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Abstract  

In 1957, John Kendrew determined successfully the atomic structure of the 

myoglobin. Since, the scientific community increased the interest towards the 

knowledge of how the macromolecular structures are able to fold, move and interact 

inside the biological environment. To know the molecular basis of how a biological 

system works is a key step to reveal the secrets of the life.  Molecular dynamics 

(MD) simulation, first developed in the late 60s, has advanced from simulating 

gases as elastic collisions between hard spheres to complex biological systems 

formed by thousands of atoms. However, several limits occur, such as: 

computational time, resource usage, non-feasibility etc. Automation, algorithm 

research and standardizations are crucial in order to curb cost of resources and 

achievement of results. In particular, accelerated search methods in the phase-space 

are increasingly studied to overcome the present barriers of IT capabilities.   

In this thesis, we expose a novel and innovative approach of  MD, named, 

Molecular dynamics-star (MD*), MD* is an accelerated binding/unbinding path 

finding MD algorithm based on the semantics from Artificial Intelligence (AI) 

Astar (A*) informed-search algorithm. MD* is implemented in GROMACS with 

control and evaluation cycles written in python for the accelerated simulation. The 

viability of MD* was evaluated simulating the binding/unbinding process of the 

LUSH protein/Ethanol co-crystal. The MD* simulation showed an accurate 

overlapping of the ethanol binding pose compared with the crystal, revealing its 

reliability. Our work, could be open novel frontiers in computational biochemistry 

field, providing the molecular basis of biological system interactions.  
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1 Introduction  

1.1 Molecular dynamics in context  

  

In the course of scientific development the advent of high performance computing power has 

opened a spectrum of new possibilities. From physics of materials to astrophysics, via nuclear physics, 

metrology, economics, ecology, architecture and engineering - simulation and forecast of a wide range 

of concrete system behavior and phenomena has become feasible.  Simulation of such diverse 

phenomena, its predictive power in the particular cases, highlight the genius of the precomputer era 

scientists that discovered the basic laws of physics, chemistry that form the bedrock of these 

simulations – discoveries that are one of the greatest achievements of human kind’s history.      

Microbiology is not an exception in this regard, in the 1950s via statistical physics, first, the  

Maxwell-Boltzmann ideal gas’ intensive and extensive physical quantities were obtained as averages 

of the particular solution of the many particle differential equation system of atomic coordinates, 

velocities and potentials modelled as hard-spheres. The Newton equations of motion of the systems’ 

particles were discretized and integrated on a main-frame computer, starting the era of molecular 

dynamics (MD). The pioneering results were in accordance with the theoretical laws. Evolving from 

homogenous compounds via-via to heterogonous systems computer simulation of microbiological 

systems evolved. Other cornerstones of MD were the field of crystallography x-ray diffraction, in 

which generation of scientist meticulously mapped and recorded the configuration of biological 

matter, invaluable data for the initial conditions to be put into the equations of motion; similarly the 

field of physical-chemistry: the development and parametrization of force fields to be put into the 

equations as potentials for various molecules.  

Nowadays, at pharmaceutical companies, university departments, in vitro laboratory experiments 

are increasingly substituted by molecular dynamics simulations. For example, in the field of 

computational drug design, protein unfolding modelling etc.  There is a two way interaction in the 

literature of the virtual laboratory and microbiology experiments, verifying hypothesis suggested by 

one another.   

  

1.2 Gaps  

  

In the last four decades, on the one hand, computational power increased approximated by the 

empirical relationship of Moore's law (“the number of transistors in integrated circuits double every 

two years”) on the other hand, drug discovery, is becoming slower and more expensive over time 

(“inflation-adjusted cost of developing new drugs roughly doubles every nine years”) - called 

Eroom’s (anadrome word of Moore) law. This apparent contradiction advises us that to rely solely on 

computer power will not deliver desired solutions fast enough in the field of microbiology for the 

future.     



 

In particular, MD - as any technical tool - by its nature is used by scientist to its out most potential 

to solve ever more and more complex and subtle problems. Computational time, resource usage and 

non-feasibility of MD simulations, the evaluation cost of the BIG Data it generates, increase as it is 

used to simulate microbiological systems of increasing number, complexity and phenomena of more 

subtle nature that occur with less probability.   

Automation, algorithm research and standardization is an important factor in the advancement of 

combinatorial chemistry and computational drug design in the pharmacological industry. These 

factors curb the cost of resources and can achieve optimal results in more a timely manner. One line 

of development, MD simulation of the type, that use accelerated search methods in the phase space 

flow of the modelled system, are being continuously studied to overcome the ever present barriers of 

IT capabilities, expand the number of candidate molecules in screening for drugs, open up ways to 

scan and exclude potential undesired interactions with innumerable other parts of the living organism 

of the candidates.  

In the future, accurate and fast MD modelling algorithms - in principal – will have even less 

environmental impact then performing the given series of real experiments, reduce chemical 

compound usage,  waist product management and not least:  animal experimentation. While MD will 

always need experimental verification, its role is inevitable to increase.  

  

1.3 Objecives  

  

In this thesis a novel approach, Molecular dynamics-star (MD*) simulation is exposed.  MD* 

is an accelerated binding/unbinding path finding molecular dynamics algorithm based on the 

semantics from Artificial Intelligence (AI) A-star (A*) informed-search algorithm, its precursor is 

supervised MD (suMD)  in chapter 2.2.  Alternative paths are evaluated by ranking based on suitable 

heuristic function for the given problem (Chapters 2.6 and 2.8), and are extended on-the-fly by 

standard md simulations until a terminal condition.  MD* is naturally suitable for parallel computing.   

The various possible sources of having alternative paths from (quasi) identical initial conditions 

in MD simulations is extensively studied among ensembles/dynamic models used in the literature and 

in the MD parameters space (chapter 2.4) , their feasibility in GROMACS implementation 

(velocitygeneration, Langevin, Andersen, Berendsen,  Velocity-Scaling,  Nosé-Hoover (NH), 

Parinello in chapter 2.5.  A „scientific acceptance” index is calculated over a corpus of md publication 

to ranks the possible ways (Chapter 2.3).  On the top of the list – currently – is the Nosé-Hoover (NH), 

Parinello thermo-, barostat, based on which the Variable Partition (VP) NH MD* algorithm was 

codified  (Chapters 2.11 and 2.12).  

MD* algorithms is implemented in GROMACS md with control and evaluation cycles written in 

python for the accelerated simulation of the 3b7a protein-small molecule binding/unbinding process 

for six different model choices. (Chapter 3.1 and 3.2)  

The viability of MD* was evaluated simulating the binding/unbinding process of the LUSH 

protein/Ethanol co-crystal. The MD* simulation showed an accurate overlapping of the ethanol binding 
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pose compared with the crystal, revealing its reliability. Our work, could be open novel frontiers in 

computational biochemistry field, providing the molecular basis of biological system interactions.  

A specific angular orientation heuristic function for this problem based on the statistical 

properties of the unbinding path vicinity is constructed algorithmically via reference atom choices 

form the protein. (Chapter 2.7.2 and 3.1.1) The protein’s stability was studied during the simulation 

(Chapter 3.16). MD simulation from the final VPNH MD* configuration small molecule pose was 

analyzed   (Chapter 3.1.7).  

The pyGro blended script language was codified and documented in the Appendix for the 

implementation of the increasingly more complex MD, MD* algorithms. PyGro combines 

GROMACS md commands, python flow control and evaluation math/stats library code with UNIX 

shell commands using their original syntax to keep clean and easy to comprehend code. (Appendix I 

and II)  

    

2 Material and Methods  

In the subchapters below I present a concise description of the various methods by which the 

thesis results were obtained. As materials the concrete software implementation of these.     

2.1  Definition of reference points and directions LUSH  

protein/Ethanol co-crystal   

In crystal structures of the Drosophila melanogaster protein LUSH in complexes with short-chain 

alcohols binding are generally occurs in water-filled pockets and for stable complexes.    

  



 

  

Figure 1. PyMol rendering of LUSH protein/Ethanol co-crystal  

  

Because the protein is not a rigid body, for the porous of the characterization of the small molecules 

movement inside the protein, and the various relative movements of the parts of the protein, its own 

movements during simulation, the raw coordinates calculated in MD are insufficient. With the method 

described here it is expressed as distances to some geometrical defined reference points and directions 

which are fitted to definite parts of the protein and thus move with it.  It is a minimization method 

that finds the direction that gives the minimum moment of inertia around the barycenter of a residue 

section of the protein, a reference group of atoms.   

  

By visual inspection in the VMS software1 4 helical regions of the protein was selected to define 

reference points and directions. Basically we fix co-moving cylindrical coordinate systems [origin O’ 

and coordination (r’,θ’,h’) ] to the tubular parts of the protein, each in a way to have the ez’ axis as 

close as possible to the symmetry axis of the given part, pointing to the residues’ numbers increasing 

direction and O’ origin to be on the symmetry axis at the midpoint.  

 Anticipating, with the below introduced notation,   

O’ -> Oref ,  

ez’ -> sref ,  

                                                 

1 VMD is a software for molecular dynamics visualization. It provides a variety of GUI tools for trajectory analysis. To analyze the Gromacs trajectory in VMD,  load the .gro (coordinate) file 

and then select "load data into molecule" and load the .xtc or .trr (Gromacs trajectory files) into the .gro structure; from the command line, issue "vmd GRO_FILE.gro XTC_FILE.xtc". This will load the 

xtc file into the gro structure then. pdb file can be saved which contains for all frames an atom positions in sequence. On the in the chapter’s figures graphical representation of water is turned off,  the 

protein is rendered with point style, size 2 and also with tube radius zero, EOH lead atom (a=1959) rendered with point style size 22.   

http://www.ks.uiuc.edu/Research/vmd/
http://www.ks.uiuc.edu/Research/vmd/
http://www.ks.uiuc.edu/Research/vmd/
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dax  = h’  ,  

drad  = r’.  

  

Thus the coordinate systems via their O’ origins and ez’  directions are floating with the protein 

during the simulation, fixed to and  defined by the residue sequence of the helix, the time dependent 

transformation T from (x,y,z) to (r,θ,h) are defined as:  

  

1) form residue 106 to 115 containing n1
ref = 156 atoms  

O1
ref : position, the geometric barycenter (calculated with unit masses)  

    

                              O1
ref =  1/ n1

ref ∑i 1  xi  

  

s1
ref : vector, the direction that minimize the moment of inertia respect to the x1

ref point, 

its direction is pointing towards the 115 residue and it is approximately  

 parallel to the axis of the helix2.    

  

 s1
ref  = minargs ( 1/ n1

ref ∑i  1   ( ( xi - O1
ref ) × s )2  

   where × is the sign of vector product multiplication  

The moment of inertia’s formula with unit mass is:  

  

I1ref  = 1/ n1ref ∑i  1  ( xi - O1ref ) × s1ref )2  

  

For illustration their values calculated from the initial configuration (MD_0_2 first frame) 

are:  

  

O1ref  [27.03442308 

35.77858974]  

27.19910256  Å  

s1ref   [  0.71044002  

0.7012722 ]  

-0.05909554   Å  

I1ref  17.2199   Å2  

  

from which the characteristic radius of the helix is 2.09 - 4.15 Å.  

  

                                                 

2 A solid cylinder of diameter 2R, length L has ½ m R2 moment of inertia respect to its symmetry axis, ¼ m R2 + 1/12 m L2 respect to its central diameter, for an off barycenter parallel axis a m l 

2 component adds, where l is the axis’s distance from the barycenter. For L > 3 R -which is clearly our case - the axis with the minimum moment of inertia is the symmetry axis. For tubular shapes the 

condition is L> 6 R.  The first limit is approximately 3 Å for 2 Å characteristic radius, the second is 9 Å for 4 Å, to be compared with the characteristic length of 15-20 Å of the chosen residue 

sections.  



 

     
Figure 2 VMS graphical output of the initial 

configuration, some atoms of residues 106 to 115 are 

labeled.  The direction of sight is approximately s1
ref  , 

grid lines are 10 Å apart.   

Figure 3 VMS graphical output of the initial 

configuration, some atoms of residues 106 to 115 are 

labeled.  The direction of sight is the z axis, grid lines are 10 

Å apart.  

    

  

Method:   

1) The .pdb coordinate files are generated with a series of   

command for all s and b-s. 3                                                                                         Implementation code: traj_generator.gup.   

2) These are concatenated to form the escape path and re-indexed by time. Filtered for the residues in the definition to obtain the 

relevant set of coordinates and calculate the geometric barycenter.    

For the s vector, an initial normalized direction is taken form the difference of the last atoms’ coordinates minus the firsts’ in the 

definition. Starting from this guess a minimization algorithm finds the desired direction that is approximately parallel to the axis of the 

helix45.                                                                                                                Implementation code RG_calc.py.   

The geometric barycenter for index groups is calculated by Gromacs also, while the s direction and its moment of inertia isn’t.     

2) to  4)  in similar way for residues 44-54,  82-97, 64-76 respectively. See next table.  

  

Table of the reference points and directions and their values calculated at the initial configuration of the simulation.  

ref    residues  quantity  value  unit  

1  RG1  106-115  n1ref  156  #  

                                                 

3 the trjconv output’s first line is: CRYST1   60.584   60.584   60.584  90.00  90.00  90.00 P 1           1, meaning position coordinates are already Cartesian, the 90’s indicate that the axes are pair-wise 

perpendicular.  
4 A solid cylinder of diameter 2R, length L has ½ m R2 moment of inertia respect to its symmetry axis, ¼ m R2 + 1/12 m L2 respect to its central diameter, for an off barycenter parallel axis a m l 

2 component adds, where l is the axis’s distance from the barycenter. For L > 3 R -which is clearly our case - the axis with the minimum moment of inertia is the symmetry axis. For tubular shapes the 

condition is L> 6 R.  The first limit is approximately 3 Å for 2 Å characteristic radius, the second is 9 Å for 4 Å, to be compared with the characteristic length of 15-20 Å of the chosen residue 

sections.  
5 The lead atom H is on the 57th residue THR thus part of reference group 4  
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      O1ref  [27.03442308 27.19910256  

35.77858974]  

Å  

      s1ref  [ 0.71044002 -0.05909554   

0.7012722 ]  

Å  

      I1ref  17.2199  Å2  

2  RG2  44-54  n2ref  175  #  

      O2ref  [24.18840571 32.33626857  

26.34574857]  

Å  

      s2ref  [ 0.51366105 -0.3633315   

-0.77726607]  

Å  

      I2ref  16.2880  Å2  

3  RG3  82-97  m3ref  257  #  

      O3ref  [34.36233463 19.27968872  

34.21533074]  

Å  

      s3ref  [-0.94508985  - 

0.31535957 -0.08575264]  

Å  

      I3ref  16.2802  Å2  

4  RG4  64-765  n4ref  257  #  

      O4ref  [37.49658385  22.07   

24.3242236 ]  

Å  

      s4ref  [ 0.4159748   0.90591408  

-0.07927579]  

Å  

      I4ref  14.099  Å2  

  

  



 

     

 Figure 4. RG2: residues 44-54  Figure 5. RG4: residues 64-76  

    

  

Figure 6. RG3: residues 82-97  
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2.2.1 Characteristic of the 4  four reference groups: position  

They are not in one plain. That is in formula:  

(O2ref- O1ref )/|O2ref- O1ref|  ×  (O3ref- O1ref )/|x3ref- O1ref|         O4ref /|O4ref|≠ 0  

where × is a vector multiplication and   is a scalar multiplication. The left hand side is -0.34707  

for the initial configuration and remains negative during the unbinding. (Implementation code 

ref_points_directions.py)   

  

The axial distance of atom i from the k-th reference point measured with the positive direction 

taken along the residues (sk
ref orientation) is:  

dax i,k  =  (xi- Okref)      skref  

  

The radial distance of atom i from the k-th reference point is:  

dri,k  =  |(xi- Okref)   ×  skref |  

  

  

  

2.2.2 The small molecule’s position respect to the reference points   

  

As for any atom, also for the EOH molecule the k=1…4 radial and axial reference distances can 

be calculated. Inversely given the 4,4  quantities of  dax EOH,k  , d
r
EOH,k , the small molecules x’ 3 

position coordinate components can be calculated by the over specified equation system dax EOH,k  =  

(x’- Okref)      skref , k=1…4 dr
EOH,k  =  |(x’- Ok

ref)   ×  sk
ref |, k=1…4  



 

  

The EOH molecule’s direction respect to the reference directions  

  

Let c be the normalized vector pointing from C1 to the C2 atom of the EOH molecule, then the 4 

angels respect to the reference directions are in degrees:  

EOH,k =  /180 arccos( c  sk
ref)  

  

The EOH molecule’s velocity respect to the reference directions  

˙dax EOH,k  =  (˙x’- Okref)   .   skref  

˙drEOH,k  =  |(˙x’- Okref)   ×  skref |  

  

The EOH molecule’s angular velocity respect to the reference directions  

˙ EOH,k =  /180 arccos( ˙c  sk
ref)  
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Figure 7. A rare view of the small molecule inside the binding pocket,  rendering woth Gaussian Volume Rapresentation by 

protein explorer app on the PBS website.  

  

  

  

  

  

  

  

  

  

  

    

  

2.3 Origin of MD* algorithm  

  

A-star is an informed search (Hart, Nilsson, & Raphael, 1968), optimal pathfinding algorithm.  



 

Typical problems are: 1) optimal path finding in connected closed regions of the Euclidian space 

(obstacle avoidance), with optimality conditions expressed as minimal distance/time/cost traveled.  2) 

Minimal path problems in networks, represented as a graph traversal algorithm.   

From a starting vertex (n0),  cost (c) of traversing an arc (eji connection between nj and ni) is 

distance is travel time or economic cost. nt is the terminal vertex and the solution is a path, a sequence 

of vertexes (arc traversal sequence) :  n0  ,n1  , …,nt .  

In practical applications a node is associated with the coordinates or labels of a place and the 

optimal point to point path problem can be formalized as  

Point-to-point shortest path problem (P2P):   

  

– Given:   

1) directed graph with nonnegative arc lengths l(nj, 

ni) = cij;   

2) source vertex n0;  3)  target vertex nt.   

  

– Goal: find shortest path from n0 to nt.  

   

  

The algorithm starting from the zero node explores a set of increasingly longer paths in iterations, 

at a given iteration the horizon of the search is the set of the last nodes in each sequence. Estimated 

total cost at a horizon node is f(nh ) is c(n0 nh ) + h(nh nt ), where h is the heuristic function. The ranking 

of total cost of the sequences determine which one to extend from the horizontal node until the 

terminal node is reached.  

  

A* terminology  MD* terminology  

coordinates, labels  (q,p) generic point of the phase space  

graph  structure of paths originating from the 

initial condition  

starting vertex (n0 )  (qo,po)  

arc (eji)  simulated path from (qi,pi) to  (qj,pj)  

ni, vertex   (qi,pi)  simulated  phase  space  

configuration of the system  

arc lengths l(nj, ni)  effective simulated time  

horizon  set of final (qi,pi) of alternative paths at a 

given iteration   

f(nh ) is the cost of the path from the start 

vertex to nh  

sum of simulation time from the initial 

condition to (qh,ph)  

h(nh)  heuristic function  h(qi,pi,qj,pj) heuristic functional  

terminal vertex nt  t(q,p) terminal condition indicator function  

  

https://en.wikipedia.org/wiki/Heuristic
https://en.wikipedia.org/wiki/Heuristic
https://en.wikipedia.org/wiki/Heuristic
https://en.wikipedia.org/wiki/Heuristic
https://en.wikipedia.org/wiki/Heuristic
https://en.wikipedia.org/wiki/Heuristic
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Due to the high computational cost of the MD simulations, in the MD* implementation we 

simulate a limited number of edges, and currently keep track only a substructure of the paths 

originating from the initial condition. Similarly the high memory allocation for a given system 

configuration advised us to define the cost function form the start as the effective simulation time – 

avoiding the need to step to configurations further back in time. For future developments the cost of 

the path from the start could be defined as the sum of the heuristic’s values realized, or other desired 

cartelistic of the path.  

Another difference is that the possible set of moves over the edges in A* are predetermined by 

the topology of the problem (for example a grid) while in MD* it is the simulated behavior of the 

whole physical system.  In A* the final result is a set of nodes which the agent should traverse to 

arrive to the terminal node with minimum cost, in MD* the final result is a set of choices of path 

sections by the algorithm which lead to the termination condition that was achieved minimizing cost 

of simulation time taking in consideration the constrains over the sunset of possibilities simulated.     

How the path sections generated are continued is a crucial problem for the evaluation of the 

acceptability of MD* results and depends on the model choice of the MD alternative path generation 

cause, its limitation should be studied. On it depends weather MD* results can be interpreted as a tool 

of scientific inquiry or a representation of a physical phenomenon under an accepted model.  

In particular taken for given that the MD simulation methodology is accepted as a good model of 

a real phenomenon in nature, the method of generation of the alternative paths should be evaluated 

separately for its likelihood in reality and embedded in a specific model.   

  

2.4 Methodologies used in MD simulation and estimation their status  

of being “scientifically accepted” form publications  

  

  

I classify a corpus of publications by reference to the various methodologies in MD simulation at 

present by vintage time of publication, and attempt to construct a quantitative accepted index (IA) for 

the rough indication of their being scientifically mainstream in the context of Molecular Dynamics.  

  

ranking  methodology  IA  term  

1  Nosé-Hoover  63,99  “Nosé-Hoover”   

2  velocity scaling  57,67  “velocity scaling”  

3  Andersen  11,45  “Andersen thermostat”  

4  Berendsen  9,57  “Berendsen thermostat”  



 

5  velocity 

generation  

<2  

see6  

“velocity generation”  

  

The corpus consist of the free web database of Clarivate PLC public analytics company available 

at  https://www.webofscience.com/ , Biological Abstracts on Web of Science.  

Index is calculated as a weighted sum of the publication hits by the reciprocal of the time of 

publication until 2022.01.01 in years.  

Coincidentally there is a strong negative correlation between simplicity of the implementation of 

a methodology and its IA .  

In the process of research of this thesis we moved upward on the methodology ranking list, 

adapting methodologies into MD* to arrive to the first ranked from the last:  we moved from the 

simpler to more complicated in terms of implementation as natural is it.    

        

2.5 Sources of different MD path generation  

  

MD simulation integrates the differential equation system based on the choice of the modelled 

ensemble, via the specific thermo- and barostats.   Isothermal and isobaric simulations (NPT) are most 

relevant to confront with experimental data.   

A stochastic thermostat is, for example, the Andersen collision type. During simulation, this 

model assigns in a stochastic quasi-periodically manner to some part or to all of the systems’ atoms 

kinetic energy (velocities) drawn from the theoretical thermally determined velocity distribution 

(Maxwell-Boltzmann) of target temperature; overwriting those determined by the prevailing forces 

trough the Newton equations at the moment [Andersen1980] . In this approximation a non-localized 

interaction to the heat bath is introduced. The random redistribution erases the old velocities it 

eventually overwrites, as such, for strong coupling expressed in short characteristic time of the 

interaction it can make lose the protein motions coherence of different parts.  Different realization of 

the stochastic assignments (the random sequence) leads to different time evolution of the system.   

Velocity generation is an instantaneous assignment of atomic velocities at the beginning of a 

simulation to the atoms from the theoretical thermally determined velocity distribution (Maxwell- 

Boltzmann) of target temperature  

Deterministic thermostats and barostats couple a series of damped harmonic oscillator to all atoms 

of the system [Martyna1992]. This new system is evolving in an extended phase space (thermostat’s 

position and impulse is added) with a different Hamiltonian. The evolution of the common variables 

are different respect to the non-extended system’s. Further the coupling is switched on during a 

characteristic time smoothly from an initial level to its full strength.  

                                                 

6 There were no hits in the public part of the database in relation to MD simulation, limit was estimated from the articles 

in Appendix III, supposing the abstract contained the search fraise (which was not the case)   

https://www.webofscience.com/wos/woscc/summary/7a269995-98d8-4a0e-814c-4e92daae1d5a-1d9b5b0b/relevance/1
https://www.webofscience.com/wos/woscc/summary/7a269995-98d8-4a0e-814c-4e92daae1d5a-1d9b5b0b/relevance/1
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Berendsen modeled via weak coupling to an external ‘heat bath’ [Berendsen1984] in which 

deviation of system from a target temperature is corrected by scaling the velocities, resulting in an 

exponential decay of temperature deviation.  

Berendsen pressure coupling is a weak coupling yields exponential relaxation. Equations of 

motion are modified with a first order relaxation of pressure towards the target pressure, by rescaling 

the box and the coordinates with a factor which is proportional to the isothermal compressibility and 

the coupling time constant causing the volume to change.      

Parrinello-Rahman pressure coupling uses an extended Hamiltonian with extra degree of freedom 

where volume and shape of the system allowed to fluctuate [Parrinello1981]. Most cases the 

Parrinello-Rahman barostat is combined with the Nosé-Hoover thermostat. Velocity scaling is a 

combination of Berendsen weak coupling with an additional stochastic component.  

  

A standard MD practice is to assign different thermostats to different group of atoms in parallel with 

identical target temperatures to prevent prolonged temperature differences of separate components 

called ‘hot-solvent, cold-solute’ phenomenon.  

In general different coupling characteristic times yield different evolution of the system.  

  

   time 
rever 
sible  
dyna 
mics 
7   

stochastic  
8 

nature  

case for  Different9  MD 

generated by  

paths  are  Typical value    

                                                  
7 Theoretically, currently GROMACS do not allow negative time steps and reversal of velocities as initial 

conditions. In practice only on identical hardware/software configuration, numerical representation and compiled version 

reproducibility can be archived in MD.  Reproducibility is necessary condition for time reversibility.  
8 Fixing the random seed variables in the md parameter files for the simulation of random extractions 

reproducibility can be archived to a certain degree on the same hardware configuration and numerical representation.  

  
9 With identical initial conditions of the (non-extended) system   

1)  Weak- 

coupling  

scheme  of  

Berendsen  

yes  no  

  

a)  different  initial 

 scaling factors: 𝜆0  

  

formula, 

implemented  

with max 1.25, 

min  

0.80  

  

       b)  different 𝑛TC time steps  1,10    

       c)  different time constants τ  0.05 

(equilibratio 

n  0.01)  

  

2)  Velocityrescaling 

weakcoupling 

scheme  

no  yes  a)  different realization of the 

dW a Wiener process  

    



 

       b)  different time constants τT  0.05 

(equilibratio 

n  0.01)  

  

3)  

Andersen 

thermostat  

no  yes  a)  different time constants: τT  >10 ps    

       b)  

  

simultaneously (massive 

collision) vs. probabilistic 

partial  

    

       c)  different  realization 

 of random extraction 

form M. dist  

    

4)  Extendedensemble  

approach by  

Nosé  -  

Hoover  

yes  no  a)  different mass parameter of 

the reservoir:  Q   
  

  

       b)  different initial heat bath 

parameters: ξi(t=0)  

    

       c)  different number of chains of 

thermostats: M  

10    

5)  

Group 

temperature 

coupling  

    a)  different group and 

permutation of previous 

parameters described   

      

       b)  not thermostat some groups 

(protein)  

time constant 

τT = -1  

  

6)  
Velocity 

generation  

no  yes (only 

initial 

condition)  

a)  keep only coordinates re- 

generate initial velocities  

    

  

  

  

2.6 GROMACS implementation for sources of different MD path  

generation  

  

The GROMACS implementation of the various MD models make it possible to interact with the 

parameters mainly in two ways, the parameter file and the index file for definition of groups 

[GROMACS2019]. In the following tabular form the technical name and way to interact with the 

parameters are listed for the previous point’s model choices:  

   

   case   variable, 

parameter  

GROMACS implementation in md parameter file  
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1)  Weak-coupling 

scheme  of  

Berendsen7  

a)  𝜆0i   tcoupl = berendsen  

  

Not directly set from md parameter file  

  

By using tc-grps and defining different partitions 

as groups in  index files for the different md runs.  

  

min/max hardcoded in: 

src/gromacs/mdlib/coupling.cpp  
real lll                = std::sqrt(1.0 + (dt / opts->tau_t[i]) * (reft / T - 1.0)); ekind-

>tcstat[i].lambda = std::max<real>(std::min<real>(lll, 1.25), 0.8);  

   b)  𝑛TC   tcoupl         = berendsen 

nsttcouple     = …   

   c)  τ  tcoupl         = berendsen tau-

t          = …  

2)  Velocityrescaling 

weak-coupling 

scheme  

a)  dW   tcoupl         = v-rescale  
ld-seed        = … ; (integer 0 … 263) to 

have only stochastic component: tau-t = 0;  

   b)  τT  tcoupl         = v-rescale  
tau-t          = … ; (workts also for 0.0)   

3)  Andersen 

thermostat  

a)  τT  tcoupl         =  andersen tau-

t          = …  

  
andersentemperaturecoupling.cpp   

   b)    tcoupl         =  andersen-

massive vs. tcoupl         =  

andersen  

   c)    andersen_seed  = … ; (0 … 263)  

  
(default = 0 )  

4)  Extendedensemble  

approach  by  

Nosé - Hoover  

a)  Q   tcoupl         =  nose-hoover tau-

t          = …  

  
  

   b)  ξi(t=0), 

pξi(t=0)  

Not directly set from md parameter file  

  

    By using tc-grps and defining different partitions as 

groups in index files for the different md runs.  

  

  

   c)  different  

number of 

chains of 

thermostats:  

M  

nh-chain-length = …  

5)  Group 

temperature 

coupling  

a)  different 

group and   

tc-grps  

                                                 

7 https://gitlab.com/gromacs/gromacs/-/blob/master/src/gromacs/mdlib/coupling.cpp , berendsen_tcoupl  

https://gitlab.com/gromacs/gromacs/-/blob/master/src/gromacs/mdlib/coupling.cpp
https://gitlab.com/gromacs/gromacs/-/blob/master/src/gromacs/mdlib/coupling.cpp
https://gitlab.com/gromacs/gromacs/-/blob/master/src/gromacs/mdlib/coupling.cpp
https://gitlab.com/gromacs/gromacs/-/blob/master/src/gromacs/mdlib/coupling.cpp


 

   b)  not 

thermostat 

some groups   

tau-t            = -1;  thermostat off   

6)    a)  initial 

velocity 

generation  

vel_gen          = yes 

continuation     = no gen_seed         

= …   ; (0 … 263) gen_temp         

= …   ; in K  
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2.7  Description of hd, the heuristic functional:  

  

Description of hd,  the heuristic functional:  

The heuristic functional is a real valued expression of the n+1 snapshots of lead atom distance 

measurements taken during the simulation taken at t = tsym /n intervals. In particular it is a weighted 

average of the mean velocity and trend of the distance measurements of the two lead atoms. The 

weight factor (w) is a function of the final distance of lead atoms and two characteristic lengths:  

w =min( max( dEOH_T / (dc2-dc1), 0), 1)  

The mean velocity (v) is final minus initial distance divided by the time length of the simulation 

(250ps) expressed in nm/ps units, while trend (u) is the slope of the linear fit over the n+1  lead atom 

distance measurements versus time in nm/ps units. The heuristic h is equal   

hd = w v + (1 - w ) u   .  

In general a positive heuristic means an increasing distance of, or trend in the motion of, the 

ligand’s lead atom respect to the binding site; in the vicinity (at the first characteristic length) it is 

dominated by the displacement, afar (at the second characteristic length) by motions trending further 

away, in between an average depending on the evolution of the unbinding process.  

  

  symbol  value  unit  

section  simulation  

length  

tsym  250  ps  

number of snapshots  n  10    

snapshot intervals  t  25  ps  

weight factor  w  0 – 1 interval    

lead atom distance  dEOH_T    nm  

characteristic length 1  dc1    nm  

characteristic length 2  dc2    nm  

mean velocity  v    nm/ps  

trend  u    nm/ps  

heuristic functional  h    nm/ps  

  

    
  

2.8 Description of angular orientation of the path:  

  

2.8.1 The idealized case:   

  



 

Let’s examine the idealized case of a regular octagonal exit region from the protein.  We imagine 

the protein as an almost entirely close globular shape with a tubular channel filled partially with water 

molecules that connects the region of the target lead atom to the outside, the small molecule travels 

in this tunnel from the target during unbinding. We model the opening of the tunnel as a regular 

octagon on the surface of the globular shape.  We take a reference point (apex) inside the protein in 

the normal direction of the octagon (base).  This direction is also parallel to the entry zone of the 

tunnel. The tunnel could deviate versus the target lead atom further inside form its entry zone. The 

base octagon is a window or entry area, its center is far enough to the tunnel walls to make the lead 

atom not interact with the perimeter.    

Thus the apex and the octagonal base forms a regular octagonal cone. For this geometry, the eight  

EOH,i  = xEOH – apex – hi   angles have zero standard deviation in case the EOH lead atom is on the 

symmetry axis of the octagonal cone. For any off axis position, xEOH  , the standard deviation is 

positive - increasing as the distance from the symmetry axis increases. Ergo the minimum value of 

the standard deviation of the EOH,i  angles is a one-to one indication that the lead atom is on the 

symmetry axis.   

  

  

Figure 8. Schematic drawing of the angular orientation  

Schematic drawing of the angular orientation  
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We extend the minimal condition to an irregular octagon cone shape: the minimum standard 

deviation of vertex-apex-lead atom angles is an indication that lead atom is in the near vicinity of the 

approximate symmetry axis of the cone.  

In other words the path of the lead atom that travels through the central region of the base octagon 

in its normal direction can be characterized by low value of the vertex-apex-lead atom angles’ 

standard deviation.  

2.8.2 In particular in case of the 3b7a protein  

In particular in case of the 3b7a protein the examination of the unbinding path provided evidence 

on the contour of the surface area where the small molecule left the protein. Namely the ranking of 

the nearest residues during the exit phase indicated the semi – perimeter as composed of some atoms 

on the 76,9,1,12,13 residues.   

  

RESIDUE Number  #First 

nearest  

#Second nearest  #Third nearest  

76  14  7  9  

9  10  11  10  

1  8  9  7  

12  6  6  5  

13  6  4  2  

5  5  4  9  

6  4  7  2  

8  4  3  5  

54  3  4  1  

75  3  1  3  

15  2  4  0  

10  2  3  0  

11  2  0  0  

55  1  5  3  

51  1  0  2  

19  1  0  2  

77  0  2  2  

73  0  2  1  

  

An irregular octagonal regions’ vertices were individuated choosing from each of the best ranking 

residues by cross referencing the nearest atom’s list and by visual inspection in the VMS software: 

those few that “stick out” and not “shadowed” by others. One of the vertices on residue 5 was added 

to close the base perimeter of the hexagon.  

Vertices        

h1  HB1  SER  9  

h2  HA  PHE  6  



 

h3  HE1  MET  1  

h4  O  SER  9  

h5  HD1  ILE  13  

h6  HA  ALA  55  

h7  3HD2  LEU  76  

h8  HA  LEU  76  

  

The chosen surface of the irregular octagon region is the window where the small molecule passes 

during unbinding to exit the protein. While the eight atoms do not lie perfectly on a plain (base) 

nevertheless in orthogonal projection it was possible to pin point a reference atom (apex) in the 

direction of the approximate symmetry axis (normal of the base surface), further on the other side of 

the protein. 8  

apex  C  GLY  34    

  

  

Definition:  

  :=  std.dev ( EOH,i  )             where EOH,i   are the xEOH – a – hi   angles in radians  

  

is the “angular orientation” factor versus the direction of entry into the protein.  From which we 

construct the angular component of the heuristic functional using a functional form similar to the 

directional heuristic employed for the unbinding simulations, as follows:  

2.9 Description of h   , the angular orientation heuristic functional:  

The heuristic functional is a real valued expression of the n+1 snapshots of lead atom angular 

orientation measurements taken during the simulation taken at t = tsym /n intervals. In particular it is 

a weighted average of the mean velocity and trend of the angular orientation measurements of the 

ligand’s lead atom respect to the hexagon cone. In its formula, the weight factor (w ) is a function of 

the final angular orientation of the lead atom and two characteristic angular deviations :  

w  =min( max(  EOH_T / ( c2- c1), 0), 1)  

The mean velocity of angular orientation ( v) is final minus initial  divided by the time length 

of the simulation expressed in rad/ps units. Final lead atom distance (dEOH_T ) times v  is traversal 

directional velocity of centering the desired orientation in nm/ps units. Trend ( u) is the slope of the 

linear fit over the n+1 lead atom angular orientation versus time in rad /ps units. The core of the 

heuristic h  is equal   

                                                 

8 This step could be automatized by minimizing the unit mass moment of inertia of the eight points, and measuring along 

the direction 2-3 times the diameter of the octagon.   
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 [  w  v + (1 - w  ) u   ] .  

In general a positive heuristic means a deviation in angular orientation from the path of possible 

entry/exit via the window, or trend; in the vicinity (at the first characteristic length) it is dominated 

by the angular displacement, afar (at the second characteristic length) by angular motions trending 

further away, in between an average depending on the evolution of the binding process.  

  

  

Definition:  

h   =  min( dEOH_T  - d  , 0 )   [  w  v + (1 - w  ) u   ]  

the angular part of the heuristic functional.  

  

Definition:  

h = hd  +  h   

the binding heuristic functional.  

  

  symbol  tipical value  unit  

section simulation length  tsym  250  ps  

number of snapshots  n  10    

snapshot intervals  t  25  ps  

        

angular  orientation  

factor  
  std.dev of xEOH – apex – hi   

angles  

rad  

weight factor  w   0 – 1 interval    

lead atom distance  dEOH_T  d( EOH-O(tf), THR-57- 

H(tf),  )  

nm  

characteristic length 1  c1  0.8  nm  

characteristic length 2  c2  0.2  nm  

mean velocity of angular 

orientation  
v     / t  nm/ps  

trend  of  angular  

orientation  
u    slope of (tk) vs. time  nm/ps  

angular part of heuristic  h     min( dEOH,THR-57-H  - d  , 0 )   

.  

[  w  v + (1 - w  ) u   ]  

nm/ps  



 

distance part of heuristic  hd  see table x  nm/ps  

heuristic functional  h  h = hd  +  h   nm/ps  

angular orientation cut off  d   0.5  nm  

angular  importance  

factor  
  2    

  

  
  

2.10 Variable partition thermostat scheme  

  

Let’s define solvent, ligand and protein groups. Let Nsol be the number of solvent molecules. 

Further divide the solvent into kv groups, each with approximately Nsol/ kv molecules, name them 

SOL_1, SOL_2,… SOL_kv . These group of molecules will be part of separate thermostats, for 

example Nosé-Hoover ones, with identical target temperature as specified for the npt ensemble.    

  

2.10.1 Definition of partition into groups  

Let’s define solvent, ligand and protein groups. Let Nsol be the number of solvent molecules. 

Further divide the solvent into kv groups, each with approximately Nsol/ kv molecules, name them 

SOL_1, SOL_2,… SOL_kv . These group of molecules will be part of separate thermostats, for example 

Nosé-Hoover ones, with identical target temperature as specified for the npt ensemble.    

  

2.10.1.1 Definition of partition into groups  

Let a1, a2,..., an be n objects. Let g1, g2, ..., gk be k (with k < n) groups to which assign the n 

objects. n1 objects can be assigned to group g1 ,n2 objects can be assigned to group g2  and so on. n1, 

n2..., nk  are such that:  

n = n1 + n2  +...+ nk  

A partition of a1, a2,..., an into the k groups g1, g2, ..., gk is one of the possible ways to assign the 

n objects to the k groups.  

  

Let denote Pn1,n2,…,nk the number of possible partitions into the k groups (where group i contains 

ni objects). Then Pn1, n2,…,nk  = n! / n1!n2! … nk! , the multinomial coefficient.  

For the dynamics, the groups’ index sequence is irrelevant respect to its permutations in the 

differential equation system: the number of physically different configurations, c, are: Pn1, n2,…,nk /k! .  
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In our case - for Nsol = n =6000 , kv = k = 5, ni=1200 ,  i.e. forming five equal cardinality 

subgroups from the 6000 solvent molecules - the number of different configurations are c = 2.683 

1020065 / (5 * 3.316 105735 * 120) =  1. 348 *1014327.   

Estimate using the Stirling-formula [Pearson1924] for the logarithm of a factorial:  

ln n! ≈ n ln n – n  

ln c =    n ln n – n   -    n/5 ln (n/5) – n/5 -   4.787     =   46197 – 7308 – 6.396 = 38882   = 

log(16887)  

c ≈ 1016867  

  

An astronomically high number, for each of which there is - theoretically - a different 

deterministic solution of the dynamics starting from same set of initial conditions (considering the 

non-extended phase space variables). The initial values of the extended variables, those that describe 

the different thermostats’ internal states are determined by each groups own energy Ei (temperature 

Ti) at t0. A group molecules evolves by being coupled only to its specific thermostat by the modified 

newton equations of the relevant model, equally interacting with all other parts of the system by the 

usual intermolecular forces.   

A consequence of the astronomically high number of configurations is that for large enough n we 

can considering a continuous spectrum of the energy levels of the thermostats around the mean energy 

of the system.   

  

At the initial moment, for a given ε> 0 number, fix one arbitrary molecule, then there exists nepsilon 

for which there will be always a molecule among those in one of the other thermostats with absolute 

difference of its kinetic energy less then epsilon respect to the fixed one. By swapping the attribution 

of the two molecules between the two thermostats involved, their (the thermostats) respective initial 

energy levels will change by less the epsilon. In consequences the thermostat’s state variables will 

differ only by a bounded function of epsilon, while the other state variables initial values will be 

identical. So there going to be a tε time for which the maximum difference of the solutions will be 

less then epsilon according to the theorem of the differential equation system solution’s continuous 

and differentiable dependence on initial conditions and parameters. [Arnold1973 Chapter 9.4]. 

Specifically because of the different set of differential equation for the two systems partitioned 

differently the solutions will be different for non-zero energy difference between partitions.   

The different initial distribution of Ei among thermostats according to the partition – will 

determine the difference in the dynamics in a smooth (continuous and differentiable) way.  

  

    

2.11 Implementation of the Variable partition thermostat scheme for  



 

MD in GROMACS  

  

Technically, in GROMACS, generate for a given MD run an index.ndx file by insert at the end 

kv section definitions containing the atom numbers of the molecules from a randomly chosen partition.   

Example of a group definition section of ndx file (here the ion is added to the first group):  

[SOL_1]  

1966 1979 1980 1981 1991 1992 1993 2045 2046 2047 2084 2085 2086 2090 2091  

2092 2096 2097 2098 2099 2100 2101 2111 2112 2113 2123 2124 2125 2168 2169   

…  

22432 22466 22467 22468 22469 22470 22471 22478 22479 22480 22490 22491 22492  

22505 22506  

22507 22520 22521 22522  

…  

[SOL_5]  

1967 1968 1969 1973 1974 1975 1976 1977 1978 2006 2007 2008 2024 2025 2026 

2042 2043 2044 2054 2055 2056 2060 2061 2062 2069 2070 2071 2072 2073 2074 …  

22427 22428 22429 22439 22440 22441 22451 22452 22453 22457 22458 22459 22472  

22473 22474  

22508 22509 22510  

  

Specify in the md parameters file the temperature coupling section as:  

 

  

  

  

Example:  

 

  

; 

; 
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Example of molecular dynamics parameter file used  

  

  

  

  

    

2.12 Variable partition thermostat scheme MD*  

  

To generate the different alternative paths needed in MD* we employ the Variable partition 

thermostat scheme for Nosé-Hoover or Berstened during the simulation of binding and unbinding 

processes. In particular at a given non initial section of the MD* simulation new partitions for the 

thermostat groups are generated for the alternative branches, notwithstanding keeping for two 

branches the partitions, for the best and the second best ranked ones.   

In the MD* “5+2” scheme:  

  

b, branch number  

of section s  

branch initial condition is final  

configuration of    

  

branch re-partition   

1  best ranked branch among s-1   no: keep best ranked of s-1  

2  best ranked branch among s-1  yes   

3  best ranked branch among s-1  yes   

4  best ranked branch among s-1  yes   

5  best ranked branch among s-1  yes   

6  2nd best ranked branch among s-1  no: keep 2nd best ranked of s-1  



 

7  2nd best ranked branch among s-1  yes  

  

For each branch of the initial section, solvent molecules are re-partitioned between the thermostats 

because the npt MD had one common thermostat.   

  

  

  

2.13 Implementation of the Variable partition thermostat scheme for  

MD* in GROMACS  

  

For MD*, in GROMACS,  for each sections’ branches MD run generate a new index.ndx file - if 

needed according the description above - by inserting at its end kv section definitions containing the 

atom numbers of the molecules from a randomly chosen partition. The ion is added to the last group. 

This was done by the solvent permutation function in the pygro_utils module, and the aforementioned 

index file was saved with a name identifying the run in question in common /ndx subdirectory. In 

cases in which re-partitioning was not commanded the respective old index file was copied with the 

proper new name.  

The proper index file is used for the gromacs precompile command argument:   

 

After – in a parallel or serial manner – all branch MD’s of a given section were computed, the 

evaluation phase ranks the alternatives according the heuristic function of the problem for the 

continuation.  
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3 Results and Discussion  

.  

3.1 MD* simulation binding/unbinding process of the LUSH  

protein/Ethanol co-crystal  

  

The unbinding process of the Ethanol small molecule form the LUSH protein was simulated with  

GROMACS using the MD* algorithm with the following models: Initial velocity generation,  

Variable thermostat partition Nosé-Hoover, Andersen thermostat, Variable thermostat partition, 

Berendsen scheme.   

  

MD* underlying model 

type  

way  

 

 

date  simulation id  

Variable thermostat partition 

Nosé-Hoover  
ligand 

unbinding  
4.b), 5.a)  yes  2022-01-08  3b7a_3_unbind_VP_NH9  

Andersen thermostat  ligand 

unbinding  
3.c)  yes  2021-12-04  3b7a_3_unbind_andersen13  

Variable thermostat partition 

Berendsen scheme  
ligand 

unbinding  
1.a), 5.a)  yes  2022-01-09  3b7a_3_unbind_VP_BR  

  

                                                 

9 simulation directory:  /home/trezzaa/trezzaa/tesi/adam/3b7a/3b7a_3/3b7a_3_unbind_VP_NH 13 

simulation directory:  /home/trezzaa/trezzaa/tesi/adam/3b7a/3b7a_3/3b7a_3_rep1/1  

implementation  

by   

( 

ref in  

chapter 2.4 

- 
2.5)   

success 
  



 

Variable thermostat partition  
Velocity-rescaling 

 weakcoupling scheme  

ligand 

unbinding  
2.a), 5.a)  yes  2022-01-10   3b7a_3_unbind_VP_VS10  

  

Initial velocity generation  ligand 

unbinding  
6.a)  yes  2021-11-27  3b7a_3_unbind_VG11  

  

Summary of MD* results for unbinding Table  

  

3.1.1 Brief description of the MD* algorithm:  

  

The MD* the simulations were divided in successive sections of tsym = 250 ps duration each with the 

relevant temperature and pressure coupling in the table 3.1. The starting point of all simulations were 

a common initial configuration: the energy minimized, temperature and pressure equilibrated 

(T=303.5  +- .5 K, p = 0.8  +-3.8 K) molecular configuration (npt0) obtained with iterative MD 

simulation cycles using Chemistry at HARvard Molecular Mechanics [CHARMM] force field, on 

atomic coordinate files form the Protein Data Bank [PDB] solvated in 60x60x60 A rectangular box.  

Each successive section of the simulation consists of nb = 7 parallel run MD simulations, branches of 

the given section. The simulated LUSH-EOH molecular system at the b-th branch of the s-th segment 

travels from αsb initial configuration via Παβ path to the ωsb final configuration in the phase space. 

The nb branches were ranked by a heuristic functional: h(Παβ), the ranking determined which one’s to 

be continued. The initial condition of the MD simulations of the next section’s branches are 

determined as follows αs+1,b : for 5 of the new branches take the maximal ranked final configuration 

ωs of the previous section. For the remaining two the second best’s ωs, . (Chapter 2.2)  

  

3.1.2 Discussion of the utility of the heuristic functional parameter choices from 

the results and the type of underlying MD* model:  

   

The heuristic functional hd (Chapter 2.5)  with parameters tsym   = 250 ps   , n =10 , t = 25ps   dc1  =  

0.3 nm  dc2 = 0.02 nm was evaluated over the 11 snapshots of lead atom lead atom (EOH O, THR 57 

H) distance measurements taken during the simulation at 25 ps intervals. In particular the weighted 

average of the mean velocity and trend of the distance measurements was calculated. The weight 

factor (w) as a function of the final distance of lead atoms and the two characteristic lengths. The 

mean velocity (v) is final minus initial distance divided by the time length of the simulation (250ps) 

expressed in nm/ps units, while trend (u) is the slope of the linear fit over the 11 lead atom distance 

measurements versus time in nm/ps units. The heuristic h was equal weighted average of the mean 

velocity and trend over the characteristic distances.  In visual analysis of the unbinding path with 

pyMOL software, a positive heuristic indicated an increasing distance of, or trend in the motion of, 

the ligand’s lead atom respect to the binding site; in the vicinity (d<0.07 nm) it was dominated by 

displacement, afar (d>0.13 nm) by motions trending further away from the protein, in between a 

motion that can be characterized by a diffusion in channel connecting the biding site to the 

                                                 

10 simulation directory:   /home/trezzaa/trezzaa/tesi/adam/3b7a/3b7a_3/3b7a_3_unbind_VP_VS  
11 simulation directory:  /home/trezzaa/trezzaa/tesi/adam/3b7a/3b7a_3/3b7a_3  
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surrounding solvent. This confirmed the parameter choice of dc1 , dc2 characteristic lengths based on 

the protein and the solvated box’s volume.  

The choice of parameters captured the intended direction and trend motion of the ligand in the 

resultant unbinding path.    

The same hd parameters were used with 5 different MD* underlying model type for the thermo- and 

barostats, the simulated velocity of the unbinding process was confronted - albite with a poor 

statistics: The slowest by far was the Anderson collision thermostat (by factor of 3), using already the 

lowest thermal coupling characteristic time suggested in the GROMACS documentation. Among the 

other 4 underlying models the Initial velocity generation result indicated the highest velocity of the 

unbinding event. This confirms our suspicion that this model by introducing concentrated velocity 

shocks yields unnatural paths, as it distorts, interferes with the proteins natural coordinated 

movements that helps the small molecule stay in the water filled pocket.    

  

   

3.1.3  Characterization of the resultant path of the simulations:  

3.1.3.1 Description of lead atom path during unbinding  

  

I expose the characteristic results obtained in all unbinding simulated in terms of lead atomic 

distance and vicinity during the unbinding process. The first one is a fast confirmation of the event of 

unbinding, the second one is important, yielding information to construct the angular heuristic 

functional for the binding simulation, by the path vicinity reference atom assignment preclude 

described in Chapter 2.7.2. The structural integrity of the protein during simulation was studied and 

documented in Appendix IV.  

a) Lead atom distances:  

Fix the O’ origin of a co-moving spherical coordinate system (r,θ,φ) to one of the lead atoms 

(EOH O) and plot the r distance of the other lead atom (THR 57 H) during the unbinding process.   

  



 

Figure 9. Lead atom distance in Å vs simulation time frame number: t = 0.250 * nf  in ns  

From the initial 2.14 Å, distance between them gradually increases to cc 10 Å, at around 12 ns to 

20 Å after which a clear departing phase brings it to a distance of 40 Å from 20 to 25 ns outside the 

protein.  Ignoring any consideration on the direction in which the small molecule went, as a rough 

estimate we consider that during the simulation the distance from THR 57 H of any protein atom was 

more than 29.78 Å  (average 27.32 Å , std.dev. 0.90 Å),  complete unbinding event occurred.   

The heuristic functional values during the simulation paths’ segments showed, at the beginning 

of unbinding, a strong correlation with the mean velocity of departure, near the terminal condition  

with periodic trends of increasing distance.  

In particular, from the initial configuration of npt0 the path was discovered by the MD* as the 

follows sequence of MD simulations (with simulation end point lead atom distance and the heuristic’s 

value):                                                                                                   

                          d  [nm] ,  h   [nm/ps]  

   

md_0_6 starting from npt_0                          

  

  0.592,  0.0015   

md_1_0 starting from md_0_6                     

  

    0.770,  0.0008   

md_2_5 starting from md_1_0                       

  

   1.069,  0.0011   

md_3_6 starting from md_2_5                    

  

   0.875, -0.0008   

md_4_5 starting from md_3_6                      

  

    0.988,  0.0007   

md_5_3 starting from md_4_5                    

  

  1.712,  0.0022   

md_6_6 starting from md_5_3                     

  

  1.772,  0.0   

md_7_5 starting from md_6_6                       

  

  1.776,  0.0002   

md_8_6 starting from md_7_5                     

  

  2.693,  0.0044   

md_9_2 starting from md_8_6                   

  

  3.037,  0.0036   

md_10_5 starting from md_9_2                     4.267,  0.006   

  

    

  

b) Characterization of the lead atom’s vicinity  

Examine which atoms of the protein has the lowest distance (r) respect to the lead atom via the 

unbinding path as follows:  

1) The nearest atom of the protein respect to the EOH O lead atom during the unbinding  

for each frame    
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a’ = argmina  dEOH_O,a  

where a is member of the protein  

2) The list of the 3 nearest atoms of the protein to the EOH O lead atom during the unbinding  

for each frame    

a’,a’’,a’’’ = argminsorta  dEOH_O,a  

where a is member of the protein  

3) The list of the nearest 3 different residues to the EOH O lead atom during the unbinding   

for each frame    

a’,a’’,a’’’ = argminsorta  dEOH_O,a  

where a is member of the protein and a’,a’’,a’’’ are part of different residues  

Implementation code path_near_list.py  

In the following tables the first column contains the frame number nf from which simulation time is obtained as t =  

250 nf  ps; second column, the distance of the nearest protein atom; column 3-6 , the nearest atom’s description. The 

following columns analogously describe the second and third nearest to the protein:  

1) and   2)   List of the nearest atoms along the path of the s. molecule  



 

 
3).   List of the 3 nearest residues along the path of the s. molecule:  
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All MD* simulations performed with different underlying model type fund similar unbinding paths. 

That is, the top ranking of the nearest residues during unbinding were among the 76,9,1,12,13 residues 

in all. Due to the limited number of simulations this do not exclude categorically that there are other 

pathways, and/or could be an artifact of the radial heuristic function which could oversample 

relatively straight paths in the time scale studied. It is a strong indication that the feasibility of binding 

via the same regions of the protein connecting the internal binding site to the outside solvent 

discovered in unbinding is much more promising than elsewhere. The method utilized to translate the 



 

information obtained from the unbinding path into mathematical language for the MD* algorithm is 

the construction of angular orientation heuristic functional based on the reference atoms forming an 

(octagonal) cone around entry zone (Chapter 2.7). The paths will be ranked and continued respect to 

their affinity to the symmetry axis of the cone defined.    

3.1.4 Characterization of the protein’s movement respect to its parts:  

Using the method of reference point and directions defined on the protein (Chapter 2.1) the radial 

and axial distribution of the atoms constituting the four groups were calculated. The results are as 

follows:   

x1,i
ref   in RG1: residues 106-115  x2,i

ref   in RG2: residues 44-54  

  

     
x3,i

ref   in RG3: residues 82-97  

  

x4,i
ref   in RG4: residues 64-76  

  

     

Figure 10. Radial and axial distribution of the atoms constituting the four reference groups  

  

  

  

Residues 64-76 (the 4rd ref group) minimal distance respect to the 3th ref group (82-97) is 4A 

due to the „U” shape with a turn at residues 78-80.  

  

x4,iref   in RG3  
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Figure 11. Radial and axial distribution of the atoms constituting the 4th reference group respect to RG3  

The average of radial distribution of cross distances was calculated and gives a picture of the 

protein’s change in shape during the simulation.  It describes the movement of its helices respect to 

one another. In this case it is a 4x4 matrix, its j,k element is the mean radial distance of the atoms in 

the j-th ref groups respect to the k-th ref point/direction :  

   2.1477 14.0868 12.8671 14.7839  

 16.7412   3.4620 18.5998 10.2632   

 11.2345 19.7923   2.2441 12.4127  

 19.4417 11.8785 12.8018   3.5820  

  

3.1.5 The lead atom’s movements respect to the protein   

  

During unbinding the 3b7a EOH molecular system from its  initial configuration arrives to the 
   final configuration via the   path. I transform the xEOH(t),  cEOH(t) path into the  dax EOH,k  (t), dr

EOH,k 

(t),  EOH,k (t) coordinates to characterize its movement respect to the stable structural parts of the 

protein.    

  

  

The binding site lead atom H is on the 57th residue THR part of reference group 4, its movement 

is on graph 31.5 coloring from white to dark red is  first to last frame.  It remains in a cc 2A diameter 

circular area during unbinding.  



 

  

Figure 12. Movement of the binding site lead H atom on the 57th residue THR during unbinding  

The EOH O lead atom moves versus the direction of the lower residue number of the protein 

along the RG3, it distances itself in two cc 5 A steps.    

  

Figure 13. Movement of the lead ligand atom during unbinding  

  

  

3.1.6 Verification of the structural stability of the protein during unbinding  

  

I studied the cross movement of the various reference groups during unbinding, results is illustrated 

on the matrix plot of   
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Oj
ref(t) points dax k (t) , d

r
k (t) coordinates versus time – where   

  

j column: the j-th reference point,  k row: RGk, the coordinate 

systems fixed to k-th reference group;   

plots: axial vs radial distances in Å; time form light to dark color,  table: 

standard deviations in Å.  

  

Figure 14. Structural stability of the protein during unbinding  

RG3 and RG4 displayed highly correlated motion as they form a U shape’ two limbs which are 

structurally connected.  RG1 and RG2 movement was also coordinated. RG4 moved against RG1 and 

RG2 cc. 5 Å in the axial direction.  

  

 

    
Table: standard deviation of Oj

ref(t) points  

 
  

in dax k (t) , d
rad

k (t) coordinates during unbinding   
   Implementation code: path_graphs.py 
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3.1 MD* simulation binding process of the LUSH protein/Ethanol co- 

crystal  

The binding process of the Ethanol small molecule form the LUSH protein was simulated with 

GROMACS using the MD* algorithm with the following models: Initial velocity generation, Variable 

thermostat partition Nosé-Hoover, Variable thermostat partition, Berendsen scheme. The heuristic 

functional hd  with parameters tsym   = 250 ps   , n =10 , t = 25ps   dc1  = 0.3 nm  dc2 = 0.02 nm , the 

angular heuristic h  with parameters c1 =0.8 nm, c2 =0.2 nm, d  = 0.5 and  = 2 (Chapters 2.6 ,and 

2.8).    

MD*  

underlying 

model type  

way  

 

 

date  simulation id  

Variable thermostat  
partition 

 NoséHoover  

ligand binding  4.b), 5.a) and 5.b)  no12  

  

2022-01-05  3b7a_3_bind_VP_NH13  

  

Variable thermostat  
partition 

 NoséHoover  

ligand binding  4.b), 5.a)  yes  2022-01-06  3b7a_3_bind_VP_NH_214  

Andersen thermostat  ligand binding  3.c)  no15  2021-12-28  3b7a_3_bind_andersen16  

  
Variable thermostat 

partition  
Berendsen scheme  

ligand binding  1.a), 5.a)  yes  2022-01-07  3b7a_3_bind_VP_BR17  

  

Initial  velocity 

generation  
ligand binding  6.a)  without 

specifying  
gen_temp      

yes  

  

2021-12-23  3b7a_3_bind_VG18  

  

Initial  velocity 

generation  
ligand binding  6.a)  yes  2021-12-31  3b7a_3_bind_VG_219  

  

  

3.1.1 Brief description of the MD* binding algorithm:  

  

The MD* algorithm for the binding simulations differs in 1) initial condition 2) ranking order 3) 

heuristic functional used form the one described for the unbinding (Chapter 3.1.2)  

                                                 

12 small molecule stopped its movement inside the protein as the protein group was without thermostat, t_tau = -1   

13 simulation directory:  /home/trezzaa/trezzaa/tesi/adam/3b7a/3b7a_3/3b7a_3_bind_VP_NH  
14 simulation directory:  /home/trezzaa/trezzaa/tesi/adam/3b7a/3b7a_3/3b7a_3_bind_VP_NH_2  

15 alternative paths generated by different seeds for the Andersen thermostat were very close to each other almost indistinguishable, only rarely differed 

from one another    
16 simulation directory:  /home/trezzaa/trezzaa/tesi/adam/3b7a/3b7a_3/3b7a_3_back_andersen  

17 simulation directory:  /home/trezzaa/trezzaa/tesi/adam/3b7a/3b7a_3/3b7a_3_bind_VP_BR  
18 simulation directory:  /home/trezzaa/trezzaa/tesi/adam/3b7a/3b7a_3/3b7a_3_back  

19 simulation directory:   /home/trezzaa/trezzaa/tesi/adam/3b7a/3b7a_3/3b7a_3_back2  

implementation  

by   

( 

ref in  

chapter 2.4 

- 
2.5)   

success 
  



 

1) The common initial condition for all underlying MD* models was a generic configuration 

obtained by unbinding MD* simulations with the ligand outside the protein. Temperature and 

pressure averages deviations were compatible with fluctuations observed in standard iterative 

MD (T=303.2  +- .5 K, p = 0.9  +-2.1 K)  .  

2) The ranking order was inverted, for the evaluation of the candidate paths to be evaluated 

reflecting the intended direction of the motion.   

3) As the hd heuristic functional by construction is sensitive only to radial directional movements 

an angular component was added that privileged paths in the vicinity of the previously 

discovered channel’s entrance connecting the binding site with the outside solvent.   

  

  

Figure 15. PyMol rendering of the initial condition of the binding simulation  

  

  

  

3.1.2 Discussion of the utility of the heuristic functional parameter choices from 

the results and the type of underlying MD* model for binding:  

   

The same parameters were used for the radial part of the heuristic functional hd (Chapter 2.5)  with  

(tsym   = 250 ps   , n =10 , t = 25ps   dc1  = 0.3 nm  dc2 = 0.02 nm).  For the angular orientation the 

path vicinity reference atom assignment preclude described in Chapter 2.7.2. was performed yielding 
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to the octagonal cones bases as atoms : HB1 SER9,HA PHE6,HE1 MET1,O SER9,HD1 ILE13,HA 

ALA55,3HD2 LEU76, HA LEU76, with apex: C GLY34.  The angular heuristic h  with parameters 

were c1 =0.8 nm, c2 =0.2 nm, d  = 0.5   = 2  (Chapters 2.6 and 2.8). The resultant functional form  

h was evaluated over the 11 snapshots of lead atom lead atom (EOH O, THR 57 H) distance 

measurements taken during the simulation at 25 ps intervals.  In visual analysis of the binding path 

with pyMOL software, a negative heuristic indicated a directional movement or trend versus the 

approximate symmetry axis of the octagonal cone of reference atoms for the beginning of the 

simulation outside of the protein (d>0.13 nm) and a  motion of the ligand’s that can be characterized 

by successive diffusive movement versus the channel connecting the biding site to the surrounding 

solvent until its entry.  In the vicinity of the binding site (d<0.07 nm) the path had similar characteristic 

than the unbinding path in this region with time symmetry.   

This confirmed the parameter choice of dc1, dc2   ,  c1, c2, d   characteristic lengths based on the protein 

and the solvated box’s volume and on the geometrical configuration of the channel connecting the 

binding site to the outside solvent.   

The choice of parameters captured the intended directional motion versus the entry of zone and a 

successive approach to the lead atoms in the internal of the protein of the ligand in the resultant 

binding path.    

The same hd parameters were used with 5 different MD* underlying model type for the thermo- and 

barostats, the simulated velocity of the unbinding process was confronted - albite with a poor 

statistics: The Anderson collision thermostat did not provide a binding path, using already the lowest 

thermal coupling characteristic time suggested in the GROMACS documentation.   

The Variable thermostat partition Nosé-Hoover model was performed in two version, one where only 

the solvents partition were coupled to the thermostat, but the protein and ligand was not, this 

simulation did not provide un unbinding path, it was observed that the ligand entered the protein, 

successively its movement slowed down and its movement stalled at cc 0.8 nm from the target, and 

the simulation were stopped after 3o segments. This indicates that the transmission of the thermal 

movement of the solvent via the protein structure via the ligand was not sufficient to provide the 

diffusion enough strength, a ‘hot-solvent, cold-solute’ situation occurred in the time scale simulated.   

In the other version of Variable thermostat partition Nosé-Hoover model where all components of the 

system were coupled to the thermostats with the same target temperature the binding path was 

discovered by the MD* algorithm. Similarly to the Variable thermostat partition Berendsen scheme 

and the Initial velocity generation underlying models.   

Among the other 3 underlying models the Variable thermostat partition Nosé-Hoover model result 

indicated the highest velocity of the binding event.   

  

  

3.1 Overlapping of the ethanol binding pose compared with the crystal  

MD simulation from the final VPNH MD* configuration small molecule pose was analyzed by 

trajectory analysis of the EOH molecule in 2.5 ns MD simulation from the VPNH MD* final 

configuration. After 750ps the maximal interatomic difference of distance of EOH atoms and the ten 

nearest protein atom respect to the PDB atomic coordinates decreased until 0.35 A.  
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4 Conclusion  

The viability of MD* simulation was demonstrated by simulating the binding/unbinding process 

of the LUSH protein/Ethanol co-crystal. The MD* simulation revealed the route of the unbinding 

path at in an order of magnitude less simulation computer time than standard MD. The state of the art 

thermos- and barostat models were used to accomplish this result, by the Variable Partition Scheme 

applied for the solvent. This, respect to previous alternative path generations in suMD greatly enhance 

the comparison the MD generated data to be cross referenced to published results in the field and 

experimental data.   

The viability of the simulation of the binding path during binding showed the importance the 

choice of the underlying model and the parametrization of the heuristic functional respect to geometry 

of the problem.   An accurate overlapping of the ethanol binding pose compared with the crystal was 

found.  

Further investigation respect to the general application of the MD* algorithms proposed are:  

1) Study the properties of the simulation respect to the Variable Partitions Schemes, in particular 

the dependence on the number of thermostats on the statistical properties of the proteins 

movement and the small molecules path.  

2) Study the cost/benefit of keeping track in the memory of more data of discarded path 

segments/branches combined with heuristics functional forms that can command the 

algorithm to continue from further back in time in case of slow convergence.      

3) Estimate the statistical probabilities of the path (diffusion, angular diffusion) in run time by 

sampling over the alternatives and compare it similar estimates on the movement of solvent 

molecules to calibrate the relationship between simulated time in MD* and conventional MD.   

4) Study the algorithms bi-directional version, in which the small molecule’s path is continued 

forward and backward in time form a generic position. This can be done as soon as in 

Gromacs negative time step simulation will be available.    

 Possible further development in the specific case of the LUSH protein/Small molecule co-crystal 

system are proposed as:  



 

1) Re-run the analysis on different residue 52, 54 substituted LUSH proteins   

2) Extend the analysis to butanol e propanol small molecules  

3) Study binding properties by appropriate heuristic functional with lead atom on residue 52, 

and on the geometric mean position of 57, 52 hydrogen leads, and analyze the accuracy of 

the binding pose.  

   

Our work, could be open novel frontiers in computational biochemistry field, providing the 

molecular basis of biological system interactions.  
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1 Appendix I.   

1.1 pyGro a blended script language format for Gromacs (v1.0)  

  

pyGro takes advantege of phyton’s flxibilty combined with unix shell comands for variable 

definitions and substitutions for scripting of the gromax workflow of complex, multistep MD 

simulations in a unique, easy to read and use,  blended script language. It has an easy variable 

definition and replacement fot the unix comands and costum replacemeten in file content 

manipulation.   

pyGro adopts from Gromacs the basic principle that is to keep things as simple as possible.  

In first approximation the script ca be a unix comand list with comments, then one line python 

executiables can be added. Script execution flow commands are with capital letters usage from shell: 

python script.gup [echo]   

where script.gup is pyGro, gromacs/unix/python script with echo optional parameter that runs  

the script in test only mode where the unix shell comands are displayed only, not executed.  The 

script is a text file in which lines starting with character   
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1) #   are comments  

2) $  are executed as unix commands in the shell 3) other characters: python 

executables.  

4) >   labels for execution flow controll of the script in 2) the unix commands,  pyGro 

substitutes variabels defined in as subs dictionary keys to their  

values.  

Example usage:   

1) script.gup is  

# pyGro test file # 

definitions  

subs["!BOXSIZE"]="20 20 20"  

subs["!MUSTER"]="/home/trezzaa/tesi/adam/water_only/step0/"  

$ cd -r !MUSTER  

# solvate  

$ gmx solvate -cs spc216.gro -o conf.gro -box !BOXSIZE -p topol.top # 

end  

  

2) shell command:    
python script.gup  

  

3) expectaed behavior:  will change the directory to  

/home/trezzaa/tesi/adam/water_only/step0/ then execute the gromacs        gmx solvate 

-cs spc216.gro -o conf.gro -box 20 20 20 -p topol.top command.  

  

4) output: line number , tab, and 1) comments, 2) the commands with substitutions, 3) 

looktrough of the python code from the script.gup:  
1 # pyGro test file  
2 # definitions  
3 subs["!BOXSIZE"]="20 20 20"  
4 subs["!MUSTER"]="/home/trezzaa/tesi/adam/water_only/step0/  
5 $ cd -r /home/trezzaa/trezzaa/tesi/adam/water_only/step0/  
6 # solvate  
7 $ gmx solvate -cs spc216.gro -o conf.gro -box 20 20 20 -p topol.top 8 # end  

  

  

1.1.1 The predefined commands and variables in pyGro v1.0 are:   

  

  



 

1.1.1.1 subs_in_file( input_file , output_file   ,subs_file): which substitutes the content of the 

input file according to the subs_file dictionary keys to their values and save it to the 

output file.  

  

 subs:    dictionary for substitution in unix commands (key-> value)  

  

example script:  

  

  

 iteration  =  0;    subs["!ITERATION!"]  =  str(iteration   

).strip();subs["!NEXT_ITERATION!"] = str(iteration+1).strip()  

$ gmx grompp -f ./mdp/nvt.mdp -c nvt_!ITERATION!.gro -r 

nvt_!ITERATION!.gro -n index.ndx  -t nvt_!ITERATION!.cpt -p topol.top -o 

nvt_!NEXT_ITERATION!.tpr -maxwarn 1000    

$ gmx mdrun -deffnm nvt_!NEXT_ITERATION!  -ntomp 4 -ntmpi 1  

  

expected behavior: script runs the gromacs preprocessor and an MD simulation:  

gmx grompp -f ./mdp/nvt.mdp -c nvt_0. gro -r nvt_0.gro -n index.ndx  -t nvt_0.cpt -p  

topol.top -o nvt_1.tpr -maxwarn 1000   gmx mdrun 

-deffnm nvt_1  -ntomp 4 -ntmpi 1  

  

   

1.1.2 Standard script elements and their usage:  

  

1.1.2.1 !LIVE:   variable the current directory subs_pdb:  dictionary for 

substitution in .pdb and .top files (key-> value)  subs_mdp:  dictionary for 

substitution in .mdp files (key-> value)  

  

1.1.2.2 GOTO(”label”):  Continue script execution from a named label , label is in quotes  

  

example script:  

  

kk = -1  

GOTO("bookmark")  
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>loopstart kk 

= kk + 1 

>bookmark  

subs["!K!"] = str(kk).strip() 

$ cp em.mdp em_!K!.mdp if 

kk<3: GOTO("loopstart")  

  

expected behavior produce the shell copy comands:  

cp em.mdp em_-1.mdp 

cp em.mdp em_0.mdp 

cp em.mdp em_1.mdp 

cp em.mdp em_2.mdp  

  

label: Defined by the string in a line starting with „>” charcter, without quotes, if there are 

more then one in the script the last line where it apears is considered  

  

1.1.2.3 EXIT():     Terminate script execution  

  

1.1.2.4 LN = n:  Executes code form line n-th onward of the script (first line is zero, c 

convention)  

example script:  

  

import random  

# line 1  

if random.random() >0.95: EXIT()  

LN = 1    

  

expected behavior: an indefinit length loop with 5% chance of exit in each 

iteration  

  

1.1.2.5   SCRIPTNAME:   Contains the name of the scrip running.   

  

example script file named script_foo.gup:  

  

  

print(SCRIPTNAME)   



 

  

expected behavior:   

prints out „script_foo.gup”  

  

1.1.2.6 ECHO_OFF(key) and ECHO_ON(key)  with key = "COMMENTS" , "SHELL", 

"PYTHON","EXIT","GOTO".   

  

Turns off or on the standard output visualization  of the respective type of 

lines in the script during the run  

  

1.1.2.7 WAIT(n):  Pause execuiton for n seconds  

  

1.1.2.8 WAITFILE(source_dir = "./",filename, p=2,f=10):    

Waits till the file is created or modified in the following for f seconds,   

  

but if the file is already present and was modified in the last p seconds it 

does not pause.    
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1.1.3 pygro_util.py module contains:  

  

1.1.3.1 get_energy(file_name, quantity):    

         quantity : "Pressure"  | "Temperature"  

returns the average pressure (bar) , temperature (K)  values and their         

estimeted error, RMSD, drift  form the gmx energy files  

  

  

1.1.3.2 approach(filename,group,tp)  

        group: index file group name        

 tp:  displacement, meanvelocity, linreg_disp, smooth  

  

returns a quantity decribing the approch of on group to another form 

a dist.xvg file generateg with   

        displacement: final minus inital distance (in nm units)      

   meanvelacity: velocity of approach (in nm/ps iunits)  

linreg_disp:  y = mx + c , regession coefficients: gradient (in nm/ps 

units) and constant (nm units) fited to the distance of group.   
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2 Appendix II.  

2.1 pyGro script for standard em minization and nvt, npt 

equilibration   

  

2.1.1 Directory structure:  

The MD* run’s main directory contains the followind directories are:   

ndx - index files  mdp - 

parameter files pdb - 

trajectory files eval - 

merged trajectory 

toppar- force fields  

script_backup - backup of the script that generated the simulazione  

2.1.2 File name convention Files names fromualted as “type_S_B”,  where type is md for 

molecular dynamics .gro. trj , S integer is the section number, b integer the branch number. 

Tempalte file of “type_Template” serve as the templates for index and paramtere files.    

2.1.3 Log files:  

mds_run.log   - contains step-by step information on MD segments, their chaining, decision  

variables  (potential, temperature, pressure, distances, heuristics and ranking). Example output:  

 



 

 

2.1.4 The common part of the mds.gup script:  

 

  

2.1.5 EM – Energy minimization  
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2.1.8 Standard MD  

 

    

  

3 Appendix III.  

3.1 III. Literature review on SuMD  

  

In this appendix I track the technical descriptions of Supervised MD found in the literature, 

from its first appearance till the modified versions reported recently. We can observe that there are 

increasing amount of technical detail and computational performance measures published.   

3.1.1 III.1 Description of the algorithm used in Sabbadin [2014]:  

  

In Sabbadin [2014] the supervised MD was introduced and tested on human A2A  
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adenosine receptor hA2AAR complex with three binders:  ZM 241385, T4G ,T4E  and a weaker  

binder: caffeine   

The SuMD consists of a series of short MD simulation segments of 600 ps length in time.  

The ligand - target binding site distance is recorded at n=5 timestamps: (t_a, t_b, t_c, t_d, t_e,) 

as (d_a,d_b,d_c,d_d,d_e).  linear function f(t) = m × t is fitted on the  [(d_a,d_b,d_c,d_d,d_e)  , (t_a, 

t_b, t_c, t_d, t_e,)] dataset.  

The resulting slope (m) of a fitted linear function (distance vs. time) is negative or below a user 

selected threshold (a heuristic, showing sign of advancing in the binding process) the segment deemed 

approaching and the next simulation segment is started from the last set of coordinates and velocities 

produced by the previous segment; otherwise, the simulation is restarted from the original set of 

coordinates of the previous segment by randomly20 assigning the atomic velocities to the coordinates 

of the previous segment coherently to the NVT ensemble.   

  

  
Part of the scheme of the ligand−receptor distance supervision algorithm reported by Sabbadin 

[2014] in our taxonomy Checkpoint n is the n-th approaching segment simulated.  

  

Termination condition was ligand−receptor distance less than 5 Å. Each SuMD was run 3 times.  

                                                 

20 a point of interest wheter check the velocity of the center of mass of the small molecule .   



 

The authors conclude that, it was possible for them to easily determine and characterize all 

possible ligand binding sites that chronologically anticipate the orthosteric one form the SuMD .The 

SuMD  facilitate a better understanding of all GPCR−ligand recognition pathways.   

  

hA2AAR complex biding with  ZM 241385 the one of 3  SuMD simulation results in [Sabbadin 

2014]  

  

Summary table of the supervised molecular dynamics simulation results in [Sabbadin 2014]:  

interaction description  event  a  b  c  d  e  unit  

                

adenosine  receptor 

antagonist 

ZM241385−human  

A2A adenosine receptor  time  1.2  2.9  5.5  8.1  59  ns  

  distance  43  16  8  5  4  Angstrom  

  

interaction 

energy  -1  -42  -55  -48  -59  kcal/mol  

                

T4G−human A2A 

adenosine receptor 

recognition mechanism  time  0.2  6  14.7  46  62  ns  

  distance  43  11  8    4  Angstrom  

  

interaction 

energy  -3  -32  -31  -20  -57  kcal/mol  

                

T4E−human A2A 

adenosine Receptor 

recognition mechanism  time  0.1  5.7  16  46.7  105  ns  

  distance  40  15  8  5  4  Angstrom  

  

interaction 

energy  -1  -17  -32  -15  -47  kcal/mol  

                

Summary table of the supervised molecular dynamics simulation results of [Sabbadin 2014]:  
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In [Cuzzolin 2016] simulate globular and trans-membrane proteins targets with supervised 

MD algorithm. They report that the SuMD simulation engine was interfaced with the ACEMD engine 

and supported AMBER and CHARMM force fields.  

  

3.1.2 III.2 Description of the algorithm used in Cuzzolin [2016]:  

  

The SuMD consists of a series of short MD simulation segments of 600 ps length in time.  

The ligand - target binding site distance is recorded at 0,75,150,225,300,375,450,525,600 ps.   

The resulting slope of a fitted linear function (distance vs. time) is negative or below a user 

selected threshold (a heuristic, showing sign of advancing in the binding process) the segment deemed 

approaching and the next simulation segment is started from the last set of coordinates and velocities 

produced by the previous segment; otherwise, the simulation is restarted by randomly21 assigning the 

atomic velocities to the coordinates of the previous segment.  

A preliminary run is performed as follows, in the first simulation segment if 31 consecutive 

nonapproaching sequence was simulated new initial coordinates are randomly selected. (schema of 

the algorithm from the authors on the right)  

Each segment records the distance revelations;  the resulting slope value; distance distribution 

counters for all previous valid segments in the ranges in the 0–2, 2–5, and 5–9 Å; electrostatic and 

van der Waals potential energy contributions of the ligand–receptor interaction energy (IE).  

  

  

                                                 

21 a point of extreme interest how relaxation is applied here b the authors if they do, whether they check the velocity of 

the center of mass of the small molecule if compatible with expectations of statistical mechanics.    



 

The last simulation frame data of each sequence (the end point at 600 ps) is separately stored.  

For example the authors report the 30th simulation segment that resulted in 7.435 Å final distance 

which was the 13th attempt after the 29th segment (that is they simulate effectively 13*600 ps 7.8 ns 

to arrive to the last 600ns approaching segment, slope = -.282 which is average approaching velocity 

of … Å/ps ), and the 5–9 Å distance counter (Dist.9) is 19, i.e. the ligand approached for 11.9 ns  9 Å 

near, but never reached 5 Å distance as the 3–2 Å  (Dist.5) is zero. Cuzzolin [2016 supp]  

  

Example output on which supervision decisions are based (Step corresponds to segment in our 

taxonomy)  

   

If the simulation segment end point distance drops below 5 Å the simulation proceeds a classical 

MD simulation with unspecified length (by the authors) in the Introduction while in section 2.5.4 

describe a more complex Termination Criteria is complex as set of rules describing the overflow of 

the counters:  

more than 17 consecutive reruns of the segment generation all with non negative slope, that is 

10.2 ns effective simulation length spent; any of the distance counter exceeds 17 , 11.4 nonconsecutive 

ns spent in the  5–9 Å , 3–2 Å  or the 2–0 Å  range.  

Authors report computation time in single to lower 

double-digit hours for the case studies in the article (list 

on the left), and that  some SuMD trajectories converge 

in a different way to the structure of the complex as 

seen by Xray crystallography.  They present tree  

hypothesis to investigate this. Further on-rate  binding 

kinetics property estimations are in  

 approximate agreement with experimental  

measurements.  List of interactions simulated by Cuzzolin  
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[2016]  

  

  

In Deganutti [2020] simulated unbinding of small druglike molecules from fundamental 

pharmacological targets – six different G protein-coupled membrane receptors - by a modified version 

of the supervised MD algorithm.  

According to the authors the changes in the algorithm were aimed to optimize the simulation 

performance specifically for unbinding of small molecules and   

  

3.1.3 III 3. Description of the algorithm used in Deganutti [2020]:  

  

The SuMD consists of a series of short unbiased MD simulation segments.  

The length of each simulation segment’s run depends on the ligand-protein distance of the 

previous simulation segment. According to the authors of 3, 5, and 8 Å distance regimes are  

‘normally’ appropriate to distinguish the simulation length in time to use. The multiplicative values 

are tabulated for the seven interactions in the article, for example   

Complex  Δt_0(ps)  D_1 (Å)  N_t_1  D_2(Å)  N_t_2  D_3 (Å)  N_t_3  

Adenosine  A1  

receptor - adenosin  

100  3  4  5  10  8  20  

  

The algorithm in the Adenosine A1 receptor – Adenosin unbinding SuMD simulation segment 

generation, for ligand–protein distance smaller that 3 Å  uses a 100 ps time window for each run. In 

the 3-5 Å range a four-fold, in 5-8 Å a 10, for higher than 8 Å a 20-fold increase is applied to the 100 



 

ps base MD time window as the next simulation segment’s length. That is 100, 400, 1000, 2000 ps 

window length runs for the different distance regimes.22  

The unbinding simulation segment runs thus are iterated until no ligand–protein van der Waals 

contact is detected23. The authors use the ligand and the protein’s specific residue center of masses to 

measure distances. 24  For example in the Adenosine A1 receptor - Adenosine unbinding SuMD 

simulation the center of mass of th S61.29 to K301 8.56protein residues define the distance form the 

Adenosin’s one.25  

In each simulation segment the ligand-protein distance is collected at regular time intervals. If the 

resulting slope of a fitted linear function (distance vs. time) is positive (a heuristic, showing sign of 

advancing in the unbinding process), the next simulation segment is started from the last set of 

coordinates and velocities produced by the previous segment; otherwise, the simulation is restarted 

by randomly26 assigning the atomic velocities to the coordinates of the previous segment.   

Results:  

The SuMD was repeated three times, for 

each seven interaction in the right list. The 

authors claim that without the input of any 

energy bias to facilitate the dissociation 

mechanism of druglike small molecules were 

successfully simulated by their modified 

supervised MD (SuMD) algorithm. This 

approach sheds light on the multistep nature of 

ligand–receptor dissociation, can rationalize 

previous experimental data and elaborate for 

structure–kinetics relationships hypothesizes 

to be tested.   

                                                 

22 Table S2 [Deganutti 2020 Supp]  
23 GetContacts script https://getcontacts.github.io/  
24 PLUMED 2 [Tribello 2014]  
25 Table S3 [Deganutti 2020 Supp]  
26 a point of extreem interest how realxation is applied here b the authors if they do, wheter thay chec the voelocity of the 

center of mass of the small molecule if compatible with expectations of statistical mechanics.    

  

List of unbinding simulated by Deganutti  

[2020] 



 

 



 

    

  

  

The authors propose:  

• rescaling the simulation time to kinetically rank similar compounds in 

SuMD   

• rescaling the simulation time to a priori valuation of the ratio of the total and 

the productive SuMD simulation time needed for dissociating structurally 

related compounds.  

• combine SuMD with other adaptive sampling methods to yield in the 

construction of kinetic Markov state models.   

• to reconstruct the energy surface of the transitions  over path collective 

variable  resulting from SuMD  

In Deganutti [2021 pr.pr] four SuMD simulations of the ACE2:RBD complex 

and the RBD:cefsulodin:ACE2 ternary complex was performed respectively with 6 

FDA-approved drugs prescreen from 2421.  

Simulation predicted to binding to the SARS-CoV-2 S glycoprotein RBD for  

(cefsulodin, cromoglycate, nafamostat, nilotinib, penuridol, and radotinib  

  

3.1.4 III 4. Description of the algorithm used in Deganutti 

[2021]:  

25 Å away from initial distance between the centroid of RBD residue Q493 and 

the centroid of ACE2 residues K31, E35, with 2 ns monitoring frequency until  7 

Å, then 200 ns final sequence MD run.  

For the initial complex configuration of RBD:cefsulodin was from a post 

docking MD simulation of 500 ns.  

  

Results:  



 

Simulation predicted to binding to the SARS-CoV-2 S glycoprotein RBD for  

(cefsulodin, cromoglycate, nafamostat, nilotinib, penuridol, and radotinib  

In particular the SuMD, the overall binding path between the two proteins by 

the presence of cefsulodin in the RBD pocket during the approach to ACE2 was 

different.  

  

In [Bissaro 2021] SuMD simulated the Influenza A promoter,HIV-1 

RevREE complex ,SAH riboswitch ,PreQ1 riboswitch,PreQ1 riboswitch, Corn 

aptamer.   

  

3.1.5 Description of the algorithm used in Bissaro [2021]:  

  

Segments are 600 ps unbiased MD trajectories, approaching segments are 

defined by the ligand center of mass with respect to the ribonucleic acid binding 

site distances periodic relevations’ fitted slope against time. For negative slope, the  

segment deemed approaching. For approaching segments, the next segment’s 

simulation is a proper MD continuation, its initial conditions are coincident to the 

final conditions.  

For non approaching segments, the next segment’s simulation is restarted from 

the previous set of coordinates but  randomly assigning new atomic velocities.  

Termination condition is a ligand-ribonucleic binding site distance below 5 Å,  a 

short (cc. 15 ns ?) classical MD simulation was performed, allowing the system to 

relax.  10 runs of SuMD  simulations were collected for each experimental biding 

setup.   

  

Simulation efficiency of is the ratio of number of approaching segments and all 

segments simulated.   



 

Also, a technical note on the performance of SuMD was reported, from which 

we computed the Simulation efficiency, which remarkably low for  SAH 

riboswitch, and predominantly in the 200% are:  

  

Ribonucleic 

Systems  
Simulated 

atoms  

SuMD time  

 (ns)  
Simulation 

efficiency  

total MD segment 

time  
(ns)  

Performance 

(ns/day)  

Influenza 

 A 

promoter  
66944  27  226%  61  102  

HIV-1  Rev- 
REE complex   

80339  32  147%  47  92  

SAH  
riboswitch  

70801  23  113%  26  103  

PreQ1 

riboswitch  
47286  34  206%  70  141  

PreQ1 

riboswitch  
48514  32  191%  61  139  

Corn aptamer  103591  29  203%  59  67  

  

  

3—3  

  

The authors valuate SuMD as a valid computational method to generate binding 

hypothesis for ribonucleic targets in a nanosecond timescale. considering flexibility 

of the macromolecule the role of solvent.  Help  interpretation and investigation of 

the complex mechanism of recognition characterizing guide, rational discovery and 

optimization of the compounds in question.  



 

  

  

   

     



 

3.1.6 Summary table of Molecular Dynamics Simulation and 

SuMD parameters used in the literature:  

    

  

Cuzzolin  

2014  

    Deganutti  

[2021  

Deganutti  

[2021  

  

    Transme 

mbrane Systems  
Globular  

Systems  
  spike protein RBD  Post  Docking  

molecular 

dynamics 

simulations  

ACE2:RBD 

complex  

  

Force Field      AMBER14SB  
  Amber14SB27  Amber14SB/GA 

FF28  

Amber14SB  

box    VMD28 
membrane  
builder plugin, 

lipids  
within  

0.6  Å 

from amino acid 

atoms  were  

removed  

Cubic, 12 Å 

away from any 

protein or  

ligand atom  

  90 Å x 92 Å x 73  

Å  

77 Å x 95 Å x 71  

Å box  

124 Å x 117  

Å x 160 Å  

solvate    TIP3P,  

Solvate 1.0  

TIP3P 

water 

model.  

TIP3 

P, Solvate  

1.0  

TIP3P2930  TIP3P  TIP3P  

charge 

neutrality  

  Na+/Cl− 
counterions to a  
final  
concentration of  

0.154 M.  

Na+/Cl− 
counterions 
were  

added to a final 

salt 

concentration 

of 0.150 M  

Na+/ 
Cl− 
counterions 
to a final 
concentrati 

on of  
0.154 

M.  

two Cl- ions 

added  
Cl- or Na+ 

counterions 

added  

21 Na+ 

ions.  

 

                                                 

27  Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: 

Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J Chem Theory Comput 

11:3696–3713. doi: 10.1021/acs.jctc.5b00255  

  

28 Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in 

molecular mechanical calculations. J Mol Graph Model 25:247–260. doi: 10.1016/j.jmgm.2005.12.005 and 

Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general  

amber force eld. J Comput Chem 25:1157–1174. doi: 10.1002/jcc.20035  

29 Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple 

potential functions for simulating liquid water. J Chem Phys 79:926. doi: 10.1063/1.445869  

30 —5 



 

equilibration31    2000 

cycles  of 

 a  

conjugate 

gradient;  

10 ns of  
MD of  NPT  
ensemble, 
restraining  

ligand,  

protein atoms by 

a force constant 

of 1  

kcal  mol−1  

Å−2.  

2000 
steps with the 
conjugate 
gradient 
method;  

50,000 
steps of NVE  
(100 ps) 

followed  

by 1 ns of NPT 

simulation,  

(2fs), on 

protein , 

ligand  
atoms  harmonic 

positional 

constrain 

reduction by 

 scaling 

factor of 0.1.  

2000 

cycles of a 

conjugate 

gradient  
10 ns 

of 
 M
D,  
NPT  
ensemble, 
restraining 
ligan 

d  and  

protein 

atoms by a 

force 

constant of  

1  kcal  

mol−1 Å−2.  

34  ACEMD ACEMD  

3x 100ns  

ACEM 

D 200ns  

    T=310 K by 
Langevin 
thermostat 

32  low  

damping 

constant= 1  

ps−1  

Pressure   
at 1 atm 

using a  

Langevin 
thermostat 

33  low  

damping 

constant= 1  

ps−1  

Pressure at  

1  atm  by  

Berendsen 

barostat34  

Langevi 
n  
thermos 

tat35 low 

damping 

constant 

= 1 ps−1  

Pressure 
at 1 atm 
by  
Berends 

en  

   Restraints  
applied to 
protein alpha 
carbon  

atoms  with  

gradually 

released in2 ns  

generalized  
Born  and 
surface area 
continuum 
solvation36  

(MMPBSA.p 

y)  

 
 

Berendsen 

barostat  
 barostat 

39  
   

Simulation  

MD  

        4 fs, canonical 

ensemble (NVT).  
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33  Loncharich, R. J.; Brooks, B. R.; Pastor, R. W. Langevin Dynamicsof Peptides: The Frictional 
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34 Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular Dynamics 

with Coupling to an External Bath. J. Chem. Phys. 1984, 81, 3684−3690.  

35  Loncharich, R. J.; Brooks, B. R.; Pastor, R. W. Langevin Dynamicsof Peptides: The Frictional 

Dependence of Isomerization Rates of NAcetylalanyl- N’-Methylamide. Biopolymers 1992, 32, 523−535.  
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thermostat 

damping  

        0.1 ps-1;  
    

cut-off distance 

 for 

electrostatic 

interactions  

        9  Å, 

switching function 

applied beyond 7.5 

Å.  

    

Long  range 

Coulomb  

interactions  

        particle  
mesh  Ewald  
summation  

method  
(PME),  
41m.spacing  1.0 Å.  

    

  

  

  

4   
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