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The Economics of Consensus in Algorand
Nicola Dimitri

Department of Economics and Statistics, University of Siena, Piazza San Francesco 7, 53100 Siena, Italy;
dimitri@unisi.it

Abstract: In the paper we investigate consensus formation, from an economic perspective, in a Proof-
of-Stake (PoS) based platform inspired by the Algorand blockchain. In particular, we consider PoS in
relation to governance, focusing on two main issues. First we discuss alternative sampling schemes,
which can be adopted to select voting committees and to define the number of votes of committee
members. The selection probability is proportional to one’s stake and increases with it. Participation
in governance allows users to affect the platform’s decisions as well as to obtain a reward. Then,
based on such preliminary analysis, we introduce a microeconomic model to investigate the optimal
stake size for a generic user. In the model we conceptualize an optimal stake, for a user, as striking the
balance between having Algos immediately available for transactions and setting aside currency units
to increase the probability of becoming a committee member. Our main findings suggest that the
optimal stake can be quite sensitive to the user’s preferences and to the rules for selecting committees.
We believe the findings may support policy decisions in PoS based platforms.

Keywords: proof of stake; consensus; algorand

1. Introduction

In the Algorand blockchain, platform blocks are confirmed/validated by committees of
nodes/users, randomly selected by means of a Proof of Stake (PoS)-based mechanism, that
is with a probability proportional to, and increasing in, the number of currency units set
aside by a user from her monetary holdings [1–28]. More specifically, to introduce a new
block in the blockchain, Algorand requires three steps: block proposal, block selection and
block validation. Each of these three steps are performed by committees of users, randomly
selected according to their set aside stake.

Additionally, the Algorand Foundation has recently introduced a model of Governance
where decisions are taken by users, whose number of votes is defined by their monetary
stakes. As of now any user staking just one Algo is allowed to vote, so no random drawing
procedure is currently undertaken to form voting committees. However, unlike what
happens with the three roles for block validation, governance participation is rewarded by
Algorand. This is because voting participation is considered to be more costly, in terms of
time and effort than block validation.

As said, a stake is the amount of the own money a user is willing to set aside, freeze, for a
period of time to be allowed to validate a block and/or vote in governance issues. The stake
fulfills two main goals for the platform. First, the temporary unavailability of the monetary
stake represents an incentive to keep personal wealth within the platform. Secondly it
may also be instrumental for blockchain platforms to mitigate/solve the “nothing at stake”
problem that characterizes PoS. That is, unlike Proof of Work based platforms, such as
Bitcoin, where eligibility to confirm blocks requires investing resources in a specific activity
like “mining”, PoS misbehavior such as double spending may have no cost for the relevant
user. Hence, in this case the stake may be considered as a guarantee deposit and thereby
slashed by the platform to punish such misbehavior.

Therefore, the healthy functioning of a PoS based blockchain such as Algorand is
fundamental to induce the users to set up the stakes. Provided this is so, studying the
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optimal stake for the users is very important for the nodes, as well as for the platform. Indeed,
the stake size can meaningfully affect the dynamics of Algorand on many dimensions such
as to prevent, for example, an individual/committee from being chosen too frequently or
from nodes taking dishonest choices. The intuition suggests that for an appropriate, long
lasting, functioning of the platform, the total size of the stakes in the community, should
neither be too small but also not too large. Indeed, in the extreme case where no user sets
aside any stake the chain could not even function, as no stake-based random drawing
could take place. On the other hand, if each user sets aside his total monetary holdings as
a stake, no transaction could take place in the community, which is inconsistent with the
Algorand mission.

With the above considerations in mind, in the paper we investigate two main issues.
First, as a preliminary step, we discuss the selection probability of users/committees when
based on their stake, mostly focusing on the symmetric case, where all the users have
the same stake as a main benchmark for the analysis. We consider alternative sampling
schemes, with and without replacement, and argue that some of them may help, more
than others, with the emergence of some dominant, prevailing, positions in block certifica-
tion/governance participation. For the sake of generality, the analysis extends beyond the
specificities of Algorand.

Based on the first part, we then conceptualize the optimal stake determination by a
node. We do so by introducing a generic user’s preferences in a dynamic microeconomic
setting. This allows us to properly capture the fundamental trade-off faced by a user when
deciding how much money to set aside as a stake. Indeed, on the one hand a smaller stake
provides a larger amount of Algos available for the current user’s transactions while, on the
other hand, it means a lower probability of being selected for block validation/governance
voting. The resolution to such a trade-off can only be modelled by considering the user
preferences in a dynamic context. In the work we shall mostly focus on the analysis of
the optimal stake as related to governance; to our knowledge this is the first contribution
discussing in detail the issue within PoS blockchains.

The structure of the paper is as follows. In Section 2 we discuss the selection probability
of single users and committees. In Section 3 we analyze the optimal stake determination con-
sidering a PoS selection-based procedure to vote on Algorand governance issues. Section 4
concludes the paper.

2. Committees and Voting

As above, both Algorand block validation and governance voting committees are
based on PoS. When the members selection is random, a potential problem with PoS may
be that nodes with a higher stake could be chosen too frequently, establishing forms of
dominant positions in the platform. This is typically referred to as the rich-get-richer possible
problem with PoS, which may also be an issue when member selection is not random.
For this reason, we believe that a first important step in the analysis of users/committees
selection is to gain insights on what may be the probabilities of being drawn according to
PoS, as well as the implications of alternative sampling schemes.

A framework for the analysis could be founded on some simple, initial consider-
ations. To further simplify, in what follows we shall interchangeably use the terms ac-
count/node/user. Suppose N is both the number and the set of nodes in Algorand at
some point in time. Assume committees are formed by C ≤ N nodes, where C is both the
number and the set of committee members selected by the platform. This is different from
the procedure adopted by the Algorand Foundation for its governance, where for a user
it is enough to stake 1 Algo to become a committee member. In that case, the committee
size is not specified a priori and determined at each voting session by the number of users
available to vote. In any case, adjusting the analysis to when C is endogenously defined by
the users would not imply major changes.

Let i = 1, 2, . . . , N, and i ∈ N, indicate the generic node, and j = 1, 2, . . . , C and j ∈ C
the generic committee member. For the sake of generality, at this stage we assume that
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committees can refer to block validation as well as participation to governance activities;
later we shall focus the discussion on governance only. Finally, we define ai and si ≤ ai,
respectively, the total amount of Algos in user i′s wallet and si her stake.

In what follows, within a generalized sampling without replacement scheme, we start
considering three main random selection criteria to form committees.

(a) The first we call “One-Node-One-Vote” (ONOV). In ONOV, to be part of a committee,
nodes are drawn with a probability which is proportional to their monetary stake.
Once drawn, the user’s Algos are removed from the sampling scheme and a node
cannot be selected again. Therefore, in ONOV the Algos in the stake affect only
the probability to be on a committee but not the number of votes a node has in the
committee which, for each selected member, is just one. Of course, nothing prevents
ai and si to count informally within the committee; yet they do not formally matter
when voting, since each node has a single vote.

(b) The second criterion we call “One-Node-Multiple-Votes” (ONMV), where a committee
is composed as follows. As for ONOV, a node is selected to be a committee member
with a probability proportional to si. Once selected, as well as for ONOV, the stake of
a node is removed from the procedure. However, unlike ONOV, with ONMV once C
nodes are selected. each node in the committee will have a number of votes equal to si.
Therefore, with ONMV the size of the stake will play a major role also in establishing
the relative weights in the voting sessions.

(c) The third criterion we call “One Node Multiple Draws” (ONMD). According to ONMD
a node is drawn with a probability proportional to si. Once selected, one Algo is
eliminated from its stake and the node could be drawn again. Unlike criteria (a) and
(b), in principle with criterion (c), all of the committee members may coincide with
the same node, which can be sequentially selected at all draws.

Below we discuss the main features of the three criteria, starting with ONOV. However,
prior to doing so we need to introduce some further notation.

Suppose ai, with i = 1, . . . , N, is the number of Algos held by node i at some date and
that, with no loss of generality, it is a1 ≥ a2 ≥ . . . ≥ aN . In case of a uniform holdings of
the currency it is ai =

a
N . Moreover, consider B ⊆ N and define a = ∑N

i=1 ai, aB = ∑j∈B aj,
a−B = a− aB. Analogously, let s = ∑N

i=1 si, sB = ∑j∈B sj, s−B = s− sB.

2.1. One-Node One-Vote (ONOV)

According to ONOV, each member of the committee must be a different node, since
once an account is selected all its Algos will be eliminated from the subsequent draws.

Therefore, the number, and the set, of possible committees is S(N) =

(
N
C

)
= N!

C!(N−C)!

(i) Uniform probability of a committee selection

Start considering a benchmark situation, where the stake is the same for all nodes and
given by,

si = ai =
a
N

,

for all i = 1, . . . , N. That is, one’s stake coincides with her monetary holdings and so the
probability of being drawn is uniform, across the nodes, and equal to 1

N . Notice that we are
implicitly assuming that all nodes are willing to be selected as a committee member. This is
not necessarily the case since, in principle, there could be nodes which are only interested
in Algos for transactions, but not for block validation and/or governance participation.

In this case, since each committee has the same chance of being selected then any one
of them will be drawn with the following probability

1
S(N)

=
1(
N
C

) =
C!(N − C)!

N!
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Consider now n repeated committee selections, where N and C are kept as constant.
Moreover, assume that rounds of selections are stochastically independent of each other.
If K is the variable representing the number of times the same committee is chosen in n
independent rounds of selection, then the probability of choosing 0 ≤ k ≤ n times the same
committee is binomial and given by

P(K = k) =
(

n
k

)
(

1(
N
C

) )
k
(1− 1(

N
C

) )
n−k

= (
1(
N
C

) )
n( n

k

)
(

(
N
C

)
− 1)

n−k

It follows that E(K) = n(
N
C

) , while Var(K) = n(
N
C

)
1− 1(

N
C

)
, which is

maximized for
(

N
C

)
= 2. Should Algorand wish EK not to exceed an upper bound u(n)

then, for given N, n and C could be chosen appropriately in such a way that

EK < u(n) (1)

Since, regardless of N being even or odd, the binomial coefficient
(

N
C

)
is always

maximized for C = (N+1)
2 , then a necessary condition for (1) to be at all satisfied is

n(
N

(N+1)
2

) < u(n) (2)

In general, it will have to be n
u(n) <

(
N
C

)
, namely the number of possible committees

should be sufficiently large. For example, if u(n) = n
2 then there will have to be at least 2

possible committees in the set of nodes.

Finally if Ki, with i = 1, . . . ,
(

N
C

)
and K1 + K2 + . . . + K

(
N
C

)

= n, are random vari-

ables defining the number of times the ith committee is selected in n repeated draws, then

P


K1 = k1 , . . . , K

(
N

C
)

= k

(
N

C
)


=

n!
k1! . . .!k

(
N

C
)

!


1 N

C





k1

. . .


1 N

C





k

(
N

C
)

=
n!

k1! . . .!k

(
N

C
)

!


1 N

C





n

with k1 + . . . + k
(

N
C

)

= n. That is, the probability that in n independent draws the

ith committee, for all i = 1, . . . ,
(

N
C

)
, will be chosen exactly ki times is multinomial.

(ii) Uniform probability of a node selection

Based on the above assumptions, with uniform stakes each single node has probability
C
N to be part of the selected committee. Therefore in n repeated, independent, draws the



FinTech 2022, 1 168

probability for the node to be part of h, with h = 1, . . . , n, committees is again binomial,
and given by (

n
h

)
(

C
N
)

h
(1− C

N
)

n−h
(3)

Therefore, in n independent repetitions the expected number of times, EH, a node
will be selected as a committee member is EH = nC

N while the variance will be given by

VH = nC
N

(
1− C

N

)
. If Algorand wishes this not to exceed an upper bound b(n), then C

could be chosen appropriately as follows

nC
N
≤ b(n) (4)

For instance, if b(n) = n
2 then

C ≤ nN
2n

=
N
2

Consistently with one’s intuition, it may be interesting to observe that C
N > 1(

N
C

) ,

that is, the probability for a node to be part of a committee is larger than the probability to
draw a specific committee, which includes that node.

Also in this case, if Hi with i = 1, . . . , N and H1 + H2 + . . . + HN = n, are the random
variables defining the number of times the ith user is drawn in n repeated draws, then

P(H1 = h1, . . . , HN = hN ) =
n!

h1! . . .!hN!

(
C
N

)h1

. . .
(

C
N

)hN

=
n!

h1! . . . hN!

(
C
N

)n

with h1 + h2 + . . . + hN = n.

(iii) Non-Uniform probability of a committee selection

In this paragraph we still assume ai = si, however without imposing uniform, sym-
metric, money holdings. If, as previously discussed, the committee selection is ruled by a
ONOV random draw based on PoS, then the committee C1, formed by the following miners
C1 = {1, . . . , C}, will be the most likely, while committee CN−C = {(N − C + 1), . . . , N}
the least likely. With asymmetric stakes the probability of selecting a given committee in
this case will require much more involved computation.

To gain some insights on the computational involvement, consider, for example, N = 3
and C = 2. Then because of sequential drawing of nodes, without replacement, when
selecting a committee, the probability pC1 of choosing C1 = {1, 2} in a single draw is
given by

pC1 =
a1

a
a2

a−{1}
+

a2

a
a1

a−{2}
=

a1a2

(
a−{1} + a−{2}

)
aa−{1}a−{2}

(5)

Analogously, for C2 = {1, 3} and C3 = {2, 3} it is

pC2 =
a1a3

(
a−{1} + a−{3}

)
aa−{1}a−{3}

and pC3 =
a2a3

(
a−{2} + a−{3}

)
aa−{2}a−{3}

(6)

Therefore, in n repeated, independent, drawings of a two-members committee, if Ki is
the number of times that committee Ci, with i = 1, 2, 3, is drawn, with K1 + K2 + K3 = n,
then the joint probability P(K1 = k1, K2 = k2; K3 = k3) is again Multinomial and given by

P(K1 = k1, K2 = k2; K3 = k3) =
n!

k1!k2!k3!
pC1

k1 pC2
k2 pC3

k3 with k1 + k2 + k3 = n
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with EKi = npCi . Since pC1 > pC2 > pC3 it follows immediately that C1 is the committee
which, on average, is most frequently drawn.

Likewise, the probability that node j = 1 for example is included in a committee is

p1 = pC1 + pC2 =
a1a2

(
a−{1} + a−{2}

)
aa−{1}a−{2}

+
a1a3

(
a−{1} + a−{3}

)
aa−{1}a−{3}

(7)

while p2 = pC1 + pC3 and p3 = pC2 + pC3 .
With different monetary holdings there are some interesting considerations to make

when comparing the probability to select a node, with the probability of drawing a commit-
tee containing that node.

Consider the following numerical example. Suppose a1 = 10, a2 = 5, a3 = 1. Then
pC1 = 0.8049, pC2 = 0.1458 and pC3 = 0.0492 which implies that committee C1 will be
selected in about 80% of the drawings, in almost 15% of the drawings committee C2 is
selected while committee C3 appears in only 5% of the draws. Hence, in this case, the
probability that node j = 1 will be a committee member is about 0.95, the probability that
j = 2 is a committee member is around 0.85 while the probability that j = 3 is selected is
about 0.20.

It is worth noticing that, for each committee, the above probabilities are lower than
the share of the total Algos belonging to the same committee. Indeed, for C1 the share of
Algos over the total number of units would be given by 15

16 = 0.93 > 0.8049, for C2 given by
11
16 = 0.6875 > 0.1458 while for C3 it is 6

16 = 0.375 > 0.0492. As for single nodes instead we
have that for j = 1 his share of Algos are 10

16 = 0.625 < 0.95, for j = 2 his share of Algos are
5

16 = 0.3125 < 0.85 while for j = 3 we have 1
16 = 0.0625 < 0.20. That is, for each user the

share of Algos is higher than the probability to be selected in the committee.
We now ask the following question. Suppose nodes 1 and 2 agree to maximise the

probability of being jointly drawn in the committee; what would be the optimal distribution
of Algos between them? With the above distribution of Algos the probability pC1 = 0.8049
seems already rather high, but could it be higher? The answer is yes, and the reason why
can be seen by considering the following assignment of the total 15 Algos units jointly
owned by nodes 1 and 2; a1 = 8, a2 = 7, a3 = 1. That is, an allocation where the Algos
belonging to the first two nodes are now more evenly distributed between them. In this
case pC1 = 0.8263, pC2 = 0.0958 and pC3 = 0.0777. That is, as compared to the initial
allocation of Algos, now committee C1 will increase its selection probability, as well as
C3 while C2 will decrease its chance to be selected. However, now p1 = 0.9222 < 0.95,
p2 = 0.9041 > 0.85 and p3 = 0.1736 < 0.20, that is node 1 will decrease its probability to be
drawn, as well as node 3, while node 2 will increase its selection probability.

The example suggests the existence of a trade-off taking place with ONOV: the more
equally distributed are the Algos, across committee members, the larger the probability for
that committee to be drawn. However, the larger the number of Algos owned by a node,
the higher its probability to be drawn. Furthermore, the example also helps illustrating that
alternative distributions of Algos, within a subset of users, can produce externalities also
affecting the selection probability of nodes outside that subset.

To conclude, it is worth observing that ONOV would certainly provide a larger
probability, to be selected in a committee, to nodes with higher stakes. However, once
selected such advantage will disappear since each committee member will only have a
single vote available when deciding.

2.2. One-Node Multiple-Votes (ONMV)

With ONMV the probability for a node/committee to be drawn is the same as in
ONOV. However, the difference now stands in the fact that once drawn, each node, in the
committee, will have a number of votes equal to the number of its own Algos. In case
of symmetric stakes, in terms of voting power there will be no difference with respect to
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ONOV. However, unlike ONOV, if stakes are asymmetric the distribution of votes within
the committee will no longer be uniform.

2.3. One-Node Multiple-Draws (ONMD)

With ONMD a node can be drawn multiple times in the committee, and each separate
draw is an additional committee member. Therefore, in principle a committee could also
be formed by a single node, whose Algos are the only ones that were selected. Hence, in
general, node i can be represented by a number of Algos, votes, Vi = 0, 1, 2, . . . , C, which
for this reason is a random variable. We begin the discussion considering again the case
of uniform money holdings and stakes ai = si, and so uniform initial probability to be
selected for each node.

(i) Uniform probability of a node-committee selection

Since, in this case, ai =
a
N then, assuming (N−1)a

N > C, it follows that the probability
that agent i will have a number of votes Vi equal to v = 0, 1, 2, . . . , Min

( a
N , C

)
is, exactly (or

approximately), Hypergeometric and given by

P(Vi = v) =

( a
N
v

)( (N−1)a
N

C− v

)
(

a
C

) (8)

Consistently with the intuition, the expected number of votes is given by EVi =
C
N ,

that is coinciding with the probability for a user to be part of a committee in ONOV. Instead,
in this case, the probability that a user is part of a committee, namely that she has at least
one vote in the committee, is

P(Vi > 0) = 1−

(
(N−1)a

N
C

)
(

a
C

) (9)

Likewise, the probability that a particular committee will be drawn can be expressed,
again exactly or approximately, by the Multivariate Hypergeometric distribution. More
precisely, consider, for example, the probability that Vi = vi, for all i = 1, 2, , . . . , N. Then

P(V1 = v1, . . . , VN = vN) =

∏N
i=1

( a
N
vi

)
(

a
C

) with ∑N
i=1 vi = C (10)

(ii) Non-Uniform probability of a node/committee selection

The above expression could be immediately extended to the case of asymmetric stakes

(V1 = v1, . . . , VN = vN) =

∏N
i=1

(
ai
vi

)
(

a
C

) with ∑N
i=1 vi = C (11)

and the expected number of votes E(Vi) = C
( ai

a
)

showing that the share of Algos held by
node i is what drives its average number of votes.
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2.4. Sampling with Replacement

We conclude this section by discussing a committee selection made by using a sampling
with replacement scheme. In this case, ONOV, ONMV and ONMD collapse to the same single
selection criterion. Indeed, with symmetric stakes, now the probability that a node will
have v available votes in the committee, with v = 0, 1, . . . , C, is binomial and given by(

C
v

)
(

1
N
)

v
(

N − 1
N

)
C−v

and the expected number of nodes given by EV = C
N , as in ONMD.

3. Governance Reward and Staking

In the previous sections we anticipated that a main decision for Algorand users is how
much money should be set aside, as the own stake, for block validation and governance
participation. In this Section we discuss the optimal stake determination for a node related
to governance, as founded on the trade-off between participation to governance voting
sessions and the temporary set-aside of Algos to obtain the right and benefits to such
participation. Adopting an ONMV sampling principle, the stake will be used to determine
the probability with which a node is drawn to become a committee member, and/or the
number of his available votes, in a voting session concerning Algorand governance. So, as
already mentioned, the larger the stake the higher the probability to be drawn as a voter,
however the smaller the amount of money available for transactions. That is, the stake
works as a temporary impediment to the use of a portion of one’s Algos. Though the
governance analysis will be currently related to the Algorand Foundation, its insights may
turn out to be useful also for Algorand Inc. and other PoS based blockchain platforms.

Let ai again be the Algos held by node i, and likewise define its stake for the next voting
session as the amount si, such that si ≤ ai. Assume ONMV and suppose m = 1, 2, . . . , M, is
the generic binary item in the agenda of the next voting session, with M being the number,
as well as the set, of items in the agenda.

For each node i = 1, 2, . . . , N the approval and rejection, of an item implies different
levels of utility defined as follows{

umi i f m is approved
u−mi i f m is not approved

(12)

In principle, umi and u−mi could stand in any order; that is, a larger utility level could
come either from approval as well as from disapproval of an item.

In a general setting, when choosing the stake si, the node will face two types of uncer-
tainties. First, if it will be selected to be a committee member and then if, once selected, for
each item to be voted either Max(umi, u−mi) or Min(umi, u−mi) would be realised.

Furthermore, suppose s = (si, si, . . . , sN) = (si, s−i) is the vector of the stakes chosen
by the nodes, where s−i = s − {si}. Then, conditional to having been selected as a
committee member, we can define πi(si, s−i) to be the probability with which node i obtains
Max(umi, u−mi), and 1− πi(si, s−i), the probability with which i obtains Min(umi, u−mi).
Its expression clarifies that in general πi(si, s−i) depends on si as well as on s−i, with the
former being chosen by i, while the latter chosen by nodes other than i.

Therefore, the utility level ui(m) associated to the voting outcome is a Bernoulli
random variable, defined as

ui(m) =

{
Max(umi, u−mi) with probability πi(si, s−i)
Min(umi, u−mi) with probability 1− πi(si, s−i)

(13)

In what follows we assume that Max(umi, u−mi) > Min(umi, u−mi) for at least one m.
Later, in Section 3.1.3, we’ll discuss the implications of Max(umi, u−mi) = Min(umi, u−mi)
for all m.
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Hence, for each item m, it is possible to define the expected utility of the node in the
voting session as

Eui(m) = πi(si, s−i)Max(umi, u−mi) + (1− πi(si, s−i))Min(umi, u−mi) (14)

Finally, suppose T is the time length during which the monetary stake si is unavailable
to node i. Thus, consider (14) and assume for the time being that the selection to become
a committee member is based on (symmetric) money holdings and that all the users
are willing to be drawn for governance participation. Hence each user is selected with
probability C

N . To investigate the optimal stake for node i we can introduce a simple, though
sufficiently general, definition for its preferences as follows.

Ui(si) =

{
Wi(ai − Tsi + r) + ∑M

m=1 Eui(m) with probability C
N

Wi(ai + r) with probability 1− C
N

(15)

In (15) r ≥ 0 stands for the reward in Algos paid by Algorand for participation to
governance voting sessions, and more broadly we assume that r is paid to all users simply
for their willingness to be selected, even if they are not selected, and independently of their
stakes. Alternative models may consider a per-unit-of-the-stake reward, such as rsi, and/or
no reward if the user is not selected.

Indeed, admittedly, Equation (15) may be considered as a benchmark case. However,
besides its possible interest per se, if rewards are given to all those nodes which are available
to participate in block certification/governance activities, even if not selected, probabilistic
asymmetries may tend to disappear. The following simple example briefly illustrates why
this is so. Consider two nodes, i = 1 and i = 2 and suppose a1 > a2, so that the ratio
between the two nodes’ selection probability is a1/a

a2/a = a1
a2

. Now assume that both nodes are
willing to participate in governance activities and receive r currency units as a reward.

The ratio between the selection probabilities would now become a1+r
a2+r < a1

a2
, which is

then reduced as compared to what it was before the reward assignment. Hence, rewarding
all available nodes, even if not selected, could be a policy measure adopted by Algorand to
mitigate asymmetries in money holdings.

Unwillingness to participate in governance implies Ui(si) = Wi(ai), namely the utility
would be given by the availability of the total money holdings. As well as with the utility
for being available to vote but unselected, Ui(si) = Wi(ai + r), assuming Ui(si) = Wi(ai) is
also a simplification since a user may obtain some benefits from the voting sessions, even if
she does not participate. Yet, this will not meaningfully affect the analysis. Finally, in (15)
the term −Tsi is modelling the disutility due to the temporary unavailability of the stake;
later we shall also consider alternative ways to formalize such disutility.

Additionally, ai + r ≥ Tsi, which captures the idea that the larger T the smaller should
be the stake si for the constraint to be satisfied.

Equation (15) clarifies that, before the random selection of committee members, the
utility level of a node is a random variable. Indeed in case the node is not selected as
committee member, which takes place with probability 1 − C

N , the amount of money
planned to be the stake would not be set aside and remain available to the node. Instead,
if the node is selected as committee member, with probability C

N , then the stake will be
set aside and used in the voting sessions. Finally, we suppose the function Wi(x) to be
increasing and concave in the (monetary) argument x. Therefore, conditional to being
willing to participate in Algorand governance, the node expected utility, as a function of
the stake, is given by

EUi(si) =

(
1− C

N

)
Wi(ai + r) +

(
C
N

)
[Wi(ai − Tsi + r) + ∑M

m=1 Eui(m)] (16)
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Assuming differentiability of the relevant functions, to maximise (16) with respect to
si we take its first derivative to obtain the following expression

dUi(si)

dsi
=

(
C
N

)
[−T

dWi(ai − Tsi + r)
dsi

+∑M
m=1

dEui(m)

dsi
] (17)

Equation (17) may be hard to analyze unless we introduce some additional assump-
tions. To do so, in what follows we set Max(umi, u−mi) = 1 and Min(umi, u−mi) = 0. Hence,

∑M
m=1 Eui(m) = Mπi(si, s−i) (18)

To grant consistency in the unit of measurement, we shall interpret Mπi(si, s−i) as the
monetary equivalent of the user’s utility induced by the voting session.

Finally, since users hold the same quantity of Algos, ai =
a
N and committee members

are drawn according to the Algos held in their wallet (rather than to the stake) following the
ONMV criterion, then, based on the above assumptions, πi(si, s−i) can take the following,
particularly simple, form

πi(si, s−i) = (
si
SC

) (19)

where SC = ∑C
j=1 sj is the total stake of all committee members. That is, in such a simplified

framework, we suppose that nodes are completely uncertain as to whether or not they
will be able to approve the items, in the agenda, and as a reasonable approximation they
consider the probability of approval proportional to their own stakes and equal to ( si

SC
).

Later we shall also explicitly introduce the possibility of alliances in voting.

3.1. A Symmetric Nash Equilibrium of the “Stake Game“ with Identical, Risk Neutral, Agents

To obtain a close expression of the stake, now assume identical preferences across
nodes, and risk neutrality, that is

Wi(ai − Tsi + r) = ai − Tsi + r with
(ai + r)

T
≥ si

Equalising to 0 Equation (17), we obtain

dEUi(si)

dsi
=

(
C
N

)
[−T+(

SC − si

S2
C

)M] = 0 (20)

The above condition shows that one’s stake depends on the other users’ stakes. For
this reason, users interact strategically giving rise to what we call the Stake Game. We can
therefore formulate the following first result.

Proposition 1. The unique symmetric Nash Equilibrium s∗, of the Stake Game with risk neutral
users is

s∗ = Min
(

M(C− 1)
TC2 ,

a
N

,
a
N + r

T

)
(21)

Proof of Proposition 1. Immediate. Indeed, because of symmetry it is si = s∗ and therefore
SC = Cs∗, which replaced into (20) provides s∗ = Min(M(C−1)

TC2 , a
N ,

a
N +r

T ). �

Despite its simplicity, Equation (21) provides some interesting early insights on the
optimal stake level for the nodes. First observe that the equilibrium s∗ may be independent
of N. Indeed, intuitively this is because selection to become a committee member in this
case does not depend on the stake, but only on the Algos held in the wallet, which is the
same for all users. For identical, risk neutral, users the optimal stake may also not depend
on r, but only on the utility gains expected to obtain in the governance process. This is due
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to the linearity of the utility function and to the reward being stake independent. It is also
easy to realise that, because of this, any reward lower than r for unselected, but willing to
participate, users will leave s∗ unaltered.

Then notice also that s∗ may increase in M while decreasing in the size of the commit-
tee, for C > 1, and in the time horizon T during which the monetary stake cannot be used
by nodes. In the extreme case of C = 1, then s∗ = 0, which is its global minimum. Instead,
for C > 1 the minimum value of s∗, as a function of C, would be reached for C = N and
equal to Min

(
M(N−1)

TN2 , a
N ,

a
N +r

T

)
. Finally, it is easy to see that s∗ obtains its maximum at

C = 2, and equal to Min
(

M
4T , a

N ,
a
N +r

T

)
.

It follows that, in such symmetric equilibrium, the total community stake is

SN = Ns∗ = min
(

NM(C− 1)
TC2 , a,

a + Nr
T

)
(22)

which is increasing with N, unless SN = a, and decreasing with C > 1. However, only
part of (22) will be effectively set aside in the platform, the one related to the committee
members, that is

SC = Cs∗ = min

(
M(C− 1)

TC
,

Ca
N

,
C
( a

N + r
)

T

)
which unlike (22) is increasing, rather than decreasing, with C.

Finally, in case s∗ =
M(C−1)

TC2 then the indirect (maximum) expected utility function of
the node is given by

EUi(si = s∗) =
a
N

+ r +
(

C
N

)[
−M(C− 1)

C2 +
M
C

]
=

a
N

+ r +
M

NC
(23)

which decreases with N and C, increases with a, M, r and is independent of T.
As a final point, notice that (23) confirms that in the model willingness to participate

in governance activities is always preferable to non-participation, since the expected utility
will be larger than Ui(si) =

a
N . This may also be due to the fact that, in (16), the only costs

faced by users for participation in governance voting sessions is given by the unavailability
of the monetary stake for a period of time. With additional, specific, participation costs
for keeping the node always operating etc., the above preference for the willingness to
participate in governance activities may be reversed.

The previous analysis can be extended in several directions, which we begin doing in
the next paragraph.

3.1.1. Exponential Time Discounting

We start extending the model by considering alternative ways to introduce the time-
period during which the stake must be unspent for. More specifically, suppose that now

Wi

(
ai − δ−Tsi + r

)
= ai − δ−Tsi + r with ai + r ≥ δ−Tsi (24)

where 0 < δ < 1 is the user’s discount factor, and so with δ−T > 1, representing the user’s
intertemporal preference. In this case

s∗ = Min
(

δT M(C− 1)
C2 ,

a
N

, δT
( a

N
+ r
))

(25)

which, as compared to (21), explicitly embodies the importance assigned by the user to the
future. Indeed, while s∗ still decreases with T it increases with δ. That is, the more patient
the user, the larger the stake. This is because the node is more willing to wait and set-aside
the available money for a period of time in order to participate in a governance voting
session, which it considers as important.
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3.1.2. Stake-Proportional Committee Selection Probability

Until now, in the analysis, we assumed the probability for being selected as a committee
member to depend on the Algos owned in the users’ wallets, and not on their own stake.
We then assumed Algos in the community to be uniformly held by nodes, so that with
ONMV the probability to select a single account was C

N .
In what follows, somewhat more realistically, we suppose that also the selection

probability depends on the stake, to investigate how this may affect the optimal s∗ in a
symmetric Nash Equilibrium of the stake game. In this case, following (iii) of Section 2.1,
to gain some useful insights we simplify the computation assuming N = 3 and C = 2.
Therefore, the probability for node 1 to be selected as committee member is now

p1(s1, s−1) = pC1 + pC2 =
s1s2

(
s−{1} + s−{2}

)
SNs−{1}s−{2}

+
s1s3

(
s−{1} + s−{3}

)
SNs−{1}s−{3}

= (
s1

SN
)(1 +

s2

s−{2}
+

s3

s−{3}
) (26)

where SN = s1 + s2 + s3 and s−{i} = SN − si. The definition of p2(s2, s−2) and
p3(s3, s−3) is analogous to (26).

Therefore, still considering i = 1 and risk neutrality, now it is clear that

EU1(s1) =
a
N

+ r + p1(s1, s−1)[−Ts1 + π1(s1, s−1)M]

Hence

dU1(s1)

ds1
=

dp1(s1)

ds1
[−Ts1 + π1(s1, s−1)M] + p1(s1, s−1)

[
−T +

dπ1(s1)

ds1
M
]

(27)

where

dp1(s1)

ds1
=

(
s−{1}

S2
N

)(
1 +

s2

s−{2}
+

s3

s−{3}

)
−
(

s1

SN

)(
s2

s2
−{2}

+
s3

s2
−{3}

)
(28)

and again
dπ1(s1)

ds1
=

(
SC − s1

S2
C

)
(29)

According to (21) the optimal stake with N = 3, C = 2 would be

s∗ = Min
(

M(C− 1)
TC2 ,

a
N

,
a
N + r

T

)
= Min

(
M
4T

,
a
3

,
a
3 + r

T

)
(30)

Instead, replacing (28) and (29) in (27), the first order condition associated to (27)
provides a maximum, under symmetry s1 = s2 = s3 = s∗ we obtain

s∗ = Min
(

4M
11T

,
a
3

,
a
3 + r

T

)
(31)

thus larger, when less than a
3 , with respect to M

4T . The intuition is immediate; if also the
selection for becoming a committee member is based on the stake, rather than on the overall
amount of Algos held in the wallet, then nodes have an incentive to augment their stake in
order to increase the joint likelihood of being selected, as committee member, and succeed
in the voting session.

3.1.3. Equal utility in voting

Before replacing risk neutral with risk averse users, in Section 3.2, we briefly discuss
the case in which Max(umi, u−mi) = Min(umi, u−mi) for all m = 1, 2, . . . , M, namely when
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the user is completely indifferent about the outcomes of each item under consideration in
the voting session. In this circumstance, (15) could simplify to

Ui(si) =

{
Wi(ai − Tsi + r) with probability C

N
Wi(ai + r) with probability 1− C

N

because the user would obtain the same benefits, whether or not she’s a committee member.
It is easy to see that for a such user it would be optimal to set si = ε > 0, with ε small
enough, but such that

− Tε + r > 0

and

EUi(si = ε) =
Wi(ai − Tε + r)C

N
+ Wi(ai + r)

(
1− C

N

)
> Wi(ai)

Indeed, if the above two inequalities hold, a positive stake is optimal and the chain
initialised. The finding suggests that users must perceive voting to be important for them,
in order to find it profitable, setting aside stakes of meaningful size.

3.2. A Symmetric Nash Equilibrium with Identical, Risk Averse, Agents

Assume now that nodes are all risk averse, with the same preferences given by

Wi(ai − Tsi + r) = log(ai − Tsi + r) (32)

Logarithmic utility functions are interesting, and frequently used in economics, be-
cause when a user owns say x Algos, the marginal, incremental, monetary equivalent
of the utility of an additional small amount of Algos is 1

x , which may appear reasonable
in various circumstances. In this case, if nodes hold the same amount of Algos and the
selection to become a committee member depends again on the Algos held, the analogue of
(20) becomes

dUi(si)

dsi
= − T

( a
N − Tsi + r)

+
C
N
(

SC − si

S2
C

)M = 0 (33)

From (33) the next result follows

Proposition 2. The unique symmetric Nash Equilibrium of the Stake Game with logarithmic utility
function, is

si = s∗ = Min
(

( a
N + r)M(C− 1)

T(NC + M(C− 1))
,

a
N

)
(34)

Proof of Proposition 2. Indeed, again because of symmetry it is si = s∗ andSC = Cs∗, which
replaced into (33) provide s∗ = Min

(
( a

N +r)M(C−1)
T(NC+M(C−1)) , a

N

)
, proving the result. �

As compared to Proposition 1, the finding in Proposition 2 exhibits some differences.

Due to risk aversion, when s∗ =
( a

N +r)M(C−1)
T(NC+M(C−1)) the optimal stake level may be positively

related to the reward r and the amount of Algos a
N held in the wallet, which instead played

no role in the analogous expression with risk neutrality. Moreover, as M becomes large,

(34) does not grow indefinitely like in (30), rather it converges to ( a
N +r)

T . Finally, in general,
whether the expression in (30) is larger than (34) will depend on the size of the parameters.

3.3. The Optimal Stake with Risk Neutrality and Alliances

In this paragraph we further extend the model discussing how stakes, in a symmetric
Nash Equilibrium with risk neutral users, may change when a node is allied with other
nodes, where an alliance implies that the relevant nodes cast the same vote for the same
issue under voting.
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Suppose again that nodes hold the same amount of Algos a
N and the probability to be

selected as a committee member does not depend on the stake but on the number of Algos
held by a node. Assume nodes i = 1 and i = 2 are allied while the others are not.

It follows that the success probability (19) in the voting session is in turn a random
variable whose value depends on whether both i = 1 and i = 2 are drawn, alternatively,
only one of them is selected or else none of them becomes a committee member. Consider,
for example, node i = 1, observing that for i = 2 the reasoning would be analogous. In
order to fully describe π1(s1, s−1), in this case we first need to compute the probabilities
of the possible drawing of the two users which, under the ONMV selection criterion, are
given by the following expressions:

Probability =



C(C−1)
N(N−1) to draw both i = 1 and i = 2
C(N−C)
N(N−1) to draw i = 1 but not i = 2
C(N−C)
N(N−1) to draw i = 2 but not i = 1

1− C(2N−C−1)
N(N−1) to draw neither i = 1 nor i = 2

(35)

Based on (35), and assuming that users 1 and 2 will cast the same votes, we can now
define the success probability, for each item under voting, in the previous circumstances as

π1(s1, s−1) =


(

s1
SC

)
with probability C(N−C)

N(N−1)(
s2
SC

)
with probability C(N−C)

N(N−1)(
s1+s2

SC

)
with probability C(C−1)

N(N−1)

(36)

According to (36), we can also define the utility of user 1, as a random variable, in the
following way

U1(s1) =



W1(a1 + r) with probability 1− C(2N−C−1)
N(N−1)

W1(a1 + r) + M
(

s2
SC

)
with probability C(N−C)

N(N−1)

W1(a1 − Ts1 + r) + M
(

s1
SC

)
with probability C(N−C)

N(N−1)

W1(a1 − Ts1 + r) + M
(

s1+s2
SC

)
with probability C(C−1)

N(N−1)

(37)

and therefore

EU1(s1) =

(
1− C

N

)
W1(a1 + r) +

(
C
N

)
[W1(a1 − Ts1 + r) + M

(
s1 + s2

SC

)
] (38)

Interestingly, (38) coincides with (16) except for s2 appearing in its last term.
Suppose again W1 to be linear. Then taking the first order condition, related to (38),

with respect to s1, we obtain

dEU1(s1)

ds1
=

(
C
N

)
[−T+(

SC − (s1 + s2)

S2
C

)M] = 0 (39)

Assuming symmetry, that is s1 = s2 = s∗ and si = s∗∗ for all i = 3, . . . , C from (39),
then SC = 2s∗ + (C− 2)s∗∗ and it follows that

s∗∗ =
(C− 2)M

(C− 1)2T
(40)

and

s∗ =
(C− 2)M

2(C− 1)2T
(41)
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Equations (40) and (41) seem to suggest that with alliances, individual stakes may
decrease, for both the allied nodes and the remaining ones, as compared to when there are
no alliances. Indeed, in our model the allied users, that is 1 and 2, split between them the
stake of those users acting independently, since they behave as if they were a single user.
The intuition for this is immediate; an alliance reduces the number of competing voters in
the committee which in turn reduces the needed stake.

Admittedly, the assumptions driving the results simplify reality; nonetheless, the
findings may provide some interesting suggestions for policy decisions. For instance,
following (40) and (41), if larger stakes are preferable to smaller ones, for Algorand, then
the platform should try to keep users as independent as possible when voting.

4. Conclusions

In the paper we have discussed two main issues related to consensus formation
inspired by the Algorand platform: the selection of committees voting for governance
and the users’ optimal stake. To our knowledge, this is the first contribution referring
to Algorand which investigates these issues from an economic perspective. Admittedly
the model, together with its extensions, has limitations. Yet we believe the findings may
provide some interesting early insights for policy making in PoS-based blockchains, such as
Algorand. First, the users’ monetary stakes are very sensitive to their dynamic preferences.
Broadly speaking, the more patient are the users the larger the stake and, conversely, if they
are impatient. Additionally, the stake seems to be negatively related to the time span during
which it is unavailable to users. Therefore, if the platform is interested in users setting aside
meaningful stakes, it should keep such time horizon sufficiently short and/or, if possible,
induce sufficiently patient users to join the community. Additionally, the mechanism to
select voting committees may also affect the stake. In the paper we focused on the one-node-
multiple-votes (ONMV) criterion, however hinting at how alternative criteria might have
different consequences on the stake size. Moreover, the users’ risk attitude can also play an
important role in defining the stake size. In particular, we argued how with risk aversion
the numerosity of nodes in the population, as well as the number of committee members,
may play a different role in the optimal stake as compared to risk neutral preferences. Such
difference emerges also in the role of the benefits associated to the voting outcomes. Finally,
the model also suggests that alliances, between committee members, may decrease the
individual stakes since they basically reduce the number of independent voters.

Finally, it is worth pointing out that some more general versions of the paper, to
consider users with different money holdings, alternative users’ preferences and selection
mechanisms, can be simulated. This can be done by extending the assumptions in the
model and computing the stakes evolution.
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