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Abstract: Cigarette smoke (CS) is a risk factor for inflammatory diseases, such as atherosclerosis.
CS condensate (CSC) contains lipophilic components that may represent a systemic cardiac risk
factor. To better understand CSC effects, we incubated mouse and human aortic smooth muscle cells
(SMCs) with CSC. We evaluated specific markers for contractile [i.e., actin, aortic smooth muscle
(ACTA2), calponin-1 (CNN1), the Kruppel-like factor 4 (KLF4), and myocardin (MYOCD) genes] and
inflammatory [i.e., IL-1β, and IL-6, IL-8, and galectin-3 (LGALS-3) genes] phenotypes. CSC increased
the expression of inflammatory markers and reduced the contractile ones in both cell types, with KLF4
modulating the SMC phenotypic switch. Next, we performed a mass spectrometry-based differential
proteomic approach on human SMCs and could show 11 proteins were significantly affected by
exposition to CSC (FC ≥ 2.7, p ≤ 0.05). These proteins are active in signaling pathways related
to expression of pro-inflammatory cytokines and IFN, inflammasome assembly and activation, cy-
toskeleton regulation and SMC contraction, mitochondrial integrity and cellular response to oxidative
stress, proteostasis control via ubiquitination, and cell proliferation and epithelial-to-mesenchymal
transition. Through specific bioinformatics resources, we showed their tight functional correlation
in a close interaction niche mainly orchestrated by the interferon-induced double-stranded RNA-
activated protein kinase (alternative name: protein kinase RNA-activated; PKR) (EIF2AK2/PKR).
Finally, by combining gene expression and protein abundance data we obtained a hybrid network
showing reciprocal integration of the CSC-deregulated factors and indicating KLF4 and PKR as the
most relevant factors.

Keywords: atherosclerosis; cigarette smoke; KLF4; MYOCD; EIF2AK2/PKR; phenotypic switch;
smooth muscle cells

1. Introduction

Atherosclerosis is the leading cause of myocardial infarction and stroke and is the major
cause of death in the Western world. The exact cause of atherosclerosis is still uncertain, but
certain traits, conditions, or habits may behave as risk factors for the disease. Inflammation
and hypercholesterolemia are hallmarks and potent promoters of cardiovascular disease
(CVD), in addition to other well-defined risk factors that contribute to the multifactorial
processes involved in disease progression (diabetes, hypertension, aging, and smoking) [1].
Among the environmental factors that may contribute to cardiovascular risk, incidence,
and severity, cigarette smoking is one of the biggest threats to current and future world
health [2]. Tobacco smoke interacts with inflammatory cytokines to produce endothelial
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dysfunction [3] and induces pro-inflammatory and pro-atherosclerotic effects in vascular
tissue [4].

Smooth muscle cells (SMCs) are present in the media of human arteries, and are
considered protective against atherosclerotic plaque destabilization [5]. Contractile SMCs
are the most prominent cell type in the healthy vessel wall [6]. Normally, they are elongated,
with a spindle-shaped morphology, and produce a well-characterized set of contractile
markers, including smooth muscle actin (ACTA2), smooth muscle myosin heavy chain
(MYH11), smooth muscle protein 22-alpha (SM22α/TAGLN), smoothelin (SMTN), and
calponin (CNN1) [7]. However, SMCs are not terminally differentiated, and retain the
ability to undergo a phenotypic switch from a contractile to a dedifferentiated synthetic state
and express inflammatory markers and a phagocytic activity in response to environmental
cues [8]. Cholesterol, a known risk factor for atherosclerosis, induces a phenotypic switch
in SMCs [9] which, like monocytes and macrophages, can take up and store excess lipids
and form foam cells [9–11]. Upon cholesterol loading in vitro, mouse SMCs reduce the
expression of typical smooth muscle markers, including ACTA2, α-tropomyosin, and CNN1
genes and increase the expression of macrophage-related ones, such as CD68, galectin-3
(LGALS-3), and the membrane protein transporter ATP-binding cassette A1 (ABCA1) [11].
These phenotypic changes lead to the downregulation of the miR-143/145–myocardin axis
in a Kruppel-like factor 4 (KLF4-dependent manner [9,11]. KLF4 is a transcription factor
implicated in SMC proliferation and dedifferentiation, and it plays a fundamental role in
modulating cell pluripotency [7].

Cigarette smoking is a leading cause of mortality and morbidity, and cigarette smoke
(CS) is another risk factor for inflammation-related disorders, such as atherosclerosis [2].
The CS condensate (CSC) from the particulate phase of the CS aerosol contains lipophilic
components that may pass the respiratory membranes and reach the blood stream, thus
representing a cardiac and vessel-systemic risk factor. It has been shown that CSC may
affect cerebral SMCs through myocardin (MYOCD) and KLF4-dependent mechanisms [12].

The aim of our study was to profoundly characterize the effects of CSC on aortic
SMC phenotypic switch from a biochemical, transcriptional, and differential proteomic ap-
proach. Our data show functional processing of CSC-deregulated proteins, detected using
liquid chromatography–tandem mass spectrometry (LC–MS/MS) and bioinformatics; and
through western blot/immunocytochemistry analyses we identified the interferon-induced
double-stranded RNA-activated protein kinase (alternative name: protein kinase RNA-
activated; PKR) (EIF2AK2/PKR; henceforth PKR) as the main relevant factor involved in
SMC phenotypic plasticity. Combination of gene expression and differential proteomics
data using MetaCore led to the generation of a hybrid network where all experimental fac-
tors were highly integrated under the direct control of KLF4. In addition, the gene/protein
hybrid network evidenced a tight functional cross-talk between PKR and KLF4; hence
suggesting that vascular SMC phenotypic plasticity induced by CSC is orchestrated by
PKR and KLF4.

2. Results and Discussion
2.1. Effect of Cigarette Smoke Condensate on Murine SMC Phenotypic Switch

We previously demonstrated phenotypic changes in mouse SMCs loaded with free
cholesterol complexed to methyl-β-cyclodextrin [11]. This resulted in less differentiated
cells that lacked SMC markers but showed an increased inflammatory profile. They ac-
tually had an enhanced expression of Lgals-3, interleukins, and of the cholesterol trans-
porters Abca1 and Abcg1, which are associated with increased cell proliferation and mi-
gration, as well as with synthesis of extracellular matrix and related proteases, such as
matrix metalloproteinases (MMPs) [11]. These are specific features that may promote
atherosclerosis [7,11,13].

With the aim of understanding CSC effects on SMC plasticity, we incubated mouse
SMCs with CSC lipophilic components (see Section 3) for 48 h. Then, we evaluated the
expression of specific markers of both contractile (Acta2 and Cnn1) and inflammatory
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(Lgals-3, Abca1, Abcg1) phenotypes. As shown in Figure 1a, after incubating mouse SMCs
with CSC we observed a significant decrease in Cnn1 (up to 50%, p < 0.005 vs. control), and
Acta2 (up to 70%, p < 0.001 vs. control) mRNA levels, which was confirmed using western
blot analysis. In parallel, we observed a statistically significant increase in the expression of
Lgals-3, both at mRNA and protein levels (up to 3-fold and 5-fold, respectively, p < 0.001,
Figure 1b), and of Abca1 and Abcg1 mRNA (up to 4-fold and 2-fold, respectively, p < 0.01).
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Figure 1. CSC induces a phenotypic switch in murine SMCs. Murine SMCs were incubated for 48 h
with CSC (30 µg/mL). Then, the expression of contractile (a) or inflammatory (b) genes was evaluated
using RT-PCR or WB analysis. Data are the mean ± SD of at least three experiments performed in
triplicates. ** p < 0.01; *** p < 0.005; **** p < 0.001 vs. control.

We and others have previously shown that SMC cholesterol loading converts SMCs
to a foam cell-like state by downregulating the miR-145–MYOCD axis [9,11]. MYOCD
is a potent myogenic transcriptional coactivator that controls the expression of ACTA2
and CNN1 and negatively regulates SMC inflammatory activation and vascular disease,
and its levels are reduced during atherosclerosis in association with SMC phenotypic
changes [7,14,15]. As shown in Figure 2, the addition of CSC significantly reduced Myocd
expression in SMCs (up to 70% reduction, p < 0.005) reproducing the pathological situ-
ation observed during atherogenesis [15]. As expected, the expression of Klf4, a known
repressor of Myocd [16], was increased (doubled, p < 0.001) by treatment with CSC. MY-
OCD is required for phenotypic transition of cultured SMCs in response to PDGF [17]. It
also regulates SMC transition toward an inflammatory phenotype [18] and induces the
expression of miR-145, which is one of the most important miRNAs in CVD according
to its high expression in SMCs [9]. MiR-145 knockdown induces atherogenesis in mice
regardless of hypercholesterolemia; its expression decreases with plaque progression and
its overexpression reduces atherosclerosis [19–21]. MiR-145 regulates SMC function in
intimal hyperplasia, inhibits SMC proliferation and migration, and may regulate MYOCD
expression and SMC phenotypic switching [7,22,23]. The incubation with CSC reduced
miR-145 expression by 40% (p < 0.01 vs. control, Figure 2), in agreement with the data
obtained by incubating murine SMCs with cholesterol [9,11,24].
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Figure 2. CSC affects the Myocd/miR145/Klf4 axis in murine SMCs. Murine SMCs were incubated for
48 h with CSC (30 µg/mL). Then, the expression of Myocd, Klf4, and miR-145 genes was evaluated
using RT-PCR. Data are the mean ± SD of at least three experiments performed in triplicates.
** p < 0.01; *** p < 0.005; **** p < 0.001 vs. control.

2.2. Effect of Cigarette Smoke Condensate on Human SMC Phenotypic Switch

Next, we confirmed the murine data in human cells. Human aortic SMCs (HSMCs)
were incubated for 48 h with CSC (30 µg/mL) and then HSMC phenotypic switch was
evaluated. The addition of CSC significantly reduced the SMC-specific markers ACTA2
and CNN1 (by 40% and 60%, respectively, p < 0.001 vs. control, Figure 3a), and increased
the expression of inflammation-related markers, such as LGALS-3, CD68, IL-6, and IL-8
(by 80%, 70%, more than 4-fold, and 7-fold, respectively, Figure 3b). IL-1β mRNA levels
increased four times and this was also confirmed at the protein level by both western blot
analysis (3-fold increase, p < 0.005) and by confocal microscopy (Figure 3c). As expected,
this phenotypic switch was consequent to a stimulation of KLF4 expression by almost five
times. Although less markedly than in mouse, also MYOCD expression was reduced by
CSC exposure (Figure 3d).
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Figure 3. CSC induces HSMC phenotypic switch. Human SMCs were incubated for 48 h with
CSC (30 µg/mL). Then, the expression of (a) contractile or (b,c) inflammatory genes was evaluated
using RT-PCR. (c) IL-1β protein expression was evaluated using RT-PCR, western blot, and confocal
microscopy analysis. Images were captured at 40× magnification using a FRET FLIM confocal
microscope. (d) The expression of KLF4 and MYOCD genes was measured using RT-PCR. Data
are the mean ± SD of at least three experiments performed in triplicates. * p < 0.05, ** p < 0.01;
*** p < 0.005; **** p < 0.001 vs. control.
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To further asses the induction of a phenotypic switch by CSC, we measured its effect
on HSMC proliferation using cell counting. As shown in Figure 4, the addition of CSC
stimulated HSMC proliferation and the effect was evident after 48 h of incubation.
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Subsequently, we measured the capacity of CSC to stimulate HSMC migration, another
pro-atherogenic feature associated with SMC phenotypic switch. To test the effect of CSC,
we used the wound healing assay (or conditional migration assay) that measures the ability
of HSMCs to migrate and reclose a lesion induced on the cell monolayer. The addition of
CSC markedly increased HSMC reclosure rate (Figure 5). In fact, 88% of the lesion area
was healed after 24 h of incubation with the CSC, versus only 60% of the lesion observed in
control HSMCs (Figure 5).
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Figure 5. CSC stimulates HSMC migration. Human SMCs were incubated for 48 h with CSC
(30 µg/mL). Then, cell migration was evaluated with the wound-healing assay. Images were
captured at 10× magnification using an inverted microscope. Data are the mean ± SD of at least
three experiments performed in triplicates.
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2.3. CSC Effects on VSMC Proteomic Profile and Combined Functional Analyses of Proteins and
Genes Significantly Deregulated by the CSC Treatment

To further our understanding on the biochemical basis of the CSC-induced phenotypic
switch, we performed an MS-based differential proteomic analysis in HSMCs. Eleven
proteins were significantly affected by the treatment with CSC (FC ≥ 2.7, p ≤ 0.05, Table 1).

Table 1. Differentially abundant proteins, detected/identified using LC–MS/MS analysis, occurring
between the CSC-treated and control human SMCs.

UniProtKB Protein Name UniProtKB
A.N.

Gene Symbol
(Alternative

Symbol)
CSC

Abundance
Control

Abundance
Coverage
(Unique
Peptides)

Score Adj. p
Value

Atrial natriuretic peptide
receptor 3 P17342 NPR3 (ANPRC,

C5orf23, NPRC) 0 (0) 22.8 (0.2) 28.1% (9) 22.7 8.08 × 10−4

Collectin-12 Q5KU26 COLEC12 (CLP1,
NSR2, SCARA4, SRCL) 0 (0) 21.6 (0.2) 7.7% (6) 8.2 7.92 × 10−4

Elongator complex protein 2 Q6IA86 ELP2 (STATIP1) 7.1 (0.0) 21.6 (0.0) 9.2% (5) 18.4 5.28 × 10−4

(E3-independent) E2
ubiquitin-conjugating enzyme Q9C0C9 UBE2O (KIAA1734) 7.3 (0.0) 22.1 (0.2) 7.3% (6) 20.5 1.17 × 10−3

Interferon-induced,
double-stranded

RNA-activated protein kinase
P19525 EIF2AK2 (PKR, PRKR) 7.4 (0.0) 0 (0) 14.8% (7) 13.2 9.32 × 10−4

Protein MON2 homolog Q7Z3U7 MON2
(KIAA1040, SF21) 0 (0) 20.2 (0.0) 2% (3) 5.0 5.04 × 10−4

Pyrroline-5-carboxylate
reductase 2 Q96C36 PYCR2 14 (0.1) 0 (0) 15.9% (2) 5.0 8.45 × 10−4

Schlafen family member 5 Q08AF3 SLFN5 7 (0.0) 21.2 (0.2) 8% (5) 11.3 1.34 × 10−3

Serine/arginine-rich splicing
factor 5 Q13243 SRSF5 (HRS,

SFRS5, SRP40) 7.4 (0.1) 22.3 (0.2) 11.4% (2) 4.4 1.19 × 10−3

Transmembrane emp24
domain-containing protein 1 Q13445 TMED1 (IL1RL1L,

IL1RL1LG, ST2L) 7.3 (0.0) 22.1 (0.1) 9.7% (2) 4.0 5.28 × 10−4

Transmembrane protein 43 Q9BTV4 TMEM43 7.3 (0.1) 22.1 (0.4) 22% (6) 20.2 4.64 × 10−3

The table reports, for each significant protein difference obtained using MS, the recommended UniProtKB
protein name; UniPtotKB accession number; corresponding gene symbol (alternative symbol(s)) and, in bold, the
MetaCore protein symbol; the mean LFQ-abundance (and standard deviation) in CSC and control groups; and the
MS identification result in terms of % protein coverage (and number of identified unique peptides), score, and
adjusted p value.

Only two of them were up-regulated, i.e., pyrroline-5-carboxylate reductase 2 (PYCR2)
and PKR (EIF2AK2 in the heatmap). All the others were downregulated, as shown by
the heatmap in Figure 6. In particular, the vertical dendrogram, on the left of Figure 6,
evidences the clustering of the differing proteins into three groups according to their
differential abundance in the two tested conditions.

Cluster A includes PYCR2 and PKR. On the contrary, cluster B2 contains the most
downregulated proteins in CSC-exposed cells, i.e., protein MON2 homolog (MON2), atrial
natriuretic peptide receptor 3 (NPR3), and collectin-12 (COLEC12). The other six pro-
teins, less downregulated by CSC treatment, are grouped in cluster B1 and they are:
serine/arginine-rich splicing factor 5 (SRSF5), transmembrane protein 43 (TMEM43), trans-
membrane emp24 domain-containing protein 1 (TMED1), (E3-independent) E2 ubiquitin-
conjugating enzyme (UBE2O), schlafen family member 5 (SLFN5), and elongator complex
protein 2 (ELP2).

Interestingly, identified proteins are differentially active in several signaling pathways
related to pro-inflammatory cytokine and IFN expression, to inflammasome assembly
and activation, cytoskeleton regulation and SMC contraction, mitochondrial integrity
and cellular response to oxidative stress, proteostasis control via ubiquitination, and cell
proliferation and epithelial-to-mesenchymal transition.
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Figure 6. Heatmap of not-scaled Euclidean distances of abundance values from the 11 protein
differences we identified between CSC-exposed (green bar in the horizontal dendrogram) and
control (golden bar in the horizontal dendrogram) HSMCs by applying an MS-based shotgun
proteomic approach.

We built hybrid networks to delineate the CSC-affected pathways and to evaluate
how the aberrant abundance/expression of protein/gene differences may affect SMCs
and tissue physiology in atherosclerosis onset, as well as to integrate data from classical
biochemical analyses and those from the MS-based proteomic approach. In the MetaCore
suite, we co-processed WB- or PCR-detected factors deregulated in CSC-treated HSMCs and
MS-identified differences. The functional processing of these proteins/genes evidenced
their tight functional correlation in a close interaction niche, which corroborates their
involvement in specific CSC-affected pathways and highlights their relevance as biomarkers
of CSC exposure.

2.3.1. Protein Hybrid Network

Firstly, we obtained a shortest path network (SPN) of deregulated proteins by including
in the processed list, along with the 11 MS-identified differences, also IL-1β, whose CSC-
induced upregulation was proved by RT-PCR, WB, and immunocytochemistry (Figure 3c).
Despite the very few not-experimental factors added by the software to cross-link experi-
mental proteins that were not directly related, all the protein differences were included into
the net, except for TMEM43. This proves the tight functional correlation existing among
them and strongly suggests that they may play critical roles in the phenotypic switch we
observed. Since several of these deregulated proteins were not previously associated with
cellular response to CS, their functional cross-talk may offer a new perspective on CSC
effects on SMCs, and they could be evaluated as biomarkers and targets in SMC transdiffer-
entiation. PKR, IL-1β, UBE2O, SLFN5, and SRSF5 (alternative name: pre-mRNA-splicing
factor SRP40; SRP40) became the central hubs of the protein SPN as they established the
highest number of interactions (Figure 7). In particular, the kinase/adapter protein PKR
was the most relevant one, being cross-linked to the highest number of net nodes.

PKR is implied in a plethora of cellular functions spanning from signal transduction
and apoptosis, to cell proliferation and differentiation, by modulating p53/TP53, PPP2R5A,
ILF3, and IRS1 activities [25–28], and by regulating various signaling pathways, such as
p38 mitogen-activated protein kinase (p38 MAPK), NF-kB, and insulin signaling pathways,
as well as of transcription factors, e.g., JUK, STAT1, STAT3, IRF1, and ATF3, involved in
gene expression of pro-inflammatory cytokines and IFNs [29,30]. Although studies on PKR
in SMCs have only recently intensified [31], several of PKR’s known activities underline a
close and multilevel correlation between the increase in its expression and the biochemical
and phenotypic changes we described in HSMC after CSC treatment.
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protein differences that do not directly interact. Only TMEM43 did not enter into the SPN. Red
and blue bubbles indicate the up- and downregulation, respectively, of the experimental factors in
CSC-treated HSMCs.

PKR is an innate immune/inflammatory-cytokine-associated protein kinase, one of
the four kinases composing the integrated stress response (ISR) system. The ISR is involved
in cellular adaptation to stress; and its kinases, when activated, cause an immediate gene
expression reprogramming by phosphorylating the α subunit of eukaryotic translation
initiation factor 2 (eIF2α) [32], a member of the PERK–eIF2α–ATF4 pathway that is involved
in SMC transdifferentiation and vascular calcification [33]. PKR is activated or induced
by different types of cellular stresses, including viral infection, inflammatory signals, and
oxidative, metabolic, mechanical, and endoplasmic reticulum (ER) stresses [27,30,31,34].
CSC is known to cause oxidative stress [35–38], and cigarette smoke provokes ER stress
and inadequate protein turnover in alveolar epithelial cells [39]. Reasonably, in CSC-
exposed cells, oxidative and ER stresses may initiate the up-regulation of PKR that, for
its part, could trigger inflammatory signaling through the above-mentioned pathways
and nuclear factors, thus auto-supporting its expression. In fact, PKR is induced by pro-
inflammatory cytokines, e.g., TNF-α, IL-1, INF-γ, and, depending on the cell type, PKR
itself induces the release of the pro-inflammatory IL-18, IL-1β, and high mobility group
box 1 (HMGB1) alarmin proteins [40]. PKR is actually reported to interact with several
components of the macrophage inflammasome, regulating its activity, and, finally, in
induction of pyroptosis [30,40].

PKR is also implied in metabolic syndrome and insulin resistance [41,42]. Furthermore,
PKR inhibition attenuates inflammation, oxidative stress, and apoptosis marker gene
expression in SMCs incubated in high fructose (HF) medium [31]. Interestingly, HF causes
proliferation and phenotypic switch of these cells [31]. As a matter of fact, although
further analyses are needed, the dedifferentiation of SMCs increased their proliferation
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and migratory capability, and the acquisition of an inflammatory state triggered by CSC
exposure may be orchestrated by PKR, as similarly reported for other vessel stressors.

Vascular SMCs are characterized by a phenotypic plasticity that allows them to adapt
in presence of environmental changes and during disease development [8]. PKR is gaining
relevance in this context, not only as a regulator of transdifferentiation but also by control-
ling extracellular matrix degradation and remodeling. Activated PKR actually mediates
the increase in matrix-metalloproteinase 2 and 9 (MMP2 and MMP9, respectively) gene
expression and protein activation [43], which may obviously facilitate the CSC-induced
SMC migration.

The signal transducer activator of transcription 3 (STAT3) is a transcription factor
induced by PKR that is used by MetaCore to cross-link PKR to IL-1β and to ELP2, also
known as STAT3-interacting protein 1 (STATIP1 in MetaCore). In addition to its role in
the expression of pro-inflammatory cytokines, STAT3 promotes cell survival and prolif-
eration [44], and is involved in phenotypic switch of synthetic SMCs. Its overexpression
actually inhibits MYOCD-induced up-regulation of contractile phenotype-specific genes
in SMCs [45]. STATIP1 modulates the ligand-dependent activation of STAT3 and its over-
expression blocks IL-6-dependent STAT3 activation in vitro [46]. Since the IL-6/STAT3
pathway can modulate SMC proliferation, migration, and expression of MMPs [47], reduced
abundance of STATIP1 is a biochemical observation that properly fits with the behavior
changes induced by exposing HSMC to CSC, as we described above. IL-6 is associated
with an increased cardiovascular risk [48], and induces senescence-associated calcification
of SMCs by activating the STAT3/p53/p21 signalling pathway [49]. Therefore, the CSC
stimulation in SMCs may even be related to in vivo atherosclerotic lesion calcification by
inducing IL-6 upregulation and reducing STATIP1 occurrence.

Interferon regulatory factor 1 (IRF1) is another critical net-point added by the soft-
ware for experimental hub cross-linking. It controls PKR, IL-1β, SLFN5, and NPR3 gene
expression and is modulated by SRP40, as shown in Figure 8. IRF1 directly regulates the
expression of inflammation and migration-related genes in a human microglial cell line [50]
and induces IL-6 and IL-1β transcription [51]. These data suggest a possible correlation
of IRF1 in controlling the HSMC inflammatory state induced by CSC, by modulating the
above-listed experimental proteins affected by CSC and by functionally correlating all of
them with its own activity. NPR3 is the transmembrane receptor of the C-type natriuretic
peptide (CNP) and exerts an anti-proliferative, anti-migratory, and anti-inflammatory
role [52]. NPR3 signaling impedes cardiac and vascular remodeling by suppressing SMC
proliferation and collagen deposition [53]. Interestingly, CNP-KO mice suffer from en-
dothelial dysfunction, hypertension, and atherosclerosis onset [54]. Therefore, the evident
downregulation of NPR3 (Figure 6) plausibly contributes to the phenotypic switch induced
by CSC in HSMCs by negatively affecting pathways that counteract cellular proliferation
and ECM fiber synthesis. Additionally, SLFN5 is an IRF1-controlled factor downregu-
lated by the CSC treatment. It is involved in the inhibition of endothelial mesenchymal
transition (EMT) and of E-cadherin-repression, by downregulating the zinc finger E-box-
binding homeobox 1 [55] as well as in the suppression of MMP expression and of cellular
proliferation, migration, and invasiveness in different types of cancer [56–60]. The down-
regulation of SRP40 induced by CSC treatment may concur with SLFN5 in facilitating
HSMC transdifferentiation and migration. SRP40 knockdown reduces the expression
of tight-junction proteins increasing blood–tumor-barrier permeability [61]. In addition,
SRP40 modulates the alternative splicing of the glucocorticoid receptor (GCR) and, con-
sequently, defects in SRP40 activity may affect GCR signaling in reason of GRα/β ratio
variations [62]. Glucocorticoids are crucial in maintaining cardiovascular health and have
been described to influence the development of atheromatous plaques [63]. CSC-induced
abundance reduction in SRP40 may hence have in vivo deleterious effects by dysregulating
GCR signaling.
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Figure 8. MetaCore SPN built by processing significant HSMC proteins and genes deregulated
by 48 h of CSC treatment. Experimental factors, circled in blue, are cross-linked by expanding
protein interactions to other factors, which are not present in the processed experimental-list but
supported by the MetaCore database, and which are needed to functionally correlate user up-loaded
proteins/genes that do not directly interact. All the processed deregulated proteins/genes were
entered into the SPN. Red and blue bubbles indicate the up- or downregulation, respectively, of the
experimental factors in CSC-treated HSMCs.

Noteworthy, three CSC-downregulated proteins are under the direct control of GCR,
and two of them, MON2 and COLEC12 (Figure 7), are from the B2 cluster of the dendro-
gram shown in Figure 6. This means they are among the most downregulated proteins of
the analysis. MON2 is a Golgi apparatus protein taking part to an evolutionarily conserved
endosome-associated membrane remodeling complex active in the endosome-to-Golgi
transport pathway, which is an integral part in autophagy-mediated longevity [64,65]. SMC
senescence and apoptosis occurring in mature plaques increase plaque vulnerability, steno-
sis, medial degeneration, and thrombogenicity by converting the initial fatty streaks to a
fibro-atheroma lesion [66]. In addition, apoptotic SMC remnants result in nucleating centers
of calcium deposition and plaque calcification, thus further increasing the possibilities of
plaque rupture [66]. On one hand, autophagy is active in the stress response of SMCs and
plays a pivotal role in determining their phenotypic switch under growth factor stimulation,
e.g., PDGF; on the other hand, it reduces foam cell formation, lipid accumulation, and
lesion mineralization by regulating apoptosis [66]. Indeed, the downregulation of MON2
we observed in response to CSC may be of particular interest in SMCs of stressed vessels
from classical cigarette smokers. The lipophilic condensate components of CS may, in fact,
affect the vessels, by reducing MON2 presence and vesicle protein cargo trafficking and
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recycling, thus negatively impacting SMC survival and atherosclerotic lesion development.
Nonetheless, MON2 activity is also involved in Wntless rescue from lysosomal degradation
and, consequently, it may interfere with Wnt secretion [67]. Despite its signaling promoting
SMC survival [68], Wnt exerts several, although debated, functions in cardiovascular phys-
iopathology and its downregulation may reduce plaque instability [69]. The role of MON2
in SMC transdifferentiation and in atherosclerosis has not yet been investigated and, even if
its dysregulation may apparently have antithetic effects, its control on vesicle cargo, protein
recycling, and autophagy, along with its consistent CSC-dependent downregulation, make
this protein an interesting novel biomarker of stressed SMCs that undoubtedly deserves to
be further investigated.

The transmembrane scavenger receptor (SR) C-type lectin COLEC12 (CL-P1), which
is up-regulated by hypoxia, is involved in ox-LDL binding and internalization processes,
regardless of intracellular cholesterol content [70]. COLEC12 is principally present in cells of
placental, stromal, and macrophage origin, and plays a role in cell-to-cell adhesion, similarly
to selectins [71]. Despite SRs exerting a relevant role in cardiovascular diseases [72,73],
COLEC12 is under-investigated in vessels and its detection in vascular endothelial cells [74]
is controversial [75]. COLEC12 is consistently reduced in SMCs exposed to CSC and we
may suppose that such a decline could diminish the SMC reciprocal interaction in vitro,
thus facilitating cell migration.

Finally, UBE2O is a member of the E2 family of the ubiquitin-proteasome system (UPS)
that acts as an E2/E3 hybrid enzyme and that is principally expressed in heart and skeletal
muscle. UPS is crucial in cellular proteostasis and critical for several cellular functions, such
as gene transcription, inflammatory response, endocytosis, intracellular protein trafficking,
and angiogenesis, by modulating relative abundance of ubiquitinated proteins [76]. In
addition, differential ubiquitination changes properties, their reciprocal interactions and
localization of proteins, hence profoundly impacting on their function and on pathways
in which they work [76]. Since it is also endowed with a self-contained quality-control
activity for substrate recognition [77], UBE2O downregulation may deeply affect protein
dynamics and cellular functions in SMCs treated with CSC. Namely, its depletion enhances
the tumor necrosis factor (TNF)-associated factor 6-(TRAF6)/NF-kB signaling [78] that has
been recently correlated with anoikis resistance and cell spreading in cancer [79], and whose
inappropriate activation causes uncontrolled innate immune responses [78]. Interestingly,
induced expression of UBE2O suppresses IL-1β/TRAF6-induced signaling by inhibiting
the polyubiquitination of E3 ligase TRAF6 [78]. The IL-6-enhanced expression we observed
leads us to suppose that reduced presence of UBE2O results in an upregulation, maybe via
TRAF6, of NF-kB with consequent intensification of the IL-6/NF-kB signaling, critical in
vessel inflammation [80].

Reduced abundance of UBE2O may hence be associated with the inflammatory state
induced by CSC in HSMCs, as well as with a generalized variation in proteoform pattern(s)
that may participate in the phenotypic switch.

2.3.2. Protein/Gene Hybrid Network

We have demonstrated that CSC induces HSMC phenotypic switch via the KLF4/MYOCD
axis. The protein/gene hybrid SPN, built by using the entire list of factors deregulated
at protein or transcript levels in CSC-treated cells, was centred on KLF4, which actually
turned out to be the main central hub (Figure 8). This SMC-plasticity regulator directly
correlates with all the CSC-deregulated genes except for CNN1, and with all the deregulated
proteins except for the SLFN5 (see Supplementary Figure S1). Nonetheless, 34 and 21 of
the interactors MetaCore added to CNN1 and SLFN5, respectively, are under the direct
functional control of KLF4. Since all these interactors converge on CNN1 or SLFN5, KLF4
reasonably exerts a tight control on both of them.

Although under-studied, SLFN5 knock-down is involved in EMT of breast cancer
cells [81]. Consequently, the indirect inhibitory control exerted by KLF4 on SLFN5 may
result in a depletion of its protein product, as we observed using MS analysis, with conse-
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quences in the contractile-to-mesenchymal switch. This is perfectly aligned with the KLF4
downregulation of CNN1.

Differentiated vascular SMCs do not normally express KLF4 in vivo, but they tran-
siently induce its expression after vascular injury [82]. KLF4 induction was recently re-
viewed as crucial in the initial dedifferentiation of SMCs to the mesenchymal-like pheno-
type, which may allow, depending on external stimuli, further molecular changes toward
the other four known SMC phenotypes [7,83]. The (i) fibroblast-like, (ii) macrophage-like,
(iii) osteogenic-like, and (iv) adipocyte-like phenotypes acquired by SMCs after dedif-
ferentiation may profoundly impact vessel dysfunctions and atherosclerosis onset and
development [7,84]. Reasonably, KLF4 induction due to CSC exposure, may trigger the
SMC phenotypic changes we described above. According to the hybrid SPN, KLF4 evi-
dently orchestrates the cellular response to the treatment and its interactors and related
pathways may offer a new perspective on CS effects on the cardiovascular system.

In addition, it is of great relevance that the two main actors that our data delineated on
the stage of SMC transdifferentiation, i.e., KLF4 and PKR, not only directly interact but they
also indirectly correlate through six proteins known to, or suspected to, exert relevant roles
in SMC phenotypic switch, proliferation, migration, and inflammatory state development.
These are the above described STAT3 and IRF1, inhibitor of nuclear factor kappa-B kinase
subunit alpha (CHUK; IKK-α in the MetaCore SPN), SUMO-conjugating enzyme UBC9
(UBE2I; E2I in the MetaCore SPN), basic helix–loop–helix ARNT-like protein 1 (BMAL1),
and transcription factor Sp1/Sp3 complex (Supplementary Figure S2). Noteworthy, STAT3,
positively regulated by both PKR and KLF4, induces the LGALS-3 gene expression [85]
that widely participates in vascular SMC transdifferentiation (vide infra). While PKR
induces NF-kB signaling by activating IKK-α [86], KLF4 is among the stemness-related
genes that are directly induced by IKK-α via an interaction with the aryl hydrocarbon
receptor (AhR) [87], which has recently been recognised as a major player in CVDs [88].
The balance between sumoylation and desumoylation controls the differentiation of adult
stem cells and KLF4 is directly involved in this process [89].

Interestingly, the circadian clock transcription factor BMAL1, which is essential for
normal circadian variations in SMC contraction, was described to promote a phenotypic
switch of SMCs towards fibroblast-like cells and to stabilize atherosclerotic plaques [90].
As shown in Figure S2 SPN, KLF4 and PKR are both under BMAL1 control [91]. Since this
transcription factor also suppresses vascular SMC migration, deregulation of BMAL1 may
affect SMC behavior by modulating PKR and KLF4 activity.

Finally, the induction of both PKR and KLF4 by Sp1 again stresses the relevance they
have in the onset and development of atherosclerotic pathology. Sp1 is actually involved
in the main events of atherosclerosis development, such as vascular SMC proliferation,
inflammation, lipid metabolism, plaque stability, and endothelial dysfunction [92]. PKR
and KLF4 may also act as Sp1 effectors in modulating SMC behavior. Sp1, cooperatively
with Sp3, in fact mediates basal expression of PKR in the absence of IFN stimulation [93]
and induces KLF4 in phenotypically modulated SMCs [17].

Unlike STAT3, SP1, BMAL1, IKK-α, UBE2I, and IRF1 are factors that have received a
marginal interest in vascular injury and related atherosclerotic events. Nevertheless, their
close functional correlation with both PKR and KLF4 suggests that these proteins could
exert relevant roles in vascular SMC phenotypic variations, or at least in those induced by
CSC exposure.

Contractile SMCs are regarded as differentiated and quiescent cells under physiolog-
ical conditions, expressing a panel of typical contractile proteins crucial in maintaining
vascular tension. In particular, a correlation between the loss of the contractile pheno-
type of SMCs exposed to CSC and the activity of KLF4 is suggested by the direct or
indirect inhibitory interactions that this transcription factor establishes with markers of
contraction—markers we proved to be down-regulated, such as ACTA2 (included in the
MetaCore actin node) and CNN1, and not to mention the inhibitory effect KLF4 has against
MYOCD, the master regulator of smooth muscle-specific gene expression (Figure 8).
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Evidently, CSC unleashes a stress condition in SMCs whose molecular effectors/effects
consistently overlap with those triggered by other vessel injury events that induce SMCs to
reduce the expression of contractile phenotypic markers and migration inhibitors and to
acquire a proliferative and migratory behaviour.

SMC alterations are responsible for the transition of these cells from a contractile phe-
notype to an active synthetic one able to release paracrine mediators, including TNF-α and
IL-6 [94]. This function promotes the further synthesis of cytokines, e.g., IL-8 and IL-1β [95],
and growth factors that sustain ECM remodeling, vascular SMC proliferation, and mi-
gration [96]. In particular, the transient mesenchymal-like phenotype triggered by KLF4
expression is characterized by an LGALS-3 positive state [97], whose expression is directly
induced by KLF4 [98,99]. LGALS-3 inhibition increases CNN1 and ACTA2 gene expression
in human pulmonary arterial SMCs under hypoxic conditions [100]. LGALS-3 is consid-
ered a predictive marker for the development and progression of CVDs [101], including
atherosclerosis [102]. In addition to promoting SMC migration and phenotypic switching
to the synthetic type through the Wnt/β-catenin signalling pathway [103], LGALS-3 is
actually intimately involved in acute inflammation and in its chronicization [104–106].

The detrimental osteogenic and proinflammatory phenotypes derive from the LGALS-
3-positive SMC transitional state [99] as well as from the macrophage-like state. Macrophage-
like SMCs, whose phenotypic conversion is facilitated by high cholesterol levels and ox-LDL
via KLF4 induction [9,11,107], express LGAL-3 and other macrophage marker genes coding
for F4/80 (ADGRE1), CD11b (ITGAM), CD68, CD45 (PTPRC/CD45), and CD116 (CSF2RA)
antigens [108]. Among them, the CD68 gene codes for macrosialin, a plasma membrane gly-
coprotein involved in phagocytic activities of tissue macrophages as well as in macrophage
homing by binding lectin and selectin and allowing cell crawling over selectin-presenting
substrates. Interestingly, Allahverdian et al. showed that ~40% of all CD68-positive
macrophages within human coronary artery lesions are derived from SMCs [109]. As CSC
induces CD68 expression in SMCs in vivo, we can suppose that the lipophilic components
of CSC not only induce vascular SMC switch to the mesenchymal-like phenotype but that
it may even facilitate its further switch to the macrophage-like one.

Among the CSC-deregulated proteins that interact with KLF4, PYCR2 deserves atten-
tion. It is an essential enzyme in proline biosynthesis and promotes cancer proliferation and
progression [110,111]. Proline-abundance increase may lead to E-cadherin reduction in the
plasma membrane [112], a process previously associated with ox-LDL treatment of SMCs,
which induces SMC proliferation and disassembling of their adherens junctions [113].
Accordingly, increased PYCR2 levels may support SMC proliferation and migration.

Conversely to its fate in the hybrid protein SPN (Figure 8), the MS-detected protein-
difference TMEM43 is included in the protein/gene hybrid SPN and its function is under
the direct control of KLF4 (Supplementary Figure S1). TMEM43 is a structural protein of
the inner nuclear membrane highly and uniformly expressed in fibroblasts and vascular
SMCs [114] and whose mutations cause fatal arrhythmia in humans [115–119]. It interacts
with the lamins A/C, B1, emerin, and SUN domain-containing protein 2 (SUN2) and
is probably involved in emerin localization [115–117]. As an interactor of the linker of
nucleoskeleton and cytoskeleton (LINC) complex, it may therefore act in mechanosignaling
and in related regulation of gene expression, cell signaling, nuclear structure, and chromatin
architecture. In addition, TMEM43 is a widespread cytoplasmic plaque protein of the zonula
adherens from various epithelial cell types [120]. We may consequently speculate that the
decreased abundance of TMEM43 could lead to gene expression reprogramming as well
as to a reduced cell–cell interaction in vascular SMCs exposed to CSC, with consequent
phenotypic switch to a mesenchymal-like one.

In line with TMEM43 and PYCR2, KLF4 also downregulates SRP40 [121], which
causes as described above, dysregulation of tight junction proteins, and COLEC12, which
is involved in cell-to-cell adhesion (vide supra) [122]. In addition, KLF4 indirectly controls
vesicular trafficking of proteins by modulating gene expression of two other proteins that
we detected to be downregulated by CSC treatment: TMED1 and MON2 [122]. According
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to this latter gene modulation, KLF4 may further affect autophagy, plaque stability, and
mineralization. Lesion development, as well as SMC proliferation and migration, may be
conditioned by KLF4 also downregulating STATIP1 and NPR3 expression [122,123]. Finally,
KLF4 role in CSC-related inflammation may pass through UBE2O regulation [123].

In addition to its effects on classical markers of SMC differentiation and inflammatory
state (i.e., ACTA2, MYOCD, IL-1β, IL-6, IL-8, LGALS3), KLF4 activities properly correlate
with the deregulation in protein abundance we observed in SMCs exposed to CSC. This
stresses the functional relevance of the MS/MS delineated biomarker panel in SMC be-
havioral changes induced by CSC, despite a number of our protein biomarkers not having
been effectively studied yet in SMC phenotypic switch.

3. Materials and Methods
3.1. Cell Culture

Murine smooth muscle cells (SMCs) were isolated from the intimal–medial layer
of aortae of C57BL/6 mice of both sexes (The Jackson Lab, Bar Harbor, ME, USA) as
described in [11]. Subconfluent SMCs were incubated in DMEM (Euroclone, Milan, Italy)
supplemented with 0.2% essential-fatty-acid-free albumin.

Human aortic SMCs (PCS-100-012, ATCC, MA, USA) were cultured in ATCC Vascular
Cell Basal Medium (PCS-100-030, ATCC; 500 mL supplemented with 500 µL ascorbic
acid, 500 µL rh EGF, 500 µL rh insulin and rh FGF-b, 25 mL glutamine), 5% FBS (ATCC
Vascular Smooth Muscle Growth kit), and 5 mL penicillin–streptomycin 100× (Euroclone,
Milan, Italy).

3.2. Cigarette Smoke Condensate

Cigarette smoke condensate (CSC) was kindly provided by British American Tobacco
(Southampton, UK). CSC contains the lipophilic components present in both the gas and
the particulate phases of a standard traditional cigarette (1R6F, manufactured and provided
by the University of Kentucky, Lexington, KY, USA). The use of standardized reference
cigarettes provides better uniformity of experimental responses both within the same
laboratory and also between laboratories [124]. CSC was dissolved in dimethylsulphoxide
(DMSO) to yield a final concentration of 24 mg/mL. Final maximal DMSO concentration in
all samples was adjusted to 0.1% [125].

3.3. Confocal Microscopy

Cells were washed with PBS and fixed in 4% paraformaldehyde for 15 min, perme-
abilized by adding 0.1% Triton and subsequently saturated with 5% BSA for 1 h. After
adding primary antibodies in blocking buffer, cells were incubated overnight in the dark,
washed, and stained with the secondary anti-bodies Alexa Fluor 488 and 546 (Thermo
Fisher Scientific, Monza, Italy). Cells were then washed with PBS and stained with DAPI.
Images were acquired using a confocal microscope (FRET FLIM, 40× objective lens, Leica
Microsystems, Milan, Italy).

3.4. RNA Isolation and Reverse Transcription

Total RNA from cells was extracted with the Direct-zolTM RNA MiniPrep Plus kit
(Zymo Research, Irvine, CA, USA). Concentration and purity of RNA were measured using
a Nanodrop 1000 spectrophotometer (Thermo Fisher Scientific). A total of 1 µg of total
RNA was reverse transcribed using the iScript gDNA Clear cDNA Synthesis kit (1725035,
Bio-Rad, Milan, Italy), according to manufacturer’s instructions.

3.5. Quantitative RT-PCR

Quantitative RT-PCR was performed by using iTaq Universal SYBR Green Supermix
and specific primers for selected genes [24]. Mouse primer sequences used for qPCR
analysis are shown in Table 2. The analyses were performed with the CFX CONNECT
TM Real Time System (BioRad). PCR cycling conditions were as follows: 95 ◦C for 1 min,
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40 cycles at 95 ◦C for 10 s, and 60 ◦C for 30 s. The results were analyzed using the ∆∆Ct
method using the expression values of the reference gene GAPDH. The fold-change was
calculated using 2−(ddCt), comparing control cells versus CSC-treated cells.

Table 2. Sequences of mouse primers.

Gene Name Sequences Gene Name Sequences

Abca1 FW 5′-AAAACCGCAGACATCCTTCAG-3′
RV 5′-CATACCGAAACTCGTTCACCC-3′ Klf4 FW 5′-CTTTCCTGCCAGACCAGATG-3′

RV 5′-GGTTTCTCGCCTGTGTGAGT-3′

Abcg1 FW 5′-CCTTATCAATGGAATGCCCCG-3′
RV 5′-CTGCCTTCATCCTTCTCCTG-3′ Lgals-3

FW
5′-TGGGCACAGTGAAACCCAAC-3′

RV 5′-TCCTGCTTCGTGTTACACACA-3′

Acta2 FW 5′-GTCCCAGACATCAGGGAGTAA-3′
RV 5′-TCGGATACTTCAGCGTCAGGA-3′ Myocd FW 5′-AAGGTCCATTCCAACTGCTC-3′

RV 5′-CCATCTCTACTGCTGTCATCC-3′

Cnn1 FW 5′-TTGAGAGAAGGCAGGAACATC-3′
RV 5′-GTACCCAGTTTGGGATCATAGAG-3′

3.6. PCR Arrays

The mRNA expression in human SMCs was measured with a human muscle con-
traction PCR array (Bio-Rad) and an IL-1β signaling pathway PCR array (Bio-Rad) as
indicated by the manufacturer. Briefly, the amplified cDNA was diluted with nuclease-free
water and added to the SsoAdvanced Universal SYBR® Green Supermix. A volume of
20 µL of the experimental cocktail was added to each well of the array. Real-Time PCR
was performed on a CFX CONNECT TM Real Time System (Bio-Rad) with the following
thermal profile: activation—1 cycle, 95 ◦C for 2 min; denaturation—40 cycles, 95 ◦C for 5 s;
annealing/extension—40 cycles, 60 ◦C for 30 s; melt curve—65–95 ◦C (0.5 ◦C increments)
5 s/step. All data from the PCR were analyzed using CFX Maestro software v 2.3 (Bio-Rad).

3.7. miRNA Expression

A total of 20 ng of extracted RNA was reverse transcribed into cDNA using the
miRCURY LNA RT Kit (Qiagen, Hilden, Germany). Mature miRNA expression levels were
measured using the miRCURY LNA SYBR Green PCR Kit (Qiagen). Results from qPCR
were normalized using miR-103A and relative gene expression was quantified with the
∆∆Ct method.

3.8. Protein Isolation, Quantification, SDS-PAGE and Western Blot

For the preparation of total cell lysates, cells were washed with ice-cold PBS and lysed
with lysis buffer (NaCl 150 mM, TRIS 50 mM pH 7.6, NONIDET P-40 0.5%, and protease
inhibitors (Merck, Milan, Italy)). Protein concentration was determined using a Pierce BCA
Protein Assay kit (Pierce, Rockford, IL, USA) and samples were run on SDS-PAGE. The
different proteins were detected using specific primary antibodies: ACTA-2 (ab7817, 1:300),
LGALS-3 (ab76245, 1:5000), and IL-1β (ab2105, 1:200) were from Abcam (Cambridge, UK);
tubulin (T6199, 1:1500) from Sigma-Aldrich (Milan, Italy). Quantification was performed
using densitometric analysis using Image Studio Lite software v. 3.1 from Li-Cor Bioscience
(Lincoln, NE, USA).

3.9. Cell Proliferation

Cells were seeded in 24-well plates at a density of 3 × 104 cells/well. After 24 h,
cells were incubated with medium containing 0.4% FBS to synchronize cells in the G0
phase of the cell cycle. After 72 h, cells in control dishes were counted with a Coulter
Counter (Beckman Coulter, Life Scientific, Milan, Italy) and this was considered the “basal”
number of cells at T0. Then, medium was removed and replaced with medium containing
30 µg/mL CSC and 10% of FBS for 24 and 48 h. Cell number was measured and compared
to the zero time-point [126].
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3.10. In Vitro Directional Migration (Wound Healing Assay)

Cells were plated in 24-well plates and grown to confluence. Cell monolayers were
scratched with a 200 µL pipet tip in a straight line. Thereafter, the cell monolayer was
washed with growth medium to remove detached cells. Cells were then incubated with
medium containing 0.4% FBS and CSC (30 µg/mL). Images of the wounded area were
acquired at the same spot at different time-points using an inverted microscope (Axiovert
200; 10× objective lens, Carl Zeiss, Milan, Italy) equipped with a digital camera. Quantifi-
cation of the wound area was performed using ImageJ, and cell migration was expressed
as a percentage of wound area at different time-points compared to initial wound area
(T0) [127].

3.11. Comparative Mass Spectrometry Proteomics

Relative quantitative mass spectrometry (MS) was performed using label-free quan-
tification (LFQ). Protein samples were reduced, alkylated, and then digested in 5 mM
Dithiothreitol (DTT, at 55 ◦C for 30 min), 15 mM 2-Iodoacetamide (IAA, at room tem-
perature for 20 min), and 0.1 µg/µL trypsin (overnight at 37 ◦C), respectively. Protein
samples were purified through C18 reverse phase column Zip-tip purification, concen-
trated in a speedvac vacuum concentrator, and dissolved in 4 µL 0.1% v/v formic acid
solution. Samples were analysed in triplicates using nano-liquid chromatography–high
resolution mass spectrometry (nLC–HRMS) on a Dionex Ultimate 3000 nano-LC system
(Sunnyvale, CA, USA) connected to an Orbitrap Fusion™ Tribrid™ mass spectrometer
(Thermo Scientific), equipped with a nano-electrospray ion source. In particular, pep-
tide mixtures were pre-concentrated onto an Acclaim PepMap 100—100 µm × 2 cm C18
(Thermo Scientific)—and separated on an EASY-Spray column ES802A, 25 cm × 75 µm
ID packed with Thermo Scientific Acclaim PepMap RSLC C18, 3 µm, 100 Å. The peptides
were eluted with a gradient from 96% buffer W (0.1% formic acid in water) to 95% buffer
A (0.1% formic acid in 75% acetonitrile) at a constant temperature (35◦C) and flow rate
(300 nL/min) for 144 min. MS spectra were collected in data-dependent mode over an
m/z range of 375–1500 Da at 120,000 resolutions, and a cycle time of 3 s between master
scans. Higher-energy collision dissociation (HCD) was performed with collision energy
set at 35 eV and positive polarity. MS raw data were processed using MaxQuant v2.2
[https://www.maxquant.org, (accessed on 2 July 2022)] [128]. In particular, the settings to
identify and quantify the proteins were: human taxonomy (UP000005640.fasta), trypsin
digestion, cysteine carbamidomethylation (as fixed modification), methionine oxidation,
and N-term acetylation or Met-loss (as dynamic modifications). Only the proteins identified
by two or more unique peptides, presenting Q-values lower than 0.05, and observed in 4 of
6 replicates at least in one condition were considered in the analysis. The LFQ values from
technical replicates were averaged and then normalized using DEP R-package v.1.20.0 [July
2022] [129]. The statistical comparison between CSC and control experimental groups was
performed using v.3.54.1 [July 2022] [130] and the differentially abundant proteins were
represented in a heatmap plot. In particular, heatmap clustering was obtained according to
Ward’s method of the Euclidean distances.

3.12. Functional Analysis of Detected Differences in the CSC vs. Control Comparison

Functional analysis of acquired data was performed using MetaCore v21.3 (Clari-
vate Analytics, Boston, MA, USA) integrated software suite for functional analysis of
experimental data. MetaCore consists of a manually annotated database of human protein–
protein, protein–DNA, and protein–compound interactions, metabolic and signaling path-
ways, and the effects of bioactive molecules both in healthy and disease status from
scientific literature.

Accession numbers of MS-identified proteins and factors found as dysregulated from
WB or PCR analysis were imported into MetaCore and co-processed using the “shortest
path” algorithm (SPA), set to “high trust interaction”.

https://www.maxquant.org
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SPA permits to correlate experimental factors with proteins not present in the submit-
ted list but supported by the MetaCore database to functionally correlate experimental
proteins that do not directly interact. We allowed 2 steps for experimental protein cross-
linking and avoided canonical pathways. Nets were built limiting protein processes to
individual proteins and excluding their involvement in multimeric complexes.

Generated pathway maps were prioritized according to their statistical significance
(p < 0.001) and networks were graphically visualized as nodes and vectors, which illustrate
proteins and functional interactions, respectively. As we previously proved [131–135], this
allows the delineation of affected/deregulated pathways and highly significant biomarkers
characterizing the investigated biological state.

3.13. Statistical Analysis

Data are presented as mean ± SD of 3 experiments performed in triplicates and
were analyzed using Graph Pad Prism 6–8 software. Groups were compared using t-tests.
Statistical significance was set at p < 0.05.

4. Conclusions

In conclusion, we showed that, similarly to cholesterol loading, CSC induces SMC
phenotypic switch by downregulating the miR145/MYOCD/KLF4 axis and by affecting the
expression of diverse factors not previously associated with cellular response to cigarette
smoke. By combining biological, transcriptional, proteomic, and bioinformatics resources
we showed that CSC-deregulated factors are under a tight functional cross-talk between
PKR and KLF4, hence suggesting that vascular SMC-transdifferentiation induced by CSC
is orchestrated by PKR and KLF4. These functional cross-talks may offer a new perspective
on cigarette smoke condensate effects on SMCs and they could be evaluated as biomarkers
and targets in SMC phenotypic plasticity.
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