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Abstract: Remote sensing products are typically assessed using a single accuracy estimate for the
entire map, despite significant variations in accuracy across different map areas or classes. Estimating
per-pixel uncertainty is a major challenge for enhancing the usability and potential of remote sensing
products. This paper introduces the dataDriven open access tool, a novel statistical design-based
approach that specifically addresses this issue by estimating per-pixel uncertainty through a bootstrap
resampling procedure. Leveraging Sentinel-2 remote sensing data as auxiliary information, the
capabilities of the Google Earth Engine cloud computing platform, and the R programming language,
dataDriven can be applied in any world region and variables of interest. In this study, the dataDriven
tool was tested in the Rincine forest estate study area—eastern Tuscany, Italy—focusing on volume
density as the variable of interest. The average volume density was 0.042, corresponding to 420 m3

per hectare. The estimated pixel errors ranged between 93 m3 and 979 m3 per hectare and were
285 m3 per hectare on average. The ability to produce error estimates for each pixel in the map is
a novel aspect in the context of the current advances in remote sensing and forest monitoring and
assessment. It constitutes a significant support in forest management applications and also a powerful
communication tool since it informs users about areas where map estimates are unreliable, at the
same time highlighting the areas where the information provided via the map is more trustworthy.
In light of this, the dataDriven tool aims to support researchers and practitioners in the spatially
exhaustive use of remote sensing-derived products and map validation.

Keywords: remote sensing; Google Earth Engine; R software; forest mapping; bootstrap

1. Introduction

Accurate information on forest ecosystems is crucial for conservation, climate change
mitigation, resource management, land use planning, understanding ecosystem services,
and advancing research and education [1,2]. In particular, up-to-date and spatially detailed
forest data are essential to address current global challenges [3,4] such as, e.g., deforestation
and forest degradation [5].

The value of remote sensing in Earth ecosystem monitoring has been a topic of histori-
cal discussion as to whether it should be considered simply a “toy” or a powerful tool [6].
However, remote sensing has now become a widely adopted technology in many sectors,
including forestry. For example, there are various readily available global forest cover
and change products [7], as well as forest disturbance products covering large areas and
periods spanning several decades [8–12]. These products are used in some jurisdictions
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to enhance estimates of official national monitoring programs, such as national forest
inventories, and they provide spatially explicit assessments of forest attributes [13] and
forest disturbances [14].

Integrating remote sensing and ground data for mapping forest attributes can be
performed using two main approaches: model-based inference and design-based inference.
The differences between these approaches are well discussed in the statistical literature
(e.g., [15]). Design-based approaches are appealing for their objectivity, based on the fact
that the sampling design and the associated probability distribution are not modeled but
are well defined a priori [16]. However, purely design-based methods cannot be used to
produce wall-to-wall maps at the pixel level due to their inability to make estimations
with non-sampled pixels without making any assumption and without exploiting auxiliary
variables. In fact, either a pixel is sampled, and then there is no need for estimation, or the
pixel is not sampled, and we have no information to perform estimation [17]. This lack of
information makes the use of design-based inference to produce per-pixel maps impossible.
Consequently, model-based interpolation methods such as kriging predictors (including
cokriging and regression kriging) and nonparametric techniques like locally weighted
regression and k-nearest neighbor methods are usually used for mapping [16,18–20].

On the other hand, the use of models is not limited to model-based mapping alone. In-
deed, following the model-assisted perspective, an assisting model can be exploited within
a design-based inference [21]. In this context, a model is used to perform interpolation at
unsampled pixels, but the uncertainty associated with the interpolated values still arises
from the probabilistic sampling scheme used to select the pixels. Recent works have, in fact,
moved in this direction, and first attempts have proposed to map continuous and finite
populations of spatial units in a design-based framework [17,22]. Such methods exploit
Tobler’s first law of geography [23] as an assisting model. As the model supposes that
nearby units tend to be more similar than distant units, then the inverse distance weighting
interpolator is used, providing more importance to neighboring locations.

The open accessibility of data and cloud computing platforms that enable the calcula-
tion of sophisticated information globally [24–26] characterize the current era of remote
sensing. To improve the reliability of remote sensing products and exploit them in order to
provide statistically rigorous estimates for large-scale or country reporting, huge efforts
have been developed in recent years [27–30]. However, several limitations persist, leading
many researchers and authorities to lean towards ground data acquisition. This is because,
although map products derived from remotely sensed data are increasingly accurate and
easy to provide, they may lack reliable quality indicators. Accordingly, [31] recently argued
that clearer and more transparent map validation remains a major challenge in remote
sensing for forestry. More specifically, remote sensing products are usually delivered with
a single accuracy estimation for the whole map, while the accuracy can change greatly,
depending on map areas.

In this context, this study aimed at matching ground and remote sensing data to
produce maps of variables of interest and per-pixel estimates of the associated error. To this
purpose, we introduce dataDriven, a Google Earth Engine [24], and R [32] tools for mapping
forest attributes through a complete data-driven approach that exploits both Sentinel-2
remote sensing data as auxiliary information and ground data to produce both the attribute
map at pixel level and the corresponding map of uncertainty estimates.

This paper is organized as follows. First, we introduce the new dataDriven tool
(Section 2) by providing details on the input data and the allowed sampling designs to col-
lect reference data (Section 2.1) and providing methodological details on how remote sens-
ing data are used to produce variables that will serve as auxiliary information (Section 2.2).
Second, we provide a schematic overview of how dataDriven combines reference and re-
mote sensing data to produce per-pixel maps of the attribute of interest and the associated
uncertainty (Section 2.3). Then, dataDriven is tested over a study area in Tuscany, Italy
(Section 3). Remarks and future perspectives are presented in Section 4.
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2. The dataDriven Open Source Tool

dataDriven is a Google Earth Engine [24] and R [32] tool for mapping forest attributes
within a given area of interest (AOI) partitioned into pixels, some of which are visited in
the field to measure/assess the attribute of interest (https://github.com/saveriofrancini/
dataDriven, accessed on 17/06/2024). It is worth noting that, henceforth, the term pixel
does not necessarily denote a satellite pixel, i.e., a pixel acquired via a satellite mission and
with a specific size, but possibly an agglomerate of neighboring satellite pixels of suitable
sizes to be exhaustively visited on the ground.

The dataDriven tool requires a specific sample reference dataset as an input (Section 2.1)
and implements two main steps, for which specific details are provided in the following
sections, while a summary is provided below, and a schematic representation is presented
in Figure 1.

Figure 1. dataDriven workflow.

The first step (Section 2.2) involves the calculation of Sentinel-2 predictors to be used
as auxiliary information, and it is implemented in the form of a Google Earth Engine
(GEE) application. The GEE platform is a cloud-based solution that combines a huge,
multi-petabyte collection of satellite images and geospatial datasets with the capability of
large-scale planetary analysis [24]. Its global applications span various sectors, including
forestry and forest disturbance monitoring [7,12,30]. GEE boasts three key advantages
over other cloud-computing platforms. First, it offers flexibility by allowing users to bring
their algorithms to data using high-level programming languages and high-performance
computing. Second, it prioritizes scientific reproducibility due to expandable storage and
processing capabilities. Third, its processing performance can be improved by incorporating
additional resources without requiring users to modify their methods or code.

The second step of dataDriven (Section 2.3) is implemented in R [32] and delivered
in the form of an R package available on GitHub. This step implements the data-driven,
per-pixel mapping of both the attribute of interest and the associated uncertainty.

2.1. Input Reference Data

Our tool requires an input shapefile with ground data collected in the field for a
sample of pixels selected following one of the next probabilistic sampling schemes:

https://github.com/saveriofrancini/dataDriven
https://github.com/saveriofrancini/dataDriven
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• Simple Random Sampling Without Replacement (SRSWoR): sample pixels are ran-
domly selected without replacement;

• One per Stratum Stratified Sampling (OPSS): the population is divided into blocks of
contiguous pixels, and a pixel is randomly selected in each block;

• Systematic Sampling (SYS): the population is divided into equally shaped blocks
containing the same number of pixels; then, a pixel is randomly selected in one block
and repeated in the others.

For each pixel in the population, the input shapefile must include the following two
attributes: (A) the ID of the block to which each pixel belongs and (B) the attribute of
interest measured/assessed in the field within the sampled pixel. For non-sampled pixels,
i.e., pixels for which the attribute of interest was not measured/assessed in the field,
the label NA (not available) must be assigned to the attribute (B). In the case of SRSWoR,
the attribute (A) must be a unique value for each pixel, as all pixels belong to a unique block
coinciding with the whole population. Based on attribute (A), dataDriven automatically
identifies which of the three sampling strategies has been used.

Among the three schemes, OPSS has historically been widely adopted [33] and is
currently implemented in several national forest inventories (e.g., Italy and the USA), as it
allows the sample pixels to be spread over the entire AOI. In fact, while SRSWoR can
lead to over/under-representation of the AOI, OPSS reduces the probability of selecting
neighboring pixels, ensuring spatially balanced samples with related advantages [34].

2.2. Sentinel-2 Data and Derived Predictors

The Sentinel-2A and 2B satellites together offer a frequency of five days—up to 2–
3 days at mid-latitudes—and multispectral bands with a spatial resolution ranging from 10
to 60 m. The GEE dataDriven application (https://code.earthengine.google.com/?accept_
repo=users/saveriofrancini/PRIN, accessed on 17/06/2024) exploits visible (red, green,
and blue) and near-infrared (nir) bands—with ten-meter resolution—and red edge (redE1,
redE2, redE3, and redE4) and short-wave infrared (swir1 and swir2) bands—with 20-
meter resolution.

dataDriven preprocesses Sentinel-2 data to construct cloud-free composites over differ-
ent periods. The main steps involve (1) the filtering of Sentinel-2 imagery, (2) cloud masking,
and (3) creating pixel-based composites [30]. dataDriven can filter Sentinel-2 imagery by
specifying the period, the years of interest, and the maximum percentage of clouds. Then,
clouds are masked out using the Sentinel-2 cloud probability dataset [35], and cloud-free
composites are generated for the selected years as the medoid of all remaining valid obser-
vations. The medoid algorithm populates the image composite with the satellite pixel with
the surface reflectance most similar to the median surface reflectance value for that pixel [8].
For details on compositing parameters and resulting composite assessments, see [36]. As a
result, medoid predictors are calculated for the selected periods and years and each pixel
in the input shapefile (Section 2.1). Since Sentinel-2 satellite pixels are ten meters in size,
and since each pixel can include several satellite pixels, depending on the sample size,
the medoid predictors are calculated for each pixel as the average of all the satellite pixels
included. Furthermore, the latitude and longitude of each pixel are downloaded from
GEE and included among the shapefile predictors, as they are subsequently necessary to
implement the inverse distance-weighting interpolation (see Section 2.3).

2.3. Per-Pixel Mapping and Associated Error Mapping

Statistical details, equations, and mathematical proofs of the procedure adopted to
perform per-pixel mapping are described in [37], while here, we provide a schematic and
technical overview of the main implemented steps.

1. Exploiting the Akaike-type criterion [38], a variable selection process is implemented
to remove Sentinel-2 auxiliary variables that are poorly correlated with the attribute of
interest or that are strongly correlated with each other, thus providing little additional
information.

https://code.earthengine.google.com/?accept_repo=users/saveriofrancini/PRIN
https://code.earthengine.google.com/?accept_repo=users/saveriofrancini/PRIN
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2. Using the selected variables, a regression model is adopted to estimate the coefficients
in order to predict the variable of interest as a linear combination of the auxiliary
variables for each pixel in the population.

3. For the sampled pixels, residuals are computed as the difference between the re-
gression predictions and the true attribute recorded on the ground. Residuals for
non-sampled pixels are estimated using the inverse distance weighting interpolator.
For each pixel in the population, residuals are then added to the predicted values to
achieve the map of the forest attribute.

4. The Horvitz–Thompson total estimate and the total estimate achieved from the map
by summing the interpolated values are calculated. Then, the map is harmonized
based on the ratio of the two estimates so that the sum of the pixel estimates in the
map coincides with the Horvitz–Thompson estimate [39]. This is the final map of the
interest attribute produced via dataDriven.

5. To produce the error map, a minimum of 1000 independent samples are selected
via bootstrap resampling from the final map. Each sample has the same size as the
initial sample for which reference data were available and is selected following the
same sampling scheme (Section 2.1). If, for example, the initial sample is made using
50 pixels selected via OPSS, each new bootstrap sample will include 50 pixels selected
via OPSS. A new map of the attribute of interest is then obtained for each bootstrap
sample by implementing steps 1 to 4. The uncertainty map is finally produced by
calculating the root mean square error from the bootstrap maps for each pixel.

3. dataDriven Implementation: A Case Study

The dataDriven tool was tested on a forested AOI (the Rincine forest estate) located in
eastern Tuscany in Central Italy, centered on coordinates 43.9 N and 11.6 E. dataDriven was
used to predict the forest volume density and estimate the root mean square error for each
pixel, but we stress that it can be applied to any kind of variable of interest or study area.
In this study, we used the reference dataset adopted in [37].

To select the sample to be visited in the field, the AOI was tessellated using a grid of
5449 square pixels of 23 m × 23 m. Sentinel-2 pixels were resampled from 10 m to 23 m
using bilinear interpolation [40]. OPSS was subsequently implemented. Details on the
OPSS procedure are shown in Section 2.1, while in the following, details are given about
the case-study implementation.

Following OPSS, the population of 5449 pixels was divided into 50 blocks: 49 blocks
containing 109 adjacent pixels each and one block containing 108 pixels (Figure 2, left).
Of the 5449 pixels, 340 were located in non-forest areas and excluded from the population;
the remaining population eligible for sampling was composed of 5109 pixels distributed
across blocks of varying sizes: nine of the 50 blocks contained fewer than 100 pixels,
with the smallest block comprising 57 pixels. Then, a sample pixel was randomly selected
for each block.

Field measurements were conducted within the sampled pixels over the period from
June to November 2016. Species identification, stem diameter at breast height (DBH),
and stem height were assessed for each tree with a DBH greater than 2.5 cm. The wood
volume of each tree was estimated using allometric models derived from the Italian Na-
tional Forest Inventory [41]. Following typical forest survey practices, the uncertainty
associated with tree volume predictions was disregarded, and the predicted volumes were
treated as fixed values [18,42]. For the sampled pixels, density was reported and used as
the dependent variable, calculated as the ratio between the total wood volume recorded
within a pixel and the pixel size (i.e., 23 m × 23 m or 529 m2). From this ground survey, we
obtained the input reference dataset required for dataDriven as an input (Figure 2).
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Figure 2. Input shapefile. Panel (A) shows the blocks, with each of the 50 blocks shown with a
different color. Panel (B) shows the wood volume density (m3/m2) measured in the field at each
sampled pixel.

The Sentinel-2 predictors were calculated via the GEE dataDriven application. The GEE
dataDriven app permits the setting of several parameters to construct the medoid composite
and then calculate the predictors. In this study, default parameters were used to test the
application. For each year between 2020 and 2022—Start/End years parameters in the GEE
user interface—we selected all images acquired between June 10 and August 20—Start/End
date for composite—and with cloud cover of less than 20%—the Clouds threshold parame-
ter. Then, by clicking on the run button, a medoid composite was automatically calculated
for each year (Section 2.2), and a new shapefile including 30 Sentinel-2 predictors was
downloaded (Figure 3). There were 30 predictors since there were ten Sentinel-2 bands
(Section 2.2) and three medoid composites (2020 to 2022).

Figure 3. Example of three of the 30 Sentinel-2 predictors downloaded from GEE. Each of the panels
(A), (B), and (C) shows a different predictor.

Finally, the dataDriven R package was used, which implements the procedure described
in Section 2.3 and produces the map of the attribute of interest and the map of the associated
error (Figure 4). The average volume density was 0.042, corresponding to 420 m3 per
hectare, and it ranged between 0 and 1, 455 m3 per hectare. dataDriven estimated an average
per-pixel error of 0.0285 in terms of density, or 285 m3 per hectare. The estimated pixel
errors ranged between 93 and 979 m3 per hectare.
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Figure 4. Panel (A) shows the predicted wood volume density map. Panel (B) shows the associated
predicted per-pixel root mean square error.

4. Future Perspectives

This paper has introduced dataDriven (https://github.com/saveriofrancini/data/
Driven, accessed on 17/06/2024), an open-access tool for producing per-pixel maps of
the interest attribute, as well as per-pixel estimates of their root mean squared errors (e.g.,
Figures 4A,B). Several products providing information on pixel quality exist. Most of them
only concern atmospheric noise, giving information on per-pixel quality, as for example,
the bands of satellites like Sentinel-2 and Landsat ([43–45]). Other products concern the
per-pixel accuracy of maps that, as usual in forest studies, are obtained using geostatistical
or machine learning approaches. In the case of geostatistical mapping, accuracy estimation
is performed from a series of more or less realistic model assumptions (e.g., [15], Equa-
tion (20).15), while in the case of machine learning procedures, accuracy estimation is
usually performed from empirical cross-validation procedures ([30]) but lacks theoretical
foundations. On the other hand, the procedure we adopted in this study stems from a theo-
retical study by [46] and provides per-pixel, statistically rigorous, design-based estimates
of map accuracy.

dataDriven combines the planetary-scale computing capabilities of GEE with the R
programming language and integrates the ground-measured data of the attribute of interest
with Sentinel-2 data used as auxiliary variables to produce the per-pixel map of the attribute
of interest and associated error for the entire AOI.

The ability to produce error estimates for each pixel in the map is a novel aspect
provided via dataDriven in the context of the current advances in environmental monitoring
and assessment: per-pixel uncertainty informs users about areas where the map estimates
are unreliable, at the same time highlighting the areas where the information provided
via the map is trustworthy; therefore, it constitutes support not only from an analytical
point of view but also as a powerful communication tool. On the other hand, in this
study, we obtained an average error of 285 m3 per hectare, indicating that further research
is necessary to enhance map accuracies. Future efforts could focus on incorporating
additional predictors from other available sensors [47] or exploiting data collected over
longer time series.

dataDriven implements a statistically sound procedure of a design-based nature [37]
following the model-assisted perspective such that the resulting precision is objective, as it
is determined according to the sampling scheme actually adopted to select pixels for the
ground measurement of the attribute of interest, without any assumption.

Based on open-access Sentinel-2 data, dataDriven can be applied anywhere in the world
as long as input-reference (ground-measured) data are available. More remotely sensed
variables can be easily added, calculated, and downloaded from the GEE side, based on

https://github.com/saveriofrancini/data/Driven
https://github.com/saveriofrancini/data/Driven
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several other satellite missions, and possibly also exploiting non-optical data, thus making
the most of the huge catalog of open access data available in GEE.

Ground-measured reference data can be collected through three different sampling
schemes, i.e., tessellated schemes (SYS and OPSS) that are the most common in forest
surveys (Section 2.1). While additional sampling schemes may be added to dataDriven
in the future, the sampling scheme must be specified: this can be an issue in the case of
available reference data for which the sampling scheme is unknown or non-probabilistic.

The current version of dataDriven exploits simple regression models to predict the
attribute of interest for all pixels in the population. Still, future releases may be able to inte-
grate further techniques, including machine learning and artificial intelligence imputation.

dataDriven takes advantage of parallel computing and allows us to make the most of
the available computational capabilities. dataDriven outputs are generated very quickly,
from a few minutes to a few hours, depending on the size of the population. In our case
study (about 300 hectares), the predictors were downloaded from GEE in less than one
minute, while the per-pixel maps of the wood volume density and that of the associated
error (estimated using 1000 bootstrap resamplings) were obtained via the R package in a
minute and ten seconds, using a standard workstation (12th Gen Intel Core i9-12900K) with
16 cores, 24 logical processes, and 30 GB of RAM.

5. Software Details

• Name of tool: dataDriven.
• Developers: Saverio Francini, Agnese Marcelli, and Rosa Maria Di Biase.
• Year first available: 2023.
• Hardware required: Basic computer.
• Requirements: The R software (https://www.r-project.org/,accessed on 17/06/2024),

and a Google Earth Engine account (https://earthengine.google.com/, accessed on
17/06/2024).

• Source Code Availability: Codes are available on GitHub
(https://github.com/saveriofrancini/dataDriven, accessed on 17/06/2024).

• Data availability: dataDriven analyzes (i) Sentinel-2 images that are open and freely
available on Google Earth Engine (https://developers.google.com/earth-engine/
datasets/catalog/COPERNICUS_S2_SR_HARMONIZED, accessed on 17/06/2024)
and (ii) ground data—for which we provide a test dataset on GitHub
(https://github.com/saveriofrancini/dataDriven/tree/master/inst/data, accessed
on 17/06/2024).

• Cost: Free.
• Program languages: R and JavaScript.
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O.; et al. Cloud Mask Intercomparison Exercise (CMIX): An Evaluation of Cloud Masking Algorithms for Landsat 8 And
Sentinel-2. Remote Sens. Environ. 2022, 274, 112990. https://doi.org/10.1016/J.Rse.2022.112990.

36. Francini, S.; Cavalli, A.; D’Amico, G.; McRoberts, R.E.; Maesano, M.; Munafò, M.; Scarascia Mugnozza, G.; Chirici, G. Reusing
Remote Sensing-Based Validation Data: Comparing Direct and Indirect Approaches for Afforestation Monitoring. Remote Sens.
2023, 15, 1638. https://doi.org/10.3390/Rs15061638.

37. Di Biase, R.M.; Fattorini, L.; Franceschi, S.; Grotti, M.; Puletti, N.; Corona, P. From Model Selection to Maps: A Completely Design-
Based Data-Driven Inference for Mapping Forest Resources. Environmetrics 2022, 33, 2750. https://doi.org/10.1002/Env.2750.

38. Burman, P.; Nolan, D. A General Akaike-Type Criterion for Model Selection in Robust Regression. Biometrika 1995, 82, 877–886.
https://doi.org/10.2307/2337352.

39. Marcelli, A.; Franceschi, S.; Fattorini, L. Harmonization of Design-Based Mapping for Spatial Populations. Stoch. Environ. Res.
Risk Assess. 2022, 36, 3171–3182. https://doi.org/10.1007/S00477-022-02186-2.

40. Khosravi, M.; Samadi, S. BL-ALM: A Blind Scalable Edge-Guided Reconstruction Filter for Smart Environmental Monitoring
Through Green IoMT-UAV Networks. IEEE Trans. Green Commun. Netw. 2021, 5, 727–736. https://doi.org/10.1109/TGCN.2021.3
067555.

41. Tabacchi, G.; Di Cosmo, L.; Gasparini, P. Aboveground Tree Volume and Phytomass Prediction Equations for Forest Species in
Italy. Eur. J. For. Res. 2011, 130, 911–934. https://doi.org/10.1007/S10342-011-0481-9.

42. McRoberts, R.E.; Westfall, J.A. Effects of Uncertainty in Model Predictions of Individual Tree Volume on Large Area Volume
Estimates. For. Sci. 2014, 60, 34–42. https://doi.org/10.5849/forsci.12-141.

43. Didan, K.; Barreto, A. VIIRS/NPP Vegetation Indices 16-Day L3 Global 500m SIN Grid V001 [Data Set]; NASA EOSDIS Land
Processes Distributed Active Archive Center: Oak Ridge, TN, USA, 2018. https://doi.org/10.5067/VIIRS/VNP13A1.001.

44. Schaaf, C.; Wang, Z. MODIS/Terra+Aqua BRDF/Albedo Quality Daily L3 Global-500m V061 [Data Set]; NASA EOSDIS Land
Processes Distributed Active Archive Center: Oak Ridge, TN, USA, 2021. https://doi.org/10.5067/MODIS/MCD43A2.061.

45. Wan, Z.; Hook, S.; Hulley, G. MODIS/Terra+Aqua BRDF/Albedo Quality Daily L3 Global-500m V061 [Data Set]; NASA EOSDIS Land
Processes Distributed Active Archive Center: Oak Ridge, TN, USA, 2021. https://doi.org/10.5067/MODIS/MOD11A2.061.

https://doi.org/10.1016/J.Envsoft.2022.105580
https://doi.org/10.1214/16-STS589
https://doi.org/10.1016/J.Rse.2017.06.031
https://doi.org/10.3390/Rs12081253
https://doi.org/10.1016/J.Envsoft.2022.105477
https://doi.org/10.1016/J.Rse.2014.02.015
https://doi.org/10.1016/J.Rse.2015.02.026
https://doi.org/10.1016/J.Foreco.2016.07.007
https://doi.org/10.1016/J.Compag.2023.107925
https://doi.org/10.1016/J.Compag.2023.107925
https://doi.org/10.1093/Forestry/Cpad024
https://doi.org/10.1007/S10651-017-0378-Y
https://doi.org/10.1007/S10651-017-0378-Y
https://doi.org/10.1016/J.Rse.2022.112990
https://doi.org/10.3390/Rs15061638
https://doi.org/10.1002/Env.2750
https://doi.org/10.2307/2337352
https://doi.org/10.1007/S00477-022-02186-2
https://doi.org/10.1109/TGCN.2021.3067555
https://doi.org/10.1109/TGCN.2021.3067555
https://doi.org/10.1007/S10342-011-0481-9
https://doi.org/10.5849/forsci.12-141
https://doi.org/10.5067/VIIRS/VNP13A1.001
https://doi.org/10.5067/MODIS/MCD43A2.061
https://doi.org/10.5067/MODIS/MOD11A2.061


Sensors 2024, 24, 3947 11 of 11

46. Fattorini, L.; Marcheselli, M.; Pisani, C.; Pratelli, L. Design-based properties of nearest-neighbor spatial interpolators. Biometrics
2022, 78, 1454–1463. https://doi.org/10.1111/biom.13505.

47. Francini, S.; Chirici, G.; Chiesi, L.; Costa, P.; Caldarelli, G.; Mancuso, S. Global spatial assessment of potential for new peri-urban
forests to combat climate change. Nat. Cities 2024, 1, 286–294. https://doi.org/10.1038/s44284-024-00049-1.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1111/biom.13505
https://doi.org/10.1038/s44284-024-00049-1

	Introduction
	The dataDriven Open Source Tool
	Input Reference Data
	Sentinel-2 Data and Derived Predictors
	 Per-Pixel Mapping and Associated Error Mapping

	dataDriven Implementation: A Case Study
	Future Perspectives
	Software Details
	References

