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Simple Summary: In a framework of sustainable agriculture, strategies aimed at preserving and
enhancing pest natural enemies are crucial. However, knowledge about the parasitoid complex
associated with a particular pest is often fragmentary. Herein, we investigated the parasitoids
associated with the European grapevine moth, one of the main vine pests in the Mediterranean
area, in a natural context, where the moth lives on Daphne gnidium, deemed as its original host
plant. We observed a heterogeneous and complex community, consisting of a few predominant
parasitoid species, followed by satellite species, and occasional parasitoids. Parasitic wasps, such as
Campoplex capitator and Trichogramma spp., can be also found in the vineyards, thus understanding
their dynamics in the wild could be useful to improve biological control strategies for managing
EGVM populations.

Abstract: The European grapevine moth (EGVM), Lobesia botrana (Lepidoptera: Tortricidae), is one
of the major concerns for vineyard managers in the Mediterranean area. It is a polyphagous moth,
which develops on a wide variety of host plants, among which the spurge flax, Daphne gnidium
(Thymelaeaceae), very likely represents its originary wild host plant. In this study, we investigated
the parasitoid complex of L. botrana feeding on D. gnidium during a three-year sampling in a natural
reserve in Tuscany, Italy, where this plant is extremely abundant while the grapevine is absent. A
total of 24 species of parasitoids were obtained from eggs, larvae, and pupae of EGVM, belonging
to 6 families of Hymenoptera and a family of Diptera. The ichneumonid wasp Campoplex capitator
was the most abundant larval parasitoid. Four species of the genus Trichogramma were obtained
from parasitized eggs during the first year of sampling, with a peak in the parasitisation during
the EGVM 3rd generation. Some of the main EGVM parasitoids on spurge flax were also observed
in vineyards, although a certain degree of redundancy was observed in the wild, due to several
less frequent “satellite” species exploiting the same host. Overall, this research sheds light on
the parasitoid community and dynamics of this important moth pest in a grapevine-free natural
ecosystem, discussing the possible role of natural areas as ecological reservoirs of pest natural enemies.

Keywords: biological control agents; Campoplex; European grapevine moth; hymenopteran parasitoids;
Integrated Pest Management; Trichogramma

1. Introduction

Biodiversity conservation represents one of the main and attended objective of a
sustainable agriculture [1,2]. Since the 1950s, when organochlorine insecticides were firstly
introduced, concerns over side-effects of insecticides have grown, leading to reconsider
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insecticides as the lone control strategies against pests [3–5]. Consequences of insecticide
overuse in agricultural settings include environmental pollution [6], toxicity towards
non-target insects [7–10], and even risks for human health [11–13]. In this context, a
strategy aimed at preserving pest natural enemies through environmental heterogeneity
is encouraged. As predator and parasitoid insects rely on multiple resources for adult
feeding and reproduction, enhancing the environmental heterogeneity can be a driver of
their diversity at local scale, boosting species that forage on both semi-natural and crop
habitats [14]. In addition, the presence of interconnected wild areas within an urban or rural
landscape may promote species dispersal [15,16]. This concept applies well to the vineyard
agroecosystem since the agricultural matrix can contribute to maintaining insect diversity
by providing higher diversity of resources [17–21]. In Italy, the agricultural territory is
characterised by a high fragmentation of the crops, with a landscape matrix where woods
and Mediterranean scrubland habitats alternate with cultivated fields [14,22–24]. A good
example is represented by the high-value vineyards characterizing Tuscany (Central Italy),
a top producing wine region worldwide [4,14].

The European grapevine moth (EGVM), Lobesia botrana (Denis and Schiffermüller,
1775) (Lepidoptera: Tortricidae), is the main insect pest in most of the European wine-
growing areas [25,26]. In recent years it has been introduced into the Americas, with first
detections in Chile in 2008, California (USA) in 2009 and Argentina in 2010 [27,28]. EGVM
is a polyphagous moth, which develops on a wide variety of host plants [29]. Among
these, spurge flax, Daphne gnidium L. (Thymelaeaceae), very likely represents its originary
wild host plant [30–33]. Several studies focused on the parasitoid complex of EGVM in
the European vineyards [34–59], but very little is still known about parasitoids developing
on wild EGVM populations [32,59–64]. In this scenario, we investigated the community
structure of EGVM parasitoids on D. gnidium in a wild area where grapevine is absent,
during a three-year sampling. Moreover, a comparison with the parasitoid species complex
associated with EGVM in the vineyards is provided.

2. Materials and Methods
2.1. Study Area

The study was carried out in the Regional Reserve of Migliarino, San Rossore, Mas-
saciuccoli (Tuscany, Central Italy), a natural area that extends for 23,100 ha along the
seacoast, from Viareggio to Pisa (Figure 1). This reserve is characterized by a sub-humid cli-
mate [65], with a mixed holm oak wood (Quercus ilex L.), partly replaced by anthropogenic
coastal pine forests on the ancient dunes. The forest is characterized by a prevalence
of stone pine (Pinus pinea L.) followed by oaks, alders (Alnus spp.), ashes (Fraxinus spp.),
and common oaks (Quercus robur L.), while the understory consists of common myrtle
(Myrtus communis L.), lentisk (Pistacea lentiscus L.), narrow-leaved mock privet (Phyllirea
angustifolia L.), and blackberry (Rubus fruticosus L.). Moving towards the seashore, the dune
develops for about 200 m, and it is characterized by the maritime pine (Pinus pinaster Aiton),
planted as a windbreak to protect the artificial inland stone pine plantation, followed by
a severely depleted coastal portion with Juniperus spp. [66–68]. D. gnidium largely occurs
in all these habitats [67,68], whereas the grapevine is absent, and the nearest commercial
vineyards are about 6 km away. D. gnidium is particularly widespread in the open spaces,
where the sunlight can easily penetrate. Starting from March to October, the sprouts,
flowers, or fruits of the bushes can host a diverse community of lepidopteran preimaginal
stages, while EGVM eggs and larvae represent a suitable and abundant resource for a rich
community of predators and parasitoids [59,62,63,69,70].
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ical points DD (43.733642° N, 10.277524° E; 43.712864° N, 10.279648° E; 43.732913° N, 
10.292371° E; 43.720101° N, 10.293094° E). In this area, D. gnidium shows a spotted distri-
bution, depending on the presence of open sunny spaces (Figure 2a). To get a homogene-
ous distribution of our samplings, a grid of 3 × 3 rectangles of 500 per 300 m side was 
superimposed on the selected area, being field observations on these nine sites carried out 
during 2014, 2015, and 2017. Each year, the sampling started at the end of April/beginning 
of May, with the appearance of the first visible nests of EGVM on D. gnidium sprouts, then 
lasting until the first week of October. Weekly, ten different plant per site were randomly 
selected and two infested sprouts for each plant were collected, totalizing 180 sprouts all 
over the selected area (Figure 2b). The sprouts were analysed under the stereomicroscope 
to isolate and identify EGVM preimaginal stages (1st instar larvae, 2nd–3rd instar larvae, 
4th–5th instar larvae, and chrysalids). Preimaginal stages were stored in vials, supported 
with D. gnidium vegetal tissues as food, plugged with cotton to allow aeration, and main-
tained at natural environmental conditions of temperature and photoperiod until the in-
sect emergence. Braconidae were identified by A. Loni and K. Samartsev (St. Petersburg, 
Russia) following Huddleston [71] and Loni et al. [62]; Chalcidoidea (excl. 
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Figure 1. Map of the shoreline north of Pisa, showing the Regional Reserve of Migliarino, San Rossore,
Massaciuccoli (Tuscany, Central Italy); the study area is delimitated in red.

2.2. Sampling Design

Field observations were carried out inside the above-mentioned Natural Reserve in
a selected rectangular-shaped area of about 150 ha, delimited by the following geograph-
ical points DD (43.733642◦ N, 10.277524◦ E; 43.712864◦ N, 10.279648◦ E; 43.732913◦ N,
10.292371◦ E; 43.720101◦ N, 10.293094◦ E). In this area, D. gnidium shows a spotted distribu-
tion, depending on the presence of open sunny spaces (Figure 2a). To get a homogeneous
distribution of our samplings, a grid of 3 × 3 rectangles of 500 per 300 m side was superim-
posed on the selected area, being field observations on these nine sites carried out during
2014, 2015, and 2017. Each year, the sampling started at the end of April/beginning of May,
with the appearance of the first visible nests of EGVM on D. gnidium sprouts, then lasting
until the first week of October. Weekly, ten different plant per site were randomly selected
and two infested sprouts for each plant were collected, totalizing 180 sprouts all over the
selected area (Figure 2b). The sprouts were analysed under the stereomicroscope to isolate
and identify EGVM preimaginal stages (1st instar larvae, 2nd–3rd instar larvae, 4th–5th
instar larvae, and chrysalids). Preimaginal stages were stored in vials, supported with
D. gnidium vegetal tissues as food, plugged with cotton to allow aeration, and maintained
at natural environmental conditions of temperature and photoperiod until the insect emer-
gence. Braconidae were identified by A. Loni and K. Samartsev (St. Petersburg, Russia)
following Huddleston [71] and Loni et al. [62]; Chalcidoidea (excl. Trichogrammatidae)
by Pier Luigi Scaramozzino, following Peck et al. [72]; Tachinidae by Filippo Di Giovanni,
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Pier Luigi Scaramozzino and Pierfilippo Cerretti (Rome, Italy) following Cerretti et al. [73];
Ichneumonidae have been identified by Filippo Di Giovanni and Pier Luigi Scaramozzino,
following Aeschlimann [74], Kasparyan [75], Kasparyan [76], Gauld and Mitchell [77],
Horstmann [78] and Tolkanitz [79]. In addition, from March to November 2015, the leaves
and the tips of D. gnidium were examined to assess the presence of EGVM eggs parasitized
by Trichogramma spp.; in each plot, the leaves of five buds on 20 shrubs were examined on a
weekly basis, for a total of 100 shoots per plot. Eggs of EGVM were counted, distinguishing
between healthy eggs and dark parasitized eggs. Leaves with parasitized eggs were stored
in glass vials under controlled environmental conditions until parasitoid emergence. The
emerged Trichogramma parasitoids were preserved in 96% (v:v) ethanol and identified at
species level by Christoph Hoffmann (Siebeldingen, Germany) using the RFLP method and
determination keys by Sumer et al. [80]; in one case (i.e., T. cacaeciae Marchal, 1927) ITS-2
DNA sequences were analysed at the Laboratory of Zoology and Integrated Production in
Viticulture of the Julius Kühn-Institute (Quedlinburg, Germany) and compared to NCBI
database. Results were partly published by Lucchi et al. [63]. All the insects were stored at
the Department of Agriculture, Food and Environment, University of Pisa.
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Figure 2. (a) Daphne gnidium shrubs (arrows) in the Regional Reserve of Migliarino, San Rossore,
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2.3. Host Parasitisation Rate and Statistical Analysis

For each year, the host parasitisation rate was calculated as the ratio between the num-
ber of emerged parasitoids and the total number of emerged specimens (hosts + parasitoids).
The occupancy of the most represented species (i.e., species that have been collected in four
out of nine of the selected sampling areas during at least one of the three years) was evalu-
ated by considering the grid cells that contain at least one individual of the selected species
on the nine sites of the grid [81,82]. Being Campoplex capitator Aubert, 1960 (Ichneumonidae,
Campopleginae) the most abundant species of parasitoid emerged from infested sprouts
of D. gnidium, the monthly emergence trend of this species during the three years was
plotted and compared to that of EGVM using Kendall correlation coefficient (τ, significance
threshold p < 0.05) as data were not normally distributed (test Shapiro-Wilk p < 0.05). The
percentage of EGVM eggs parasitized by Trichogramma spp. in 2015 was counted, and a
contingency analysis was carried out to test whether the number of parasitized eggs signifi-
cantly varied over months. Finally, the community composition of parasitoids obtained
from EGVM on D. gnidium was divided per guild, based on the attacked host stage. Then,
parasitoids were further subdivided per guilds following Mills [83] and compared to the
community composition of EGVM parasitoids as observed in vineyards or on spurge flax
in different Italian regions [34–36,47,60–62,64].
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3. Results

In our study, a total of 24 species of parasitoids were obtained from EGVM eggs, larvae,
and pupae collected on D. gnidium during the three-year sampling in a grapevine-free natu-
ral environment (Table 1). From the total assemblage, 20 species of parasitoids belonging to
5 families of Hymenoptera (i.e., Braconidae, Eulophidae, Eupelmidae, Ichneumonidae, and
Pteromalidae) and one family of Diptera (i.e., Tachinidae) were obtained from EGVM larvae
and pupae collected during 2014, 2015, and 2017. In 2015, four species of parasitoids belong-
ing to one family of Hymenoptera (i.e., Trichogrammatidae) were obtained from EGVM
eggs collected on D. gnidium leaves. In 2014, 1223 adults of EGVM and 239 parasitoids were
obtained, resulting in a host parasitisation rate of 16.35%. In 2015, 1070 adults of EGVM and
162 parasitoids were obtained, reaching a host parasitisation rate of 13.15%. During 2017,
1420 adults of EGVM and 163 parasitoids emerged, resulting in a host parasitisation rate of
10.30%. Overall, out of 3713 EGVM larvae or pupae, 564 parasitoids were obtained, with
an average annual parasitisation rate of 13.27%. The family Ichneumonidae accounted for
more than 80% of all the parasitoids, with a parasitisation rate ranging from about 9 to 12%.
C. capitator was by far the most abundant species in our sampling, accounting for about
64% of all the emerged parasitoids, and with a parasitisation rate ranging from 7% to 9%.

Table 1. Overall abundance of Lobesia botrana and its larval/pupal parasitoids (in bold) on Daphne
gnidium over three years of field studies; family names and total number of parasitoids per family are
in bold; for each parasitoid family as well as for Campoplex capitator, the host parasitisation rate (%) is
given within brackets.

Family and Species 2014 2015 2017 TOT

Braconidae 30
(2.05)

2
(0.16)

5
(0.32)

37
(0.87)

Ascogaster quadridentata Wesmael, 1835 - 1 - 1
Bracon admotus Papp, 2000 2 1 1 4

Habrobracon concolorans (Marshall, 1900) 9 - - 9
Habrobracon hebetor (Say, 1836) 3 - - 3

Habrobracon pillerianae Fisher, 1980 16 - 4 20

Eulophidae 12
(0.82)

12
(0.97)

2
(0.13)

26
(0.61)

Colpoclypeus florus (Walker, 1839) 12 * 12 2 26

Eupelmidae 1
(0.07) - - 1

(0.02)
Eupelmus sp. 1 - - 1

Ichneumonidae 181
(12.38)

143
(11.61)

145
(9.16)

469
(10.97)

Campoplex capitator Aubert, 1960 128
(8.76)

114
(9.25)

112
(7.08)

354
(8.28)

Exochus lentipes Gravenhorst, 1829 1 3 - 4
Itoplectis alternans (Gravenhorst, 1829) 13 ** 1 7 21

Itoplectis maculator (Fabricius, 1775) 3 - - 3
Itoplectis tunetana (Schmiedeknecht, 1914) 25 4 3 32

Pimpla contemplator (Müller, 1776) 1 - - 1
Trichomma enecator (Rossi, 1790) 7 - - 7

Triclistus pallipes Holmgren, 1873 3 21 23 47

Pteromalidae 3
(0.20)

1
(0.08) - 4

(0.09)
gen. sp. 3 1 - 4

Tachinidae 12
(0.82)

4
(0.32)

11
(0.69)

27
(0.63)

Actia pilipennis (Fallén, 1810) 11 2 10 23
Phytomyptera nigrina (Meigen, 1824) 1 - - 1

Clemelis massilia Herting, 1977 - 1 - 1
Nemorilla maculosa (Meigen, 1824) - 1 1 2

Total 239
(16.35)

162
(13.15)

163
(10.30)

564
(13.19)

Lobesia botrana (Denis and Schiffermüller, 1775) 1223 1070 1420 3713
* Colpoclypeus florus is a gregarious parasitoid; the presence of more specimens from a single larva of L. botrana
was counted as one event. ** 1 specimen obtained as hyperparasitoid of Campoplex capitator.
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Among the emerged parasitoids, only 8 species reached an occupancy threshold of at
least 44%, (Table 2). Only two species (i.e., C. capitator and Triclistus pallipes Holmgren, 1873
(Ichneumonidae, Metopiinae)) reached an occupancy percentage value of at least 44% all the
three years, with C. capitator having an occupancy of 100% during all the sampling periods.
Comparing the emergence trend of C. capitator with that of EGVM, a strong correlation
between the two curves was observed (Figure 3). The Kendall correlation coefficient was
strong in 2014, when the trend of the graphs of the two species was almost identical
(τ = 0.588, p = 0.0179), and less but still strong in 2015 and 2017 (τ = 0.484, p = 0.0355 and
τ = 0.437, p = 0.0526 respectively).

Table 2. Occupancy (%) for parasitoid species of Lobesia botrana that reached a value of at least 44%
(i.e., 4 out of 9 sampled areas) during the three-year field study in Tuscany, Italy.

Parasitoid Species
Occupancy (%)

2014 2015 2017

Actia pilipennis (Fallén, 1810) 55 - 67

Campoplex capitator Aubert, 1960 100 100 100

Colpoclypeus florus (Walker, 1839) 55 44 -

Habrobracon pillerianae Fischer, 1980 - - 44

Itoplectis alternans (Gravenhorst, 1829) 44 - 67

Itoplectis tunetana (Schmiedeknecht, 1914) 88 - -

Trichomma enecator (Rossi, 1790) 44 - -

Triclistus pallipes Holmgren, 1873 44 67 88
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In 2015 the leaves and the tips of D. gnidium were also examined to assess the presence
of EGVM eggs. Out of 1794 EGVM eggs found on the underside of leaves of D. gnidium
shoots, 293 were parasitized by 4 Trichogramma species: T. cordubense Vargas and Cabello,
1985 (58.3%), T. evanescens Westwood, 1833 (35.4%), T. euproctidis (Girault, 1911) (4.2%)
and T. cacaeciae Marchal, 1927 (2.1%) (see also Lucchi et al. [63]). The overall egg parasiti-
sation rate was 16.33%. The number of parasitized eggs varies greatly over the months
(χ2 = 665.42; p < 0.001). The first parasitized eggs were found at the end of June, during the
second EGVM flight. No parasitized eggs were found between the end of August and the
beginning of September. In mid-September, there was a strong resumption of Trichogramma
spp. activity, with 271 out of 475 eggs parasitized, resulting in a parasitisation rate of 57%
(Figure 4).
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Figure 5 shows the parasitoid community associated with EGVM on D. gnidium
divided per guilds, based on the host stage attacked and the host stage killed by the



Insects 2022, 13, 627 8 of 17

parasitoid. In 2015, the analysis of parasitized eggs revealed that Trichogramma spp. and
the braconid Ascogaster quadridentata Wesmael, 1835 were the only parasitoids attacking
EGVM eggs, with the former completing development in the moth’s egg, and the latter
emerging at the prepupal stage. Most of the parasitoids observed attack the early (such as
Actia pilipennis (Fallén, 1810), T. pallipes or C. capitator) or late (such as Habrobracon spp. or
Colpoclypeus florus (Walker, 1839)) larval stages of the moth, emerging from the last stages of
host development. Observing the parasitoid community over the years, the larvo-prepupal
guild (L-pP) was the relatively richest in terms of number of species, accounting for more
than 50% in 2014, and about 70% in 2015 and 2017, followed by the larvo-pupal and pupal
guilds (L-Pu and P) and by the larval parasitoids (L) (Figure 6).
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Figure 5. Parasitoids attacking different Lobesia botrana (EGVM) instars on Daphne gnidium sprouts in
Tuscany, Central Italy. The grey circle represents the EGVM development. E: egg; L1-L5: I–V larval
stages; pP: prepupa; P: pupa. Arrows connect the host stage attacked to the host stage killed by the
parasitoid. Arrows passing through the host circle indicate an endoparasitic development, whereas
those remaining outside the circle indicate an ectoparasitic development.
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Figure 6. Parasitoid guilds (%) obtained across the three-year sampling in Tuscany, Central Italy, on
the base of the host stage attacked. E: parasitoids attacking eggs (excluding Trichogramma spp.); L: lar-
val parasitoids; L-pP: larvo-prepupal parasitoids; L-Pu: larvo-pupal parasitoids; P: pupal parasitoids.
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4. Discussion

The list of parasitoids associated with EGVM is extremely long, and several authors
have attempted to provide a complete list of species parasitizing this lepidopteran [84–87].
Not all these records should be considered valid, mainly due to inaccuracies in rearing,
errors in identifications, and difficulties in interpreting names given by some authors in
the past, as the taxonomic meaning of a name often changes over time or according to the
author [69,70,88]. Most of the data comes from the investigation of the EGVM parasitoids
in vineyards, as from the beginning this moth has been associated with the grapevine,
showing its potential as a pest since the second half of 19th [69]. On the other hand, despite
being considered the most important host plant of the EGVM and suggested as its original
host [31,32], few Italian studies tried to highlight the population dynamics of this moth and
its parasitoids on the spurge flax, D. gnidium [62,64]. In Italy, studies have been conducted
in Tuscany [32,59,62–64], Apulia [60], and Sardinia [61], for a total of 28 (morpho)-species
of parasitoids associated with EGVM developing on D. gnidium (Table 3). One of the major
difficulties in identifying the correct host-parasitoid associations in a natural ecosystem
is the coexistence of several lepidopteran species in the same microhabitat, which can be
attacked in turn by unspecific parasitoids that exploit the habitat rather than the host [89].
An earlier investigation by Scaramozzino et al. [64] in the same area showed that the nests
on sprouts of D. gnidium can be formed also by Cacoecimorpha pronubana (Hübner), a tortricid
moth whose young larval stages can be confused with those of the EGVM. In addition,
sprouts of D. gnidium often host a large community of moth larvae, belonging to several
different species (e.g., leaf rollers such as Anchinia cristalis (Scopoli)), inquiline species such
as Cryptoblabes gnidiella (Millère) or Gymnoscelis rufifasciata (Haworth), leaf-miners such as
Phyllobrostis fregenella Hartig [64]. It follows that associating a parasitoid with its right host
can be a difficult and time-consuming task [64,89].

Table 3. Parasitoids of preimaginal stages of the European grapevine moth, Lobesia botrana, found
on Daphne gnidium (D.g.) and Vitis vinifera (V.v.) in different Italian regions, based on main previous
studies on the topic (references given in square brackets; black squares indicate presence). Species are
divided into guilds as proposed by Mills [83]. Lifestyles: I, idiobiont; K, koinobiont; G, gregarious, H,
hyperparasitoid; FH, facultative hyperparasitoid.

Tuscany Apulia Sardinia

Parasitoid Guild/Species [Ordo-Family]

Host Plant
Lifestyle V.v.

[47,59]
D.g.

[32,59,62–64]
V.v.

[34,35,59]
D.g.
[60]

V.v.
[36]

D.g.
[61]

Egg endoparasitoid [EN]

Trichogramma cacaeciae Marchal, 1927
[Hym-Trich] I �

Trichogramma cordubense Vargas and
Cabello, 1985 [Hym-Trich] I �

Trichogramma evanescens Westwood, 1833
[Hym-Trich] I � �

Trichogramma euproctidis (Girault, 1911)
[Hym-Trich] I �

Egg-prepupal endoparasitoid [EpPN]

Ascogaster quadridentata Wesmael, 1835
[Hym-Brac] K � �

Chelonus sp. [Hym-Brac] K �

Early larval endoparasitoid [ELN]

Phytomyptera nigrina (Meigen, 1824)
[Dipt-Tach] K � � � � �

Late larval endoparasitoid [LLN]

Actia pilipennis (Fallén, 1810) [Dipt-Tach] K �

Neoplectops pomonellae (Schnabl and
Mokrzecki, 1903) [Dipt-Tach] K �
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Table 3. Cont.

Tuscany Apulia Sardinia

Parasitoid Guild/Species [Ordo-Family]

Host Plant
Lifestyle V.v.

[47,59]
D.g.

[32,59,62–64]
V.v.

[34,35,59]
D.g.
[60]

V.v.
[36]

D.g.
[61]

Larval ectoparasitoid [LC]

Bracon admotus Papp, 2000 [Hym-Brac] I G? �
Colpoclypeus florus (Walker, 1839)

[Hym-Eul] KG � �

Elachertus affinis Masi, 1911 [Hym-Eul] I G � �
Goniozus gallicola (Kieffer, 1905) [Hym-Bet] I [G (1)] �

Larval ectoparasitoid [LC]

Habrobracon sp. [Hym-Brac] I G �

Habrobracon concolorans (Marshall, 1900)
[Hym-Brac] I G �

Habrobracon hebetor (Say, 1936) [Hym-Brac] I G � �

Habrobracon pillerianae Fischer, 1980
[Hym-Brac] * I G �

Scambus elegans (Woldstedt, 1877)
[Hym-Ichn] I FH �

Larval-prepupal endoparasitoid [LpPN]
[a] Early attackers

Agathis sp. [Hym-Brac] K �
Agathis malvacearum Latreille, 1805

[Hym-Brac] K �

Aleiodes sp. [Hym-Brac] K �
Apanteles sp. [Hym-Brac] �

Apanteles halidayi Marshall, 1872
[Hym-Brac] K �

Campoplex borealis (Zetterstedt, 1838)
[Hym-Ichn] K �

Campoplex capitator Aubert, 1960
[Hym-Ichn] K � �

Campoplex difformis (Gmelin, 1790)
[Hym-Ichn] K �

Pristomerus vulnerator (Panzer, 1799)
[Hym-Ichn] K �

Therophilus linguarius (Nees, 1812)
[Hym-Brac] K �

Therophilus tumidulus (Nees, 1812)
[Hym-Brac] K �

Larval-prepupal endoparasitoid [LpPN]
[b] Late attackers

Nemorilla maculosa (2) (Meigen, 1824)
[Dipt-Tach] K �

Clemelis massilia (3) Herting, 1977
[Dipt-Tach] K �

Larval-prepupal ectoparasitoid [LpPC]

Phytodietus sp. [Hym-Ichn] K �
Phytodietus polyzonias (Förster, 1771)

[Hym-Ichn] K �

Larval-pupal endoparasitoid [LPN]

Exochus sp. [Hym-Ichn] K �
Exochus lentipes Gravenhorst, 1829

[Hym-Ichn] K �

Trichomma enecator (Rossi, 1790)
[Hym-Ichn] K �

Triclistus sp. [Hym-Ichn] K � �

Triclistus lativentris Thomson, 1887
[Hym-Ichn] K �

Triclistus pallipes Holmgren, 1873
[Hym-Ichn] K �

Prepupal-pupal ectoparasitoid [pPPC]

Agrothereutes pumilus (Kriechbaumer, 1899)
[Hym-Ichn] I FH �

Dibrachys affinis Masi, 1907 [Hym-Pterom] I FH � � �
Dibrachys microgastri (Bouche, 1834)

[Hym-Pterom] I FH �

Ischnus alternator (Gravenhorst, 1829)
[Hym-Ichn] I �
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Table 3. Cont.

Tuscany Apulia Sardinia

Parasitoid Guild/Species [Ordo-Family]

Host Plant
Lifestyle V.v.

[47,59]
D.g.

[32,59,62–64]
V.v.

[34,35,59]
D.g.
[60]

V.v.
[36]

D.g.
[61]

Pupal endoparasitoid [PN]

Dicaelotus inflexus Thomson, 1891
[Hym-Ichn] I � �

Hockeria sp. [Hym-Chalc] I �
Itoplectis alternans (Gravenhorst, 1829)

[Hym-Ichn] I FH � �

Itoplectis maculator (Fabricius, 1775)
[Hym-Ichn] I FH �

Itoplectis tunetana (Schmiedeknecht, 1914)
[Hym-Ichn] I FH �

Pimpla apricaria Costa, 1885 [Hym-Ichn] I �
Pimpla spuria Gravenhorst, 1829

[Hym-Ichn] I �

Pimpla turionellae (Linnaeus, 1758)
[Hym-Ichn] I FH �

Hyperparasitoid

Bathythrix argentata (4) (Gravenhorst, 1829)
[Hym-Ichn] H �

Theroscopus hemipteron (5) (Riche, 1791)
[Hym-Ichn] FH � �

Uncertain placement

Pachyneuron sp. [Hym-Pterom] H �
Tetrastichus sp. (6) [Hym-Eul] ? �

* Several specimens obtained from EGVM 1st generation larvae on 13 June 2005 and from 2nd generation larvae on
1–20 August 2008 in Cerreto Guidi (Florence, Tuscany, Central Italy) (A. Lucchi leg.). (1) Larvae of Goniozus gallicola
develop as solitary or gregarious parasitoids, depending on the size of the hosts [90]. (2) Nemorilla maculosa can
also act as larval-pupal endoparasitoid [91]. (3) According to Scaramozzino et al. [59], this species can be assigned
to the larval-prepupal endoparasitoid [LpPN] guild, but it is not known whether the passive penetration of the
tachinid into the host larva occurs early or late. Rohdendorf [92] illustrated in detail the biology and development
of another European species of the same genus, Clemelis pullata (Meigen, 1824), but the information provided
does not allow to clarify this point. (4) This species has been recorded on EGVM by Catoni [93], Schwangart [94],
Delrio et al. [36], Pinna et al. [38] and Marchesini and Dalla Montà [40]. Bordera and Selfa [95] report it from Laelia
coenosa (Hübner, 1808) (Erebidae); its biology is poorly known, but according to Sawoniewicz [96] it develops
as hyperparasitoid of lepidopteran larvae. (5) This species is reported as primary parasitoid of Lepidoptera
(Noctuidae, Pyralidae, Tortricidae), Coleoptera (Chrysomelidae, Curculionidae) and Hymenoptera (Cephidae,
Tenthredinidae) or as secondary parasitoid (hyperparasitoid) of Diptera Tachinidae through Hymenoptera
Braconidae and Ichneumonidae [87]. Some authors consider it a true secondary parasitoid [97]. (6) The species
belonging to the genus Tetrastichus Haliday, 1844 show very diversified lifestyles, associated with many hosts
belonging to different orders of insects and arachnids [98]. Furthermore, many of the species once assigned to the
genus Tetrastichus have been now assigned to different genera.

The species diversity of parasitoids emerged from nests of EGVM on D. gnidium is
slightly higher, although comparable, to that of the parasitoid community known from
the few studies of EGVM parasitoids carried out in Tuscan vineyards [47], while the high
prevalence of this plant in the Regional Reserve of Migliarino, San Rossore, Massaciuccoli
made it possible to obtain much more information than in previous studies carried out on
D. gnidium in Apulia and Sardinia [60,61]. Although a strict comparison between natural
environment and vineyard is not possible, as a general trend, the parasitoid complex of
EGVM in Tuscan vineyards is quite similar to what observed on D. gnidium, with many
species in common between the two ecosystems, e.g., C. capitator Aubert, 1960 (Ichneu-
monidae), T. pallipes Holmgren, 1873 (Ichneumonidae), A. quadridentata Wesmael, 1835
(Braconidae), Habrobracon pillerianae Fisher, 1980 (Braconidae), T. evanescens Westwood, 1833
(Trichogrammatidae) and Phytomyptera nigrina (Meigen, 1824) (Tachinidae). In addition,
some sporadic species have been recorded both in vineyards and on D. gnidium, such as
species of the genus Exochus (Ichneumonidae) or representatives of the genera Itoplectis
(Ichneumonidae). Of note, few relevant species obtained in Tuscan vineyards [47] were not
recorded in our study, i.e., Elachertus affinis Masi, 1911 (Eulophidae), Dibrachys affinis Masi
1907 (Pteromalidae) and Dicaelotus inflexus Thomson, 1891 (Ichneumonidae). This is proba-
bly due to an underestimation of the pupal parasitoid guild in our study; this component is
usually sampled in vineyards, as the overwintering cocoons of EGVM can be easily found
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under the bark of vines or collected using rag-traps on vine stumps [42,44]. During the first
two generations of the moth, the number of EGVM chrysalids on fronds of D. gnidium was
quite low, while we miss to find overwintering pupae of the third generation on the plant,
likely since the EGVM full-grown larvae leave the plant and pupate in the soil.

In our sampling, C. capitator resulted the most abundant parasitoid in all the three
years, covering the 53%, 72% and 86% of the parasitoid community in 2014, 2015, and 2017,
respectively. It was also the only parasitoid with a 100% occupancy in the selected area,
proving to be a structural member of the community [81]. C. capitator is a Mediterranean
species [87,88], widespread in most of the southern European wine-growing areas, where
it is one of the main if not the most efficient parasitoid of EGVM [46–48,50,52,70,99,100].
Beyond EGVM, its host range seems restricted to a few other tortricid species feeding
on grapevine, such as Eupoecilia ambiguella (Hübner, 1796) and occasionally Sparganothis
pilleriana (Denis and Schiffermüller, 1775) [89]. Indeed, C. capitator belongs to a group
of sibling species, which are difficult to separate on a morphological basis but that have
probably differentiated based on host specialisation [88]. Our data strongly support the
strict association of C. capitator with EGVM, as the trend of emergency of this parasitoid
during the three-year sampling clearly followed that of the EGVM and gives credit to its
possible use as a biological control agent against this pest as soon as the difficulties in its
mass rearing can be overcome [101].

Apart from C. capitator, a plethora of “satellite species” appear in our sample, which
although not reaching the parasitisation rates of the former, seem to be stably associated
with EGVM. The ichneumonid T. pallipes Holmgren was the only species, together with
C. capitator, to occur every year. This parasitoid species attacks the larval stages and
emerges from the pupa and, although in relatively low numbers, showed a prevalent
activity during the third generation of the moth. The tachinid fly P. nigrina (Meigen) has
proven to be a constant presence, being found both on D. gnidium and in the vineyards in
several studies [34,40,43,47,49,59–61,69]. This species seems to play an important role in the
natural control of summer population of EGVM, sometimes reaching high parasitisation
rates on 1st or 2nd generations of the moth [34,47,49,60,61]. However, the presence of this
parasitoid is restricted to the Mediterranean area, so it can only be considered a suitable
candidate for biological control of EGVM in southern European vineyards [52].

So far, 12 species of Trichogramma have been reported as parasitoids of EGVM eggs [98],
some of which have been employed in inundative biological control against EGVM and
E. ambiguella but with contrasting results [25,102]. Interestingly, T. evanescens was the only
species of the genus collected in Italian vineyards [47]; the species is active during the
1st generation of the moth, when it can reach a parasitisation rate of about 25% [47]. In
France, Hommay et al. [103] observed that T. evanescens is an efficient parasitoid of EGVM
eggs during the 1st generation, while T. cacoeciae becomes more common during the 2nd
generation. In Turkey, two species of Trichogramma were obtained from parasitized eggs
of EGVM, with T. euproctidis being the most common one [56]. Interestingly, T. cordubense
was by far the most abundant species of Trichogramma in our sampling to attack EGVM
eggs on D. gnidium. In addition, this species did not attack the first generation of the moth,
reaching the maximum parasitisation rate at the end of the third generation of the moth
in September, when the parasitoid prolonged activity leads to the attack of all remaining
laid eggs.

In general, what we observed in the wild is a complex community, with the impact
of the different guilds that fluctuate over seasons and change over years, according to the
different environmental conditions. Typically, the percentage of egg and larval parasitism
is higher during the first two EGVM generations and decreases during the ovewintering
generation, which is mainly affected by larvo-pupal and pupal parasitoids [25,47]. In
our research, the larval endophagous guild exploited the great majority of EGVM larvae,
mainly dragged by the high prevalence of C. capitator. However, when the parasitisation
rate of this guild was lower (as in 2014), the incidence of the larval ectophagous and pupal
parasitoids increased. This is consistent with the hypothesis that the members of these
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guilds would play a role as redundant species [104,105]. Therefore, this study highlights
an extremely complex and dynamic parasitoid community; in this context, distinguishing
parasitoid species that are closely associated with a host from occasional parasitoids and
understand how this community varies across regions and seasons are two crucial aspects
for the implementation of biological control strategies.

5. Conclusions

Eggs, larvae, and pupae of EGVM represent an abundant resource for a rich parasitoid
community both in vineyards and in the wild. Despite a lack in sampling pupal parasitoids
in our study, the community of parasitoids of EGVM on D. gnidium appeared highly diverse
if compared to what observed in the vineyards. Some genera, as for Trichogramma or Habro-
bracon, were present with several species, showing off a certain degree of redundancy, with
similar species exploiting the same resource and with one species that may replace another
in the case of temporary or local extinctions [106]. In both ecosystems, C. capitator represents
the main parasitoid of EGVM, confirming the importance of this species in the control
of EGVM populations and its possible use as a biocontrol agent in vineyards [70,107,108].
Several other parasitoid species have been recorded in smaller numbers but appear to be
stably associated with EGVM, suggesting that they may exert an important control on
EGVM populations under local conditions.

This issue, coupled with the high number of EGVM parasitoid species in natural
contexts, highlights the ecological value of wild areas as possible reservoirs from which
even not common species with specific ecological requirements can move to reach sur-
rounding cultivated areas, thus contributing to the control of economically important pests
in the crops.
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