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ON FREESE’S TECHNIQUE

PAOLO AGLIANÒ, STEFANO BARTALI, AND STEFANO FIORAVANTI

Abstract. In this paper we explore some applications of a certain
technique (that we call the Freese’s technique), which is a tool for
identifying certain lattices as sublattices of the congruence lattice
of a given algebra. In particular we will give sufficient conditions
for two family of lattices (called the rods and the snakes) to be
admissible as sublattices of a variety generated by a given algebra,
extending an unpublished result of R. Freese and P. Lipparini.

Congruence lattices, sublattices, congruence varieties
Subject Classification 2010: 06B10, 06B99

1. Introduction

The genesis of this paper is our interest in a result of R. Freese and
P. Lipparini; the result (Theorem 4.1 below), though unpublished, has
been in the open for more than ten years, since the authors lectured
about it in several conferences. Our interest was sparkled by the tech-
nique used to prove the result; this technique, that we call Freese’s
technique (see Section 3), is essentially model theoretic in origin and
can be used to identify specific sublattices of congruence lattices of
algebras in a variety.
Inspired by the methodology used in the proof we replicated it for

some interesting lattices. One of our main results regards the presence
of particular sublattices in the congruence variety generated by a non-
modular variety. We find an analogue of [6] which, given an algebra
whose congruence lattice has a pentagon as in Figure 2, characterizes
the sublattice of Con(A(β)) generated using the Freese’s technique.

Theorem 1.1. Let A be an algebra with a nonmodular congruence
lattice. Then there is an N5 ≤ Con(A) (labelled as in Figure 2) such
that the sublattice L of Con(A(β)) generated by {α0, α1, γ0, γ1, β0} is
isomorphic to:

(1) K (Figure 5) if and only if α0∧γ1 and γ0∧α1 are not comparable;
(2) M1 (Figure 4) if and only if α0∧γ1 and γ0∧α1 are comparable.
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2 PAOLO AGLIANÒ, STEFANO BARTALI, AND STEFANO FIORAVANTI

Furthermore, with the last result in Section 3 we provide a charac-
terization of those pentagons as in Figure 2 which give K or M1 as a
sublattice of Con(A(β)).

Theorem 1.2. Let A be an algebra such that Con(A) has a sublattice
as the N5 in Figure 2 and suppose that [γ, α] = {γ, α}; let L be the
sublattice of Con(A(β)) generated by {α0, α1, γ0, γ1, β0}. Then L is
isomorphic to:

(1) K if and only if (β ◦ γ ◦ β) ∩ α 6⊆ γ;
(2) M1 otherwise.

In the paper we will produce explicit examples of algebras satisfying
either case of Theorem 1.2.
In Section 4 we apply the Freese’s technique to lattices called rods

and snakes (Figure 6). These families of lattices have been introduced
by A. Day in [3] and are of interest since the author proved that these
lattices are splitting in the variety of modular lattices.
Our aim was to prove a local version of Corollary 4.2, a straightfor-

ward consequence of R. Freese and P. Lipparini result (Theorem 4.1).
This Corollary provides a sufficient condition to have rods and snakes
as sublattices of lattices in a variety V. We extend this result for a
wider class of varieties and in order to do so we first use the Freese’s
technique to prove the following theorem.

Theorem 1.3. Let A be an algebra such that M3, with atoms α, β, γ, is
a sublattice of Con(A) consisting of pairwise permuting congruences.
Then there is an algebra A(γ) ∈ SP(A) such that the sublattice of
Con(A(γ)) with universe:

{0Con(A(γ)), η0, α0 ∧ α1, α0 ∧ β1, α0, β0, γ0, δ0}

is isomorphic to M3,3 (as in Figure 9) and has pairwise permuting
congruences.

This Theorem gives a sufficient condition to generate a lattice M3,3

(as in Figure 9) starting from an M3 ≤ Con(A). Note that the hy-
pothesis of pairwise permuting congruences in M3 is not so restrictive
since, by [12], if V has a weak difference term and M3 ≤ Con(A) for
some A ∈ V, then the interval in Con(A) between bottom and top of
the M3 consists of pairwise permuting congruences.
Using the Freese’s Technique we can obtain the following result about

rod and snake lattices.

Theorem 1.4. Let V be a variety such that there exists A ∈ V with
M3 ≤ Con(A) and all the congruences in the M3 pairwise permute.
Then Rn,Sn ∈ Adm(V) for all n ≥ 1.
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This Theorem gives a partial equivalence between the admission of
M3,Rn, and Sn as a sublattices of congruence lattices of algebras in
a variety V; the admission of lattices as congruence sublattices is a
classical problem, starting from the pioneeristic work of Dedekind [5].
A modern account can be found in [12].

2. Preliminaries and notation

In this section we recall some of the basic definitions in lattice theory.
For other elementary concepts in general algebra (such as lattices, al-
gebras, varieties, etc.) our textbook reference is [1]; for more advanced
topics (such as abelian congruences and the commutator of congru-
ences) we refer the reader to [12]. For the general theory of Mal’cev
conditions and Mal’cev classes there is the classical treatment in [16]
or the more modern approach in [12].
A lattice L is modular if, for a, b, c ∈ L, c ≤ a implies a ∧ (b ∨ c) ≤

(a∧b)∨c; a lattice is distributive if ∨ and ∧ distribute w.r.t each other;
a lattice is meet semidistributive if for a, b, c ∈ L

a ∧ b = a ∧ c implies a ∧ b = a ∧ (b ∨ c),

is join semidistributive if it satisfies the dual property and it is semidis-
tributive if it is both join and meet semidistributive. It is clear that a
distributive lattice is both modular and semidistributive; however N5

(Figure 1) is not modular but it is semidistributive, while M3 (Figure
1) is modular but neither join nor meet semidistributive.

N5 M3

Figure 1. N5 and M3

A lattice L is projective for a class of lattices K if for all M ∈ K

and for any onto homomorphism g : M → L there is a monomorphism
f : L → M such that gf is the identity mapping. If K = L, the
variety of all lattices, we simply say that L is projective. TheWhitman’s
condition (W) is one of the four properties discovered by P. Whitman
[17], characterizing free lattices; a lattice L satisfies (W) if, for all
a, b, c, d ∈ L, a ∧ b ≤ c ∨ d implies either a ≤ c ∨ d or b ≤ c ∨ d or
a ∧ b ≤ c or a ∧ b ≤ d.
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Theorem 2.1. [15, Theorem 1.4] A finite lattice is projective if and
only if it is semidistributive and satisfies (W).

A subdirectly irreducible lattice L is splitting in a variety V of lattices
if there is a variety WL such that L /∈ WL and for any variety U ⊆ V

either U ⊆ WL or L ∈ U. It can be shown [13] that in this case WL

is axiomatized by a single equation, called the splitting equation of L.
We can observe that if L is splitting in V, then it is splitting in any
subvariety of V (hence if L is not splitting in V, then it is not splitting
in any supervariety of V). It is not hard to check that if L is subdirectly
irreducible and projective in V, then it is splitting in V; the converse
however fails to hold.
Finally for any variety V,

Adm(V) = {L | L ≤ Con(A),A ∈ V},

and we say that V admits L while otherwise we say that V omits L.
The congruence variety of V is the variety generated byAdm(V) and it
is denoted by Con(V); a variety of lattices is a congruence variety if it
is equal to Con(V) for some variety V. In general Adm(V) ( Con(V).

3. Freese’s technique

Let A be any algebra and α ∈ Con(A); by An(α) we denote the
subalgebra of An whose universe is

An(α) := {(a1, . . . , an) | (ai, aj) ∈ α, i, j ≤ n}.

Let L be any lattice, V a variety of algebras, and A ∈ V; we would
like to determine under which conditions on the congruence lattice of
A we can infer that L ∈ Con(V). A stronger question is: when is
there an α ∈ Con(A) such that L ≤ Con(An(α))? The idea of looking
for sublattices of Con(An(α)) is essentially due to R. Freese, who is
the author or the coauthor of almost all the printed material on the
subject. For this reason through all the paper we will refer to this as
Freese’s technique. If n = 2, we drop the superscript and A(α) = α.
In this case we refer to the Freese’s technique as duplication technique,
briefly described in [9, pages 96− 101].
This is a list of results that can be (and have been) proved using the

Freese’s technique; here Mp is the congruence variety of vector spaces
over a field of characteristic p.

• There are nonmodular varieties of lattices that are not con-
gruence varieties (Nation [14] without Freese’s technique, then
Freese, see [6]).
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• Every modular congruence variety V consists entirely of argue-
sian lattices (Freese and Jónsson,[8]), hence the variety of all
modular lattices is not a congruence variety.

• Every nonmodular congruence variety contains Con(P), where
P is Polin’s variety (Freese and Day, [4]).

• Every modular nondistributive congruence variety V contains
Mp, for some p that is prime or 0 (Freese, Herrman and Huhn,
[7]).

• If V is a variety that is not congruence meet semidistributive,
then Con(V) contains Mp, for some p that is prime or 0 (Freese
and Lipparini, unpublished).

We now take a closer look at the duplication technique, that was
first introduced in [8]. If A is any algebra and α ∈ Con(A), then
A(α) ≤ A2 and in particular it is a subdirect product of two copies
of A. We can use the following notation for congruences on subdirect
products: if θ ∈ Con(A), then

• θ0 = {((a0, a1), (b0, b1)) | (a0, b0) ∈ θ};
• θ1 = {((a0, a1), (b0, b1)) | (a1, b1) ∈ θ};
• η0,η1 are the kernels of the projections of A(α) over the two
factors.

By the Homomorphism Theorem [1, Theorem 6.11] Con(A(α)/η0) ∼=
Con(A(α)/η1) ∼= Con(A); moreover the following facts are easy to
prove (see also [8]).

Lemma 3.1. Let A be an algebra, γ, θ ∈ Con(A). Then the following
holds in Con(A(γ)):

(1) if γ ≤ θ, then θ0 = θ1;
(2) θi = ηi ∨ (θ0 ∧ θ1);
(3) γ0 = η0 ∨ η1.

0A

γ

α

β

δ

Figure 2. N5

Thus suppose that A is an algebra that is not congruence modular;
then N5 ≤ Con(A). If N5 is as in Figure 2, let us apply the duplication
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technique to γ; then Lemma 3.1 tells us that inside Con(A(γ)) there
is the sublattice in Figure 3.

η0 ∧ η1

η0 η1

β0 β1γ0 = γ1

β0 ∧ β1

α0 = α1

δ0 = δ1

Figure 3. L14

It follows that if V is not congruence modular then L14 ∈ Adm(V).
Now V(N5) is clearly a subvariety of V(L14); it is also proper, since by
Jónsson Theorem [10], L14 /∈ V(N5). So any variety U of lattices such
that N5 ∈ U but L14 /∈ U cannot be a congruence variety. Hence there
are nonmodular varieties of lattices that are not congruence varieties.
Note that L14 is isomorphic to the sublattice generated by the two
copies of N5 inside A(γ) and it is thus uniquely determined. R. Freese
in [6] observed that if we try to apply the same duplication construction
to α or β then the sublattice generated by the two pentagons is no
longer uniquely determined.
Let M1 be the lattice in Figure 4. In the following Lemma we will

discuss the case in which we apply the duplication construction to β.

Lemma 3.2. Let A be an algebra such that Con(A) has a sublattice
as the N5 in Figure 2. Then the following holds in Con(A(β)):

(1) γ0 ∧ γ1 ≤ α0 ∧ γ1, γ0 ∧ α1, α0 ∧ α1;
(2) α0 ∧ α1 6≤ α0 ∧ γ1, γ0 ∧ α1, γ0 ∧ γ1;
(3) if α0 ∧ γ1 and γ0 ∧ α1 are comparable congruences, then

α0 ∧ γ1 = γ0 ∧ α1 = γ0 ∧ γ1;

(4) γ0 ∨ (α0 ∧ α1) = α0 and γ1 ∨ (α0 ∧ α1) = α1.

All verifications are routine; however it follows that:

Corollary 3.3. Let A be an algebra such that Con(A) has a sublattice
as the N5 in Figure 2. Let α0 ∧ γ1 and γ0 ∧ α1 be comparable congru-
ences in Con(A(β)). Then the sublattice of Con(A(β)) generated by
{α0, α1, γ0, γ1, β0} is isomorphic to M1.
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Proof. If the hypotheses hold, then Lemmata 3.1 and 3.2 guarantee that
all the meets and some of the joins are exactly as in Figure 4. Indeed,
first we can observe that Con(A(γ1)/ηi) is isomorphic to Con(A) via
the natural isomorphism f(λ) = λi, for i = 1, 2. Thus the joins and
meets in Figure 4 of elements above η0 and η1 are correctly depicted.
Furthermore, by Lemma 3.2, α0∧γ1 = α1∧γ0 = γ0∧γ1. We note that
β0∧α0∧α1 = β0∧α0∧β0∧α1 = η0∧η1 = 0A(β) and α0∧η1 = α0∧β0∧η1 =
η0 ∧ η1. Hence, all the meets in Figure 4 are correctly displayed. For
the joins we can see that γ0 ∨ η1 = γ0 ∨ η0 ∨ η1 = γ0 ∨ β0 = δ0. From
this equations, their symmetric versions obtained exchanging 1 and 0,
and trivial inclusions, we conclude that the joins of the congruences in
the set {η0, η1, γ0, γ1, α0, α1, β0, δ0} are correctly depicted. Moreover,
by Lemma 3.1, β0 ∨ (γ0 ∧ γ1) = β0 ∨ η0 ∨ (γ0 ∧ γ1) = β0 ∨ γ0 = δ0 and
γ0 ∨ (α0 ∨ α1) = η0 ∨ (α0 ∨ α1) = α0. The correctness of the remaining
joins follows from immediate inclusions or by symmetry exchanging 1
and 0.

�

0A(β)

η0

α0

δ0 = δ1

β0 = β1 α1

η1α0 ∧ α1

γ0

γ0 ∧ γ1

γ1

Figure 4. M1

We have seen what happens if α0 ∧ γ1 and γ0 ∧ α1 are comparable.
The case α0∧γ1 and γ0∧α1 not comparable will be characterized with
the next Lemmata.

Lemma 3.4. Let A be an algebra such that Con(A) has a sublattice as
the N5 in Figure 2. Assuming that α0∧γ1 and γ0∧α1 are incomparable
in Con(A(β)), we have:

(α0 ∧ γ1) ∨ (γ0 ∧ α1) < α0 ∧ α1.
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Proof. Let α, γ be as in the hypothesis. We will show that for any
(a, b) ∈ α \ γ,

((a, a), (b, b)) /∈ (α0 ∧ γ1) ∨ (γ0 ∧ α1);

this is enough to prove the thesis.
Suppose that ((a, a), (b, b)) ∈ (α0 ∧ γ1) ∨ (γ0 ∧ α1); then there is

an n ∈ N and (u0, v0), . . . , (un, vn) ∈ β such that (a, a) = (u0, v0),
(b, b) = (un, vn) and

(ui, vi) α0 ∧ γ1 (ui+1, vi+1) for i even

(ui, vi) γ0 ∧ α1 (ui+1, vi+1) for i odd.

Thus we have the following relations

a u1 u2 u3 un−1 b

a v1 v2 v3 vn−1 b

α

β

γ

β

α

β β

α

γ α γ γ

Since γ ≤ α we get (u1, v1) ∈ α and thus (u1, v1) ∈ α ∧ β = 0A, hence
u1 = v1. Continuing this argument we get ui = vi for i ≤ n, so

a γ v1 = u1 γ u2 = v2 γ . . . γ b.

Hence (a, b) ∈ γ that is a contradiction. From this we can conclude
that ((a, a), (b, b)) /∈ (α0∧γ1)∨(γ0∧α1) and thus (α0∧γ1)∨(γ0∧α1) <
α0 ∧ α1. �

0A(β)

η0

α0

δ0 = δ1

β0 = β1

α1

η1θ

γ0

γ0 ∧ γ1

γ1
α0 ∧ α1

γ0 ∧ α1 α0 ∧ γ1

Figure 5. K

We are ready to present a key theorem for this section.
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Theorem 3.5. Let A be an algebra such that Con(A) has a sublattice
as the N5 in Figure 2 and suppose that [γ, α] = {γ, α}. Let L be the
sublattice of Con(A(β)) generated by {α0, α1, γ0, γ1, β0}. Then:

(1) α0 ∧ γ1 and γ0 ∧ α1 are not comparable if and only if L is iso-
morphic to K;

(2) α0∧γ1 and γ0∧α1 are comparable if and only if L is isomorphic
to M1.

Proof. For (⇒) in (1) we define θ = (α0 ∧ γ1) ∨ (γ0 ∧ α1) and, by
Lemma 3.4, θ < α0∧α1. We can see that (α0∧γ1)∧ (γ0∧α1) = γ0∧γ1
is a consequence of the definition of the four congruences involved in
the equation. Furthermore, we can observe that αi covers γi, since
Con(A) ∼= Con(A(β)/ηi) through the natural isomorphism f(λ) = λi.
This implies that θ ∨ γ0 = α0 and symmetrically θ ∨ γ1 = α1. The
other meets and joins can be verified using Lemma 3.2. Hence, K

is isomorphic to the sublattice of Con(A(β)) generated by {α0, α1, γ0,
γ1, β0}.
The proof of (⇒) in (2) follows from Corollary 3.3, which ensures

that M1 is isomorphic to the sublattice of Con(A(β)) generated by
{α0, α1, γ0, γ1, β0}.
Thus, the two claims in (1) and (2) hold since (⇐) of both are

trivial. �

Using the previous theorem we can almost directly prove one of the
main results of the paper.

Proof of Theorem 1.1. By [5],N5 ≤ Con(A) and, by [2, 2.2], every con-
gruence lattice is weakly atomic and thus if Con(A) has a sublattice as
the N5 in Figure 2, then there exist γ′, α′ ∈ [γ, α] such that [γ′, α′] =
{γ′, α′}. Hence, we can observe that the congruences {0A, α

′, γ′, β, δ}
form a pentagon in Con(A) with [γ′, α′] = {γ′, α′} and the claim di-
rectly follows from Theorem 3.5. �

The lattice K in Figure 5 is subdirectly irreducible; it is also projec-
tive in the variety of all lattices (since it is semidistributive and satisfied
the Whitman condition), so it is splitting. The splitting equation of K
is a 5-variables equation p(x, y0, y1, z0, z1) ≤ q(x, y0, y1, z0, z1) (see [6]
for the complete expression). R. Freese in [6] showed that K belongs
to any nonmodular congruence variety by proving that the splitting
equation of K fails in Con(A(β)), for some A in the variety and some
congruence β of A. However now we can extract more information:

Theorem 3.6. Let V be a variety satisfying a nontrivial idempotent
Mal’cev condition and let A ∈ V be an algebra with a nonmodular
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congruence lattice. Then there exists an N5 ≤ Con(A) (labelled as in
Figure 2) such that K ≤ Con(A(β)).

Proof. By Theorem 1.1 we have a pentagon in Con(A) such that either
M1 or K is a sublattice of Con(A(β)). Since V satisfies a nontrivial
idempotent Mal’cev condition, then V omits D1 as a sublattice of the
congruence lattice of its algebras (see [12, Theorem 4.16]). We can ob-
serve that the filter ofM1 generated by γ0∧γ1 is a sublattice isomorphic
to D1 (Figure 4), thus it cannot appear as sublattice of Con(A(β)), so
K is the only possibility left. �

Using a strategy similar to Lemma 3.4 we can also characterize when
a configuration as the N5 in Figure 2 generates either M1 or K in
Con(A(β)). Let us use the standard notation α ◦n β = α ◦ · · · ◦ β for
the relation product with n factors.

Proof of Theorem 1.2. For (⇐) of (1), let (a, b) ∈ β ◦3 γ ∩ α \ γ. Then
there exist x1, x2 ∈ A such that a β x1 γ x2 β b. Thus we have that
the following relation holds:

a b

x1 x2

β

α

β

γ

Hence, ((a, x1), (b, x2)) ∈ α0 ∧ γ1 and thus α0 ∧ γ1 > γ0 ∧ γ1. Then,
from Theorem 3.5 and Lemma 3.2, we have that the sublattice of
Con(A(β)) generated by {α0, α1, γ0, γ1, β0} is isomorphic to K.
For (⇒) of (1), let us suppose that the sublattice of Con(A(β))

generated by {α0, α1, γ0, γ1, β0} is isomorphic to K. Then, by Theorem
3.5, we have that α0 ∧ γ1 and γ0 ∧ α1 are not comparable and, by
Lemma 3.2, α0 ∧ γ1 > γ0 ∧ γ1. Hence, there exists ((a0, a1), (b0, b1)) ∈
(α0 ∧ γ1) \ (γ0 ∧ γ1). Thus we obtain that the following relations hold:

a0 b0

a1 b1

β

α

β

γ

Thus (a0, b0) ∈ (β ◦ γ ◦ β) ∩ α \ γ and this proves (1).
If the sublattice of Con(A(β)) generated by {α0, α1, γ0, γ1, β0} is not

isomorphic to K then by Theorem 3.5 is isomorphic to M1 and the
thesis holds. �
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The previous theorem emphasizes that the behaviour of 3-permuting
congruences has a deep impact on the structure of congruence lattices.
Using this theorem we can provide examples of the two cases of Theo-
rem 1.1. We can also observe that if γ < α, then (β ◦3 γ) ∩ α \ γ 6= ∅
if and only if ((β ◦4 γ) ∩ α \ γ) ∪ ((γ ◦4 β) ∩ α \ γ) 6= ∅. Thus, to find
an example of an algebra A with M1 as the sublattice of Con(A(β))
generated by {α0, α1, γ0, γ1, β0} we have to look at algebras whose β
and γ at least do not 4-permute.

Example 3.7. Let A be the algebra whose base set is A = {1, 2, 3, 4, 5,
6}, with only projections as operations. Then the partitions β =| 1, 2 |
3, 4 | 5, 6 |, γ =| 2, 3 | 4, 5 |, and α =| 2, 3 | 4, 5 | 1, 6 | give N5 ≤
Con(A) as in Figure 2. Furthermore, using Theorem 1.2, we can see
thatM1 is the sublattice of Con(A(β)) generated by {α0, α1, γ0, γ1, β0}.
On the other hand, let B be the algebra whose base set is B =

{1, 2, 3, 4}, with only projections as operations. Then the partitions
β =| 1, 3 | 2, 4 | , γ =| 1, 2 | 3 | 4 |, and α =| 1, 2 | 3, 4 | give N5 ≤
Con(B) as in Figure 2. Furthermore, using Theorem 1.2, we can see
that K is the sublattice of Con(B(β)) generated by {α0, α1, γ0, γ1, β0}.

4. Duplications of Rods and Snakes

In this section we investigate the duplication of two particular fami-
lies of lattices called rods Rn and snakes Sn, n ∈ N, n ≥ 1 (see Figure
6). These two families can be constructed using copies of M3 as build-
ing blocks and a formal definition of them could be the following. Let
(Mn

3 : n ∈ N) be a countable family of copies of M3, where by αi, βi, γi
we denote the three atoms of the copy Mi

3 from left to right, ηi is the
bottom and δi is the top. We glue the copies along a specified edge;
this can be done since each upper edge of M3 is a lattice filter and each
lower edge is a lattice ideal and they are isomorphic. Thus we define
R1 = S1 = M3 and inductively

• to construct Rn+1 we glue the filter {γn, δn} of Rn to the ideal
{ηn+1, αn+1} of Mn+1

3 (Figure 6 right);
• to construct Sn+1, if n is odd we glue the filter {γn, δn} of Sn

to the ideal {ηn+1, αn+1} of Mn+1
3 , if n is even we glue the filter

{αn, δn} of Sn to the ideal {ηn+1, γn+1} of Mn+1
3 (Figure 6 left).

It is also clear that R2 = S2 = M3,3, see Figure 7. These families
have been introduced by A. Day in [3] together with R∗

n and S∗
n, i.e.

their counterparts with the edges pulled apart.
In the same paper he showed that the R∗

n (S∗
n), for n ≥ 1, are all

projective in the variety of modular lattices. Moreover for each n, R∗
n



12 PAOLO AGLIANÒ, STEFANO BARTALI, AND STEFANO FIORAVANTI

η

α1 γ1

α2

β1

γ2

α3

β2

γn−1

δ

αn γnβn

Rnη

γ1

γ3

γ2α2 β2

α1 β1

β3α3

γn

δ

αn βn

Sn

Figure 6. The families Sn and Rn

(S∗
n) is a projective cover of Rn (Sn) (see [3] p. 154 for a definition).

Since any lattice that is subdirectly irreducible and has a projective
cover in a variety K of lattices is splitting in K (Theorem 3.7 in [3]) we
conclude that each Rn (Sn) is splitting in the variety of modular lat-
tices. However Rn is splitting, but not projective and R∗

n is projective
but not splitting (since it is not subdirectly irreducible).

δ2

α2

δ1

α1

β2

β1

γ2

η2

γ1

η1
M

∗

3,3

β2

β1

δ

α2

α1

γ2

γ1

η
M3,3

Figure 7. R2 = S2 = M3,3 and R∗
2 = S∗

2 = M∗
3,3

We now state the aforementioned result of Freese and Lipparini; we
have to use the notion of weak difference term (see [12], Chapter 6 for
an extended treatment of the subject).
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Theorem 4.1 (Freese-Lipparini, unpublished). Let V be a variety with
a weak difference term and suppose that in V there is an algebra A with
a nontrivial abelian congruence α. Then there is field F such that for
any n, the lattice of subspaces of an n-dimensional vector space over F
is embeddable in Con(An(α)) (and the embedding is cover preserving).

An application of the previous Theorem, combined with the fact that
for any n ∈ N , Rn and Sn are characteristic free, yields the following
corollary.

Corollary 4.2. Let V be a variety having a weak difference term that is
not congruence semidistributive; then Rn,Sn ∈ Adm(V) for all n ∈ N.

The main result of the section (Theorem 1.4) generalizes Corollary
4.2 since if a variety V has a weak difference term and M3 ≤ Con(A)
for some A ∈ V, then the interval in Con(A) between bottom and top
of the M3 consists of pairwise permuting congruences (see for instance
[12]). It follows that in such varieties, any M3 sublattice of a con-
gruence lattice of an algebra in V satisfies the hypotheses of Theorem
1.4.
In order to prove Theorem 1.4 we will apply the duplication technique

to M3. From now on, until further notice, we will call the three atoms
of it α, β and γ from the left to the right and without loss of generality
we will apply the duplication construction to γ.

Lemma 4.3. Let A be any algebra and suppose that M3 ≤ Con(A).
Then the following are equivalent:

(1) α0 ∧ β1 and β0 ∧ α1 are comparable;
(2) α0 ∧ β1 = β0 ∧ α1 = 0A(γ).

Proof. Suppose that α0 ∧ β1 ≤ α1 ∧ β0. Then

α0 ∧ β1 = α0 ∧ β1 ∧ α1 ∧ β0 = η0 ∧ η1 = 0A(γ).

Moreover, let us consider the involutary automorphism which inter-
changes θ0 and θ1 for all θ ∈ M3. Then if α0 ∧ β1 ≤ α1 ∧ β0 they must
be equal and (1) ⇒ (2). The converse is trivial. �

Let now A be any algebra such that M3 ≤ Con(A) and suppose
that α, β, γ ∈ M3 3-permute (this is the same as asking that any pair
of atoms 3-permute). Let (a, b) ∈ α \ β. Then we have that

(a, b) ∈ α ∨ β = γ ∨ β = γ ◦ β ◦ γ.

Hence there are c, d ∈ A with a γ c β d γ b. Then ((a, c), (b, d)) ∈
α0 ∧ β1 with a 6= b and thus α0 ∧ β1 6= 0A(γ). By Lemma 4.3, we have
that α0 ∧ β1 and β0 ∧ α1 are incomparable.
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Let us make a side remark. If V is a congruence 3-permutable variety,
then it is congruence modular and hence Con(V) consists of modular
lattices; so M3,3 (Figure 9) is splitting in Con(V) and its splitting
equation is (see [11])

x ∧ (y ∨ (z ∧ w)) ∧ (z ∨ w) ≤ y ∨ (x ∧ z) ∨ (x ∧ w).

If A ∈ V and M3 ≤ Con(A), then the reader can check directly that
the substitution

x 7→ α0 ∧ β1 y 7→ α0 ∧ α1 z 7→ β0 w 7→ γ0

falsifies the splitting equation, so M3,3 ∈ Con(V). This is nothing
new, but it is interesting to observe that the argument works since we
can evaluate the splitting equation by using the joins that we already
know.
However 3-permutability is still not sufficient to prove what we want;

we need that the congruences in M3 permute and in this case many
congruences in Con(A(γ)) are forced to permute as well, since the
Correspondence Theorem [1, Theorem 6.20] preserves permutability
for example. In the following lemma we list the permuting congruences
needed to proceed in the proof of the main results of the section but
the list is far from being exhaustive. We also evaluate some joins
in Con(A(γ)), using the following trivial observation: if λ, µ, θ are
congruences such that λ∨µ ≤ θ and θ ⊆ λ ◦µ, then λ∨µ = θ = λ ◦µ.
Thus λ and µ permute.

Lemma 4.4. Let A be an algebra and suppose that M3 ≤ Con(A) con-
sists of pairwise permuting congruences. Then the following equalities
hold in Con(A(γ)):

(1) η0 ◦ (α0 ∧ β1) = η0 ∨ (α0 ∧ β1) = α0;
(2) η0 ◦ (α0 ∧ α1) = η0 ∨ (α0 ∧ α1) = α0;
(3) (α0 ∧ β1) ◦ (α0 ∧ α1) = (α0 ∧ β1) ∨ (α0 ∧ α1) = α0;
(4) β0 ◦ α1 = β0 ∨ α1 = δ0.

Proof. For (1) let us prove α0 ⊆ η0 ◦ (α0∧β1). Thus let ((a, b), (c, d)) ∈
α0. Then (a, c) ∈ α and hence (b, d) ∈ γ ◦ α ◦ γ = γ ◦ α = γ ◦ β. Thus
there exists an x ∈ A with b γ x β d and by transitivity (a, x) ∈ γ.
Then:

(a, b) η0 (a, x) α0 ∧ β1 (c, d).

Thus α0 ⊆ η0 ◦ (α0 ∧ β1) and we can observe that η0 ◦ (α0 ∧ β1) ⊆
η0 ∨ (α0 ∧ β1) ⊆ α0 and hence (1) holds.
The proof of (2) is similar and we leave it to the reader.
For (3) let ((a, b), (c, d)) ∈ α0 = η0 ◦ (α0 ∧ α1) by (2). Then there

exists v ∈ A with:
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(a, b) η0 (a, v) α0 ∧ α1 (c, d).

Thus (a, v) ∈ γ and (v, d) ∈ α. By transitivity (b, v) ∈ γ ≤ α ∨ β =
β ◦ α. Hence there exists an x ∈ A with b β x α v; moreover, by
transitivity, (a, x) ∈ γ ◦ α = α ◦ γ so there exists y ∈ A such that
a α y γ x. Putting everything together we get

(a, b) α0 ∧ β1 (y, x) α0 ∧ α1 (a, v) α0 ∧ α1 (c, d)

and this proves that α0 = η0 ◦ (α0∧α1) ⊆ (α0∧β1)◦ (α0∧α1) and thus
(3). A graphical representation of this argument can be seen in Figure
8.

c d

a v

a b

=⇒

c d

a v

a b
y x

γ

γ

γ

α α
γ

γ

γ

α α

γ

α α

βα

Figure 8.

For (4) we can observe that η0 ◦ η1 = γ0 = γ1. Thus:

β0 ◦ α1 = (β0 ◦ η0) ◦ (η1 ◦ α1) = β0 ◦ γ0 ◦ γ1 ◦ α1 = δ0 ◦ δ1 = δ0

and the thesis holds observing that β0 ◦ α1 ≤ β0 ∨ α1 ≤ δ0. �

Now we can show one of the main results of the section.

Proof of Theorem 1.3. First we can observe that Con(A(γ)/η0) is iso-
morphic to Con(A) through the natural isomorphism f(λ) = λ0. Thus
the joins and meets in the part above η0 in Figure 9 are all respected.
The first three claims of Lemma 4.4 ensure that all the joins of el-
ements under α0 are respected. For the meets we can observe that
η0 ∧ α0 ∧ α1 = η0 ∧ α1 = η0 ∧ γ0 ∧ α1 = η0 ∧ γ1 ∧ α1 = η0 ∧ η1. With
the same argument we obtain that α0 ∧ β1 ∧ η0 = 0A(γ). A similar
argument works also for α0∧β1 ∧α0 ∧α1 = α0 ∧α1∧β0 = α0∧β1 ∧β0

= α0 ∧ α1 ∧ γ0 = α0 ∧ β1 ∧ γ0 = η0 ∧ η1.
For the remaining joins and the second claim we can see that, from

Lemma 4.4, the congruences under α0 pairwise permute. Moreover,
since the congruences of theM3 pairwise permute, also the congruences
above η0 in Figure 9 pairwise permute.
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Let us prove that the remaining pairs permute. We first make the
trivial observation that if λ ≤ ν then λ ◦ ν = ν. We can use this, the
relational products already computed, and Lemma 4.4 to prove that
the following equalities hold:

(α0 ∧ α1) ◦ β0 = (α0 ∧ α1) ◦ η0 ◦ β0 = α0 ◦ β0 = δ0

(α0 ∧ β1) ◦ β0 = (α0 ∧ β1) ◦ η0 ◦ β0 = α0 ◦ β0 = δ0

(α0 ∧ α1) ◦ γ0 = (α0 ∧ α1) ◦ η0 ◦ γ0 = α0 ◦ γ0 = δ0

(α0 ∧ β1) ◦ γ0 = (α0 ∧ β1) ◦ η0 ◦ γ0 = α0 ◦ γ0 = δ0.

Thus all pairs of congruences in

{0Con(A(γ)), η0, α0 ∧ α1, α0 ∧ β1, α0, β0, γ0, δ0}

permute. �

0A(γ)

α0 ∧ α1

α0

α0 ∧ β1 η0

δ0

γ0β0

Figure 9. M3,3 as a sublattice of Con(A(γ))

Theorem 1.3 allows us to directly prove the main result of the section.

Proof of Theorem 1.4. Let A be an algebra such that M3 ≤ Con(A)
and all the congruences within M3 pairwise permute. We define by
induction the sequence of algebras:

A1 = A

Ai = Ai−1(γi)

where γ2 = γ is an atom of M3 and γi ∈ Con(Ai−1) is the kernel ηi−1
0

of the first projection from Ai−1 ≤ A2
i−2 over the first factor, for all

i ≥ 3. We prove by induction on n that Rn ≤ Con(An) and has per-
muting congruences, for all n ≥ 1. Clearly, the claim holds for n = 1 by
hypothesis. Let us consider Con(An). By the inductive hypothesis we
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know that Rn−1 ≤ Con(An−1) and the congruences forming Rn−1 pair-
wise permute. By the Correspondence Theorem, the filter of Con(An)
generated by ηn0 is isomorphic to Rn−1 and the congurences in this fil-
ter pairwise permute. For this filter, we adopt the notation introduced
in Figure 6, with the addition of the superscript n to specify that the
congruences are in Con(An) (see Figure 10). Furthermore, by Theorem
1.3, the bottom M3 of Rn−1 ≤ Con(An−1) produces a sublattice M3,3

of Con(An) with pairwise permuting congruences and where the atoms
are {αn = (αn−1)0 ∧ (αn−1)1, βn = (αn−1)0 ∧ (βn−1)1, γn = ηn0 } and
αn
1 = (αn−1)0 is the top element, see Figure 10. Thus Rn ≤ Con(An)

and Rn ∈ Adm(V(A)). Hence, we have that all the congruences of
the filter generated by ηn0 and of the ideal generated by αn

1 pairwise
permute. Since αn, βn ≤ αn

i , δ
n, for all 1 ≤ i ≤ n − 1 the remaining

congruences we have to prove to permute are those in the set {αn, βn}
with the ones in the set {βn

i , γ
n
i | 2 ≤ i ≤ n − 1}. In particular, we

have that βn ◦ βn
i = βn ◦ ηn0 ◦ βn

i = αn
1 ◦ βn

i = αn
i+1, with αn

n = δn and
for all 1 ≤ i ≤ n− 1. The same proof also works for the other combi-
nations of relational products involving elements from the set {αn, βn}
and elements of {βn

i , γ
n
i | 2 ≤ i ≤ n − 1}. Hence, all the congruences

of Rn ≤ Con(An) pairwise permute. Using the same strategy, we can
prove by induction that Sn,S

∗
n,R

∗
n ≤ Con(An). In fact, the new M3

added at the bottom of the lattice can be glued either to the left or to
the right and either tightly or loosely since R∗

n−1 ≤ Rn. �

0A(γn−1)

αn

αn
1

βn ηn0 = γn

αn
2

αn
n−1

γn
1

γn
n−2

γn
n−1βn

n−1

δn

βn
1

Figure 10. Rn as a sublattice of Con(An)
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It is worth noting that the proof of Theorem 1.4 also works for gen-
eralized snakes, i.e. lattices Gn obtained by glueing n copies of M3

(with atoms α, β, γ) either by collapsing the top-right edge (γ, 1) of
one instance with the bottom-left (0, α) of the other copy (as seen in
the rods) or by merging the top-left edge (α, 1) with the bottom-right
(0, γ) (as seen in the even steps of snakes).

5. Conclusions and problems

Let V be a variety; if V has a weak difference term andM3 ≤ Con(A)
for some A ∈ V, then the interval in Con(A) between bottom and top
of the M3 consists of pairwise permuting congruences (see for instance
[12]). It follows that in such varieties, any M3 as a sublattice of a con-
gruence lattice of an algebra in V satisfies the hypotheses of Theorem
1.4.
However, in order to apply the results in Section 4 we do not need

that all the M3’s in all algebras in a variety consist of permuting con-
gruences (as in case of a week difference term): we only need one of
those instances in V to show that Rn,Sn ∈ Adm(V) for all n. Now K.
Kearnes (in a private communication) showed us that given a variety
V that is not congruence meet semidistributive there is an A ∈ V such
that M3 ≤ Con(A) and the congruences in the M3 permute. This is
connected to a class of problems coming from the concept of omission
class. Let Γ be a class of lattices; then the omission class of Γ is

F(Γ) = {V : L /∈ Adm(V), for all L ∈ Γ}.

Kearnes’ result above implies that

F(M3) =
⋃

n≥1

F(Rn) =
⋃

n≥1

F(Sn).

This is of interest since the omission class of M3 coincides with the
class of meet semidistributive varieties (see below).
There are also other natural questions. As far as we know there are

only four nontrivial Mal’cev classes that are equal to the omission class
of L for some finite subdirectly irreducible lattice L:

• the class T of all varieties satisfying a nontrivial idempotent
Mal’cev condition (F(D1), where D1 is displayed in Figure 4 as
the filter generated by γ0 ∧ γ1 [12, Theorem 4.23]);

• the class L of all varieties V such that Con(V) is a proper
subvariety of the variety of lattices (F(D2), where D2 is the
dual of D1 [12, Theorem 8.11]) ;

• the class M of all congruence modular varieties (F(N5) from
[5]);
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• the class SD∧ of all congruence meet semidistributive varieties
(F(M3) by [12, Theorem 8.1]).

So it makes sense to ask if these are the only Mal’cev classes with
this property. A harder question is: can we give necessary and/or
sufficient condition on a finite subdirectly irreducible lattice L, so that
the omission class of L is a Mal’cev class? We will deal with this set of
problems in a further paper.
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