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Abstract
We elicit social networks among students in an Italian high school either by measuring the
complete network in an incentive-compatible way or by using a truncated elicitation of at
most five links. We find that truncation undercounts weak links by up to 90% but only
moderately undercounts the time spent with strong friends. We use simulations to
demonstrate that the measurement error induced by censoring might be particularly
significant when studying phenomena such as social learning which are often thought to
operate along weak ties. We then discuss how a modified network elicitation protocol
might be able to reduce measurement error.

Keywords: social network measurement; censoring; weak links

Introduction
The study of social networks has emerged as an interdisciplinary field spanning
sociology, political science, economics, and computer science. Social networks
provide services such as coordination (Opp and Gern, 1993; Chwe, 2000),
information (Duflo and Saez, 2003; Kremer and Miguel, 2007; Conley and Udry,
2010) and trust (Karlan et al., 2009; Ambrus et al., 2014).

A key insight from the theory literature on networks is that network structure
matters. For example, Granovetter (1974)’s classic study on job search identified “the
strength of weak ties” for social learning. It is therefore important to measure social
networks correctly in order to evaluate the suitability of a particular instance of a
network for services such as trust or social learning. While weak ties are important for
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learning, strong ties tend to form the backbone of trust networks (Karlan et al., 2009;
Jackson et al., 2012; Gee et al., 2017; Patacchini and Rainone, 2017).

However, it is not easy to recover a network of informal acquaintances, even
when asking directly to the subjects. A network may be too large for asking
everyone,1 people may have problems in recalling all their friends,2 friendships are
bilateral relations, and only one out of two persons in a dyad may consider it an
actual friendship.3 Empirical researchers have used a wide variety of methods for
eliciting network data.

To solve for the recalling and for the nonreciprocating problems mentioned
above, one basic design question revolves around incentives: reporting one’s friends
can be cumbersome and study participants might naturally tend to underreport
friendships. This might be less of a concern with face-to-face surveys but becomes
more salient when the elicitation is conducted over the phone or online. For this
reason, incentivized network elicitation mechanisms have been developed starting
with Leider et al. (2009).4 Typically, the researchers ask participants to list a certain
number of friends (typically anywhere between 3 and 10) as well as certain attributes
of the friendship (such as time spent together per week, for example). If a link is
reciprocated, both participants get a small stochastic payoff which increases the
more the reported attributes of a friendship align between the two reports. However,
most incentivized protocols only elicit a truncated friends’ list with a uniform limit
on the maximum number of elicited links.5 Given the importance of network
structure for network phenomena such as information diffusion and trust, this
raises the question to what extent truncation matters.

A recent literature analyzes the importance of network mismeasurement on
various estimation methods and contexts (Chandrasekhar and Lewis, 2016; Breza
et al., 2020; Lee et al., 2021; Battaglini et al., 2022). The effects of censoring in peer
effects estimates are studied in detail in Griffith and Peng (2023). Little is known
however on structural differences between truncated and complete (in the sense of
completely elicited) networks and when those differences are most likely to matter.

1In this case, a network is typically inferred asking the ego network to a representative sample of the
overall population. Recent works, such as Almquist (2012), McPherson and Smith (2019), Griffith (2022)
and Breza et al. (2020), have shown the statistical biases of such sampling procedures. On all these issues, see
also the recent surveys by Stark (2018) and Souza (2021). In our experiment, we actually do not consider
some of these issues, as we target small networks.

2While papers like Rice et al. (2014) focus exactly on this point, the problem is considered also in all the
literature discussed in previous footnote. One method to solve for recalling problems is to ask for specific
questions about the relationship, as suggested by Bukowski et al. (1994), and as we also do in our
experiment.

3Ray et al. (2018) study this issue, providing a survey of the literature that is specifically focused on
adolescent networks.

4Brañas-Garza et al. (2017) provide a survey on incentivized network elicitation. It would be interesting to
compare incentivized and non-incentivized network elicitation similar to the way Brañas-Garza et al. (2023)
compare incentivized and non-incentivized elicitation of time preferences.

5The question of how many links should be elicited in network surveys is rarely discussed. Exceptions are
Moody (2001) (footnote 8 at page 690) and in Currarini et al. (2009) (footnote 12 at page 1009). Recently,
the fact that people do have a limited number of contacts has also been used as a tool for the identification of
network data (De Paula et al., 2018).
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In this paper, we provide insights into this debate using an experiment with high
school students. We measure both complete networks (asking about links to every
student in a class) and truncated networks (asking about up to five links in a class)
and complement this information with supplemental questions on the amount of
time each subject spends with each of the other students in the school. Our analysis
reveals that the network mismeasurement in our population is largest for weak links.
While 90% of weak links with friends spending 0–5 h per week together are
underreported with truncated network elicitation, only 29% of strong links with
subjects spending 16–20 h a week together are omitted. We thus expect larger biases
in estimating network effects in context where weak ties may be more important
than strong ties. We test this hypothesis through simulations where we show that
the truncation of weak links reduces the number of “shortcuts” in the graph
compared to the complete network which reduces the rate of social learning. In
contrast, a randomly truncated network with the same degree distribution as the
truncated graph but where we remove strong and weak links with the same
probability behaves more like the complete network for information diffusion.

This finding suggests that additional resources in eliciting fuller network data
have the highest returns when studying network services such as social learning
which tend to operate along weak links. In contrast, studies of network services such
as trust might be less affected because they are often thought to operate along
stronger friendship links.

This paper is organized as follows. In the “Model” section, we review conditions
under which our incentivized network elicitation induces truth-telling for both
complete and truncated networks. We describe our experimental design in the
“Experimental design” section. In the “Results” section, we discuss the results and
run a simulation study to help understanding the consequences of truncation in
terms of network topology. The “Discussion” section discusses modifications to
incentivized network elicitation protocols that can reduce censoring measurement
errors.

Model
We consider an undirected social network among a group of N agents. Each agent i
has a link to every other agent j in the network and we denote the strength of the
relationship between i and j with tij ≥ 0. In some studies, the intensity of
relationship is simply measured by time spent together (such as Leider et al. (2009)).
In our study, we directly asked subjects for both the quality of their relationship and
time spent together. We code the absence of a relationship with tij � 0. We assume
that both i and j know the strength of their relationship.

Network elicitation. A researcher elicits M social network links for every agent.
We say that elicitation is complete if M � N � 1. Otherwise, we say elicitation is
censored. The researcher asks every agent to list M links as well as the link intensity.
We denote the agent’s choice of links with Ri and the reported link intensity for every
j 2 Ri with t̂ij: note that the report does not have to equal the true strength. For each
agent, one of her reported links is chosen at random and her responses are compared
to the responses of the other player. If two agents list each other and their reports
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coincide, then both of them are eligible for a lottery prize L. If the reports do not
coincide or the other person does not list them, then the payoff is 0.

To summarize, in this elicitation game an agent’s action can be summarized by
Mi; t̂ij

� �� �
. We say an equilibrium is truthful if all the reports are truthful.

Proposition 1. Under complete network elicitation truth-telling is an equilibrium.

Proof: Since network elicitation is complete, there is no strategic choice in whom to
list. If other players tell the truth, then the best response is to be truthful, too.

Under censored network elicitation agents have a strategic choice in whom to list.
In this case, we have to be careful about what agents know about their friends’
friends.

Assumption 1. Agents cannot observe the link intensity of network links that they
are not a part of. They assume that each unobserved link is drawn i.i.d. from some
distribution F t� � over 0; ∞� �.

We call this the “limited knowledge” assumption.
With limited knowledge and censored elicitation, we can show that there exist

truthful andmonotonic equilibria where agents list their strongest links when asked.

Proposition 2. Assume limited knowledge and censored network elicitation.
Consider the strategy profile where all agents report their M strongest links
truthfully. This is a Bayesian Nash equilibrium.

Proof: Truth-telling is immediate: conditionally on being listed by the other agent it
is a best response to tell the truth if the other agent does so. Now assume that the
agent would swap out a stronger link j for a weaker ink j0. She knows that the
probability that she is among theM strongest links of j is larger than the probability
that she is among the M strongest links of j0. Hence, the probability of having a
reciprocated link report is strictly larger if she reports j instead of j0. This shows that
there is no profitable deviation by i.

Without limited knowledge, there are situations where an agent might not report
herM strongest links. For example, if she knows that these friends are very popular
and have much stronger links, then she might not want to list them because it is
unlikely that they will reciprocate.

Monotonic equilibria are intuitive equilibria of this game because we expect that
even completely non-strategic agents will behave similarly. Models of human
memory from behavioral psychology, for example, predict that agents are more
likely to retrieve links with high intensity from their memory. These models of
“what comes to mind” are reviewed by Kahana (2012).

Experimental design
The experiment took place in April 2016 at a technical high school focusing on
Science Technology, Engineering, and Mathematical Sciences. Students from across
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the region attend the school and select a concentration from majors such as
informatics, life sciences, or chemistry. They spend most of their school career with
the same group of 15–20 students. About 13% of students have an immigrant
background indicated by a non-Italian last name. Only 23.4% of the students are
female.

We used the lottery method to elicit complete networks from 554 students in 30
classrooms. We presented subjects with a complete list of students in their group
and asked them to classify each potential link along two dimensions. First of all, we
asked them to qualitatively describe their link to another student in the group as a
“strong friendship,” “weak friendship,” or an “acquaintance.”We additionally asked
a second question namely the amount of time the subject spent with that other
student per week outside the classroom (with an ordinal scale of time spent with
1 = 0–5 h, 2 = 6–10 h, 3 = 11–15 h, 4 = 16–20 h, and 5 = more than 20 h). We
considered the corresponding responses of two participants to be in agreement if
they agree on both dimensions. In that case, both participants would receive a
lottery ticket that would pay a monetary prize with some probability. This
probability was fixed and did not depend on the number of total tickets assigned to
students. A student could collect anywhere from 0 tickets (if their answers were
always in disagreement) to a ticket count equal to the number of students in their
classroom (if they always agreed). Participants only learned the final sum of realized
payoffs but not the number of tickets that they earned. This was to ensure that
participants would not be able to directly infer the number of reciprocated links and
to avoid disappointment on the part of participants.

For 216 students in another random set of classrooms in the same school, we
conducted a censored network survey in which we asked subjects to list five or fewer
friends.6 The incentives were otherwise the same as for the full network elicitation
game. Due to the random assignment of classrooms to complete and truncated
network elicitation, we can therefore compare means of network statistics to
understand the causal impact of censoring.

Results
We start by comparing the types of links that are elicited using the complete and
truncated elicitation protocol. We verify that truncation tends to omit weaker links
where friends spend less time with each other.

We then show that truncation not only elicits a sparser network compared to
complete network elicitation but also changes the structure of the social network on
top of this by making the network more clustered. This reduces diffusion which we
show through simulating a simple SI model.

Link-level comparisons of complete and truncated networks

For the complete network, we elicited 1; 777 (13:46%) strong friendships, 7; 729
(58:56%) weak friendships, and 3; 692 (27:97%) acquaintances. For the truncated

6A total of 280 students participated in the survey, but 64 listed more than 5 friends and are excluded
from analysis.
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network, we elicited 366 (51:19%) strong friendships, 277 (38:74%) weak
friendships, and 72 (10:07%) acquaintances. Table 1 presents the amount of time
subjects reported spending with each of their elicited links.

Table 2 shows that in the truncated network, the proportion of close friends listed
is nearly four times as great as it is in the complete network. The majority of links in
the complete network (58:56%) are weak friends while the majority of links in the
truncated network are strong friends (51:19%).

Table 3 illustrates the same insight when aggregating along time spent together
(rather the quality of the friendship). For the truncated network, the distribution is
shifted toward links with whom the respondent spends more time. Table 4 shows
the mean value of the ordinal time variable, by link type, across the two treatments:
conditional on reporting a strong link there is no significant difference in the
amount of time spent together between the complete and truncated network. When
reporting a weak link or an acquaintance, respondents in the truncated networks
report links with whom they spend significantly more time together but the

Table 1. Breakdown of time spent, by friendship and network type

Complete network Truncated network

Strong Weak Acquaintances Strong Weak Acquaintances

0–5 h 703 6,834 3,623 142 213 64

6–10 h 555 676 58 112 46 3

11–15 h 234 155 6 64 12 3

16–20 h 144 54 5 48 6 2

More than 20 h 141 10 0 0 0 0

Total 1,777 7,729 3,692 366 277 72

Table 2. Percentage of friendship type, by network type

Strong ties Weak tier Acquaintances

Complete network 13.46 58.56 27.97

Truncated network 51.19 38.74 10.07

Table 3. Percentage of time spent with friends, by network type

Complete network Truncated network

0–5 h 84.56 58.60

6–10 h 9.77 22.52

11–15 h 2.99 11.05

16–20 h 1.54 7.83

More than 20 h 1.14 0.00
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difference is economically small (less than 20%). Truncation induces under-
reporting of weak links overall rather than underreporting of “weakest-weak” links.

Table 5 summarizes the extent of the underreporting of links in the truncated
protocol. In this table, we calculate the average number of links by time category and
respondent. 90.3% of links in the 0–5 h per week category are missing compared to
the complete network elicitation protocol while for links in the 16–20 h per week
category only 29.2% of links are missing. Table 5 confirms that the largest
measurement errors occur with weak links.

Simulating diffusion on truncated networks

In this section, we design a simulation experiment to provide further insights on the
implications of truncation for diffusion processes, that area phenomena commonly
studied on social networks (in particular for models of social learning). The
truncated network is of course more sparse than the complete network; therefore,
mechanically, diffusion will be faster on the complete network compared to the
truncated network. In order to identify the marginal impact of truncated network
elicitation on top of sparsity, we create “randomly truncated” networks where we
randomly select, for each agent, five links from the completely elicited network. We
draw 1,000 such randomly truncated networks to minimize simulation error.

Table 6 reports network topology measures for the complete, truncated, and
randomly truncated networks without symmetrizing the networks while Table 7
shows statistics for symmetrized OR-networks (a link exists if either respondent
names the other). Statistics such as diameter and clustering coefficient are
commonly defined on the symmetrized networks only.

Table 4. Average time with friend, by friendship and network type

Complete network Truncated network

Strong 2.136 (0.030) 2.049 (0.055)

Weak 1.153 (0.005) 1.318 (0.040)

Acquaintance 1.023 (0.003) 1.21 (0.076)

Total 1.249 (0.006) 1.681 (0.036)

Notes. Standard errors in parentheses.

Table 5. Extent of underreported links per agent

Complete network Truncated network Underreporting (%)

0–5 h 20.14 1.94 −90.3

6–10 h 2.33 0.75 −68.0

11–15 h 0.71 0.37 −48.7

16–20 h 0.37 0.26 −29.2

More than 20 h 0.27 0
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The most striking difference between the truncated and randomly truncated
networks is that the truncated networks are far more clustered (0.25 versus 0.07):
this is intuitive because truncation preserves strong links which tend to be more
clustered than weak links. Therefore, the truncated network also has a larger
diameter compared to the randomly truncated network (4.13 versus 3.23).

Because higher clustering and higher diameter reduce the speed of diffusion in
truncated networks, we expect an important cost of truncation in terms of signal
transmission over the network. To demonstrate this, we simulate an SI model which
is one of the simplest models of infectious diseases and which can also be interpreted
as a simple model of information diffusion. Time is discrete and a random node is
picked at time t � 0. Outlinks are infected with probability 1

2 and we simulate
diffusion for 3 time periods and then record the share of infected nodes. Results are
shown in the last column of Table 6. It appears that in the truncated network only
67% of agents are infected while in the randomly truncated network the share is 75%
and closer to the diffusion speed in the complete network. This exercise therefore
helps understanding how truncation can make us underestimate the speed of
diffusion in real-world social networks by omitting weak links.

As an added exercise, we also “simulate” complete networks by starting with the
truncated networks and randomly adding links to match the degree of the

Table 6. Comparison of network statistics for complete, truncated, and randomly truncated networks
(directed network)

Nodes Avg. degree SI model

Complete network 23.67 (3.58) 17.56 (3.65) 0.89 (0.18)

Truncated network 20.73 (4.79) 4.39 (2.45) 0.66 (0.15)

Random truncation 23.67 (3.58) 3.92 (0.67) 0.75 (0.17)

Random addition 20.82 (4.68) 17.21 (2.26) 0.94 (0.08)

Note: Sample standard errors in parentheses. The complete network consists of 30 classrooms and the truncated network
was elicited in 15 classrooms. The randomly truncated network was drawn 1,000 from complete elicitations (5 links per
respondent). The random addition network does the reverse exercise and adds random friends to each truncated
network to make it degree-comparable to the complete network. Degree is calculated on the directed network. The SI
simulations pick a node at random as seed, infects outlinks with probability 1

2, and continues for 3 steps. The percentage
of infected nodes is reported.

Table 7. Comparison of network statistics for complete, truncated, and randomly truncated networks
(symmetrized OR-network)

Avg. degree Assortativity Diameter Size GC Clustering

Complete network 21.28 (3.65) −0.24 (0.12) 1.90 (0.31) 1 (0) 0.88 (0.13)

Truncated network 6.00 (3.52) −0.17 (0.13) 4.13 (1.60) 0.98 (0.06) 0.25 (0.12)

Random truncation 7.11 (1.08) −0.06 (0.10) 3.27 (0.60) 0.99 (0.02) 0.07 (0.04)

Random addition 19.66 (3.58) −0.09 (0.09) 1.67 (0.47) 1 (0) 0.81 (0.30)

Note: Sample standard errors in parentheses. The complete network consists of 30 classrooms and the truncated network
was elicited in 15 classrooms. The randomly truncated network was drawn 1,000 from complete elicitations (5 links per
respondent). The random addition network does the reverse exercise and adds random friends to each truncated
network to make it degree-comparable to the complete network. Degree is calculated on the symmetrized network.
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complete networks. The results are reported in the last rows of Tables 6 and 7.
The diameter of these randomly increased networks is smaller than the true
complete network because the randomly drawn links create more shortcuts in
the graph. However, clustering as well as speed of diffusion is comparable to the
complete network and within the error bounds. These results support the intuition
that the truncated weaker links are largely random links in the networks.

Discussion
We have shown that truncation induces serious measurement errors that affect our
understanding of the structure of a social network. Intuitively, these errors should be
most serious for popular respondents who have many friends and for whom the
truncation cutoff is therefore more likely to bind. Based on this intuition, we are
looking for protocols that endogenize the truncation cutoff: we would like popular
respondents to report more friends compared to less popular respondents.

This can be achieved by making agent i’s probability of receiving lottery prize L
dependent on the number of her link submissions Mi. More precisely, we consider
mechanisms where the probability of receiving a ticket is an increasing and concave
function p Mi� �.

To state our next result, we introduce a notion of popularity: consider two agents
i and j and their realized friendship intensities with all otherN � 1 neighbors. Assume
that we order – for each agent – her links from the strongest to the weakest. We say
that agent i is more popular than agent j if for any 1 ≤ M ≤ N � 1 agent i’sMth link
has larger intensity than j’s Mth link.

Proposition 3. Assume that the agent has a fixed cost c for reporting on a link, that
agents have limited knowledge and that agent i decides on the number of links Mi to
submit. The agent is eligible for the lottery prize L with probability P Mi� � where
P 0� � � 0 and P �� � is a strictly increasing and concave function. There is a truthful
Bayesian Nash equilibrium where agent i reports her Mi strongest links truthfully.
Moreover, in any such equilibrium more popular agents will report weakly more links.

Proof: The marginal increase in the probability of receiving a link is equal to
p M� �=M which is decreasing with M. The probability that a link is reciprocated is
also decreasing in the link intensity. An agent will only report linkM if the marginal
increase in the probability of getting lottery L times the probability of the link being
reciprocated exceeds cost c. Therefore, if j reports herMth link, then a more popular
agent will certainly report it as well.

Note that our proposed mechanisms will generally not solve the measurement
problem completely. However, it provides support for incentivized network
elicitation with dynamic truncation.

Conclusion
We find in our population of high school students that when truncating the
friendship list to five links we drastically undercount weak links but only moderately
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undercount strong links. The truncated network has a larger diameter and is more
clustered than a randomly truncated network which impedes information diffusion.

An implication of this finding is that truncation error might have more impact
when studying network services such as social learning which tend to operate along
weak links. In contrast, studies of network services such as trust might be less
affected because they are often thought to operate along stronger friendship links.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.
1017/XPS.2023.23
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