40.

The ground state optimized geometries are obtained via geo-
metry optimization at the single-state CASSCF(12,12)/6-31G*/AMBER
level of theory. Further refinement was performed introducing a per-
turbative geometrical correction to produce XMS-CASPT2/SA3-
CASSCF(12,12)/ANO-L-vDZP/AMBER geometries (Supplementary
Methods 4 and 5). Both the CASSCF and XMS-CASPT2 models were
then used to compute reaction paths along the isomerization coordi-
nate via a relaxed scan taking, as the reacting coordinate, the twisting
of the reactive double bond. The CASSCF geometries were also
employed to probe the excited state dynamics of threemodels via non
adiabatic deterministic surface-hop trajectories propagated from the
Franck-Condon (FC) point on S1 with zero initial velocities (FC trajec-
tories) at the SA2-CASSCF(12,12)/6-31G*/AMBER level using the Tully
algorithm41. All the QM/MM calculations were performed using the
[Open]Molcas v19.11/TINKER and MOLCAS v8.1/TINKER packages42–44.

Data availability
Cartesian coordinates of the FC, FS, CoIn and TIDIR geometries of the
QM/MM models calculated at the SA2-CASSCF(12,12)/6-31 G*/AMBER
level of theory for the models of the Arch set are provided as Sup-
plementary Data 1.

Cartesian coordinates of the FC, FS and TIDIR geometries of the
QM/MM models calculated at the XMS-CASPT2/SA3-CASSCF(12,12)/
ANO-L-vDZP/AMBER level of theory for the models of the Arch set are
provided as Supplementary Data 2. Source data is provided with this
paper. Source data are provided with this paper.

Code availability
All the calculations discussed in this work are based on the MOLCAS/
TINKER interface.
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