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Recent studies confirmed that people unexposed to SARS-CoV-2 have preexisting
reactivity, probably due to previous exposure to widely circulating common cold
coronaviruses. Such preexistent reactivity against SARS-CoV-2 comes from memory
T cells that can specifically recognize a SARS-CoV-2 epitope of structural and non-
structural proteins and the homologous epitopes from common cold coronaviruses.
Therefore, it is important to understand the SARS-CoV-2 cross-reactivity by
investigating these protein sequence similarities with those of different circulating
coronaviruses. In addition, the emerging SARS-CoV-2 variants lead to an intense
interest in whether mutations in proteins (especially in the spike) could potentially
compromise vaccine effectiveness. Since it is not clear that the differences in clinical
outcomes are caused by common cold coronaviruses, a deeper investigation on cross-
reactive T-cell immunity to SARS-CoV-2 is crucial to examine the differential COVID-19
symptoms and vaccine performance. Therefore, the present study can be a starting point
for further research on cross-reactive T cell recognition between circulating common cold
coronaviruses and SARS-CoV-2, including the most recent variants Delta and Omicron. In
the end, a deep learning approach, based on Siamese networks, is proposed to accurately
and efficiently calculate a BLAST-like similarity score between protein sequences.
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INTRODUCTION

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes COVID-19 disease,
which is often particularly severe in elderly patients associated with risk factors (Chen et al., 2020a). It
was identified for the first time in January 2020 in patients suffering from pneumonia (Chen et al.,
2020a); in the meantime, it has emerged as a pandemic pathogen causing more than 250 million
confirmed cases and more than five million deaths worldwide (https://coronavirus.jhu.edu, assessed
19.11.21).

SARS-CoV-2 has a positive viral RNA genome expressing open-reading frames that code
for structural and non-structural proteins (NSPs) (Zhong et al., 2005; Cui et al., 2019; Huang
et al., 2020). The ORF1a and ORF1ab in the genomic RNA encode for various NSPs at the 5′
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terminal and few structural proteins at the 3′ terminal. The
structural ones include spike (S), nucleocapsid (N),
membrane (M), and envelope (E) proteins (Raj, 2021). The
S protein is characterized by different immunodominant sites
(Zhou et al., 2005; Cao et al., 2010; Huang et al., 2020; Raj,
2021) and consists of two subunits: the S1 protein, containing
the receptor-binding domain (RBD), and the S2 protein
responsible for cell membrane fusion (Ren et al., 2003;
Bisht et al., 2004). The N protein is also immunogenic and
induces antibodies sooner than S after infection, a
characteristic that makes it interesting for diagnostic
assays (Meyer et al., 2014). Immunogenicity of other
structural proteins has been less investigated: the relatively
small M protein was found to have immunogenic epitopes,
but titers generally increase later than 21 days after infection.
Instead, responses to the E protein have been rarely detected
so far. Conversely, in the study by Liu et al. (2007), anti–M
antibodies were detected at 10 days post onset, while
detection of anti-N and anti-S increased later. The
translated polypeptides of ORF1ab are processed into
approximately 1–15 NSPs with specific roles in the life
cycle and pathogenicity of the virus (Raj, 2021).

Several studies have reported that some people unexposed to
SARS-CoV-2 have preexisting reactivity to SARS-CoV-2
sequences (Mateus et al., 2020). The immunological
mechanisms underlying this preexistent reactivity seem to be
linked to previous exposure to widely circulating common cold
coronaviruses (Mateus et al., 2020). Natural and experimental
infection studies in humans investigated the cross-reactivity
within distinct genera of coronaviruses (Huang et al., 2020). The
Coronavirinae subfamily includes four distinct genera: the
alpha- and beta-CoV family, which usually infects mammals
and humans, and the gamma- and delta-CoV family, which
generally infects birds. From the 1960s to the present time, seven
coronaviruses have been documented to generate infection in
humans (Ahsan et al., 2021). Among such seven human
coronaviruses (HCoVs), two HCoVs (229E and NL63) belong
to the alpha-HCoVs, whereas the other five (OC43, SARS,
HKU1, MERS, and SARS-2) are beta-HCoVs (Ahsan et al.,
2021). The natural hosts for most of the HCoVs are bats (Lau
et al., 2020), with the only exception of HCoV-OC43 and
HCoV-HKU1, which originated in mice (Cui et al., 2019).
The bat-originated HCoVs include the four structural
proteins mentioned above, while in mice-originated HCoVs,
one more structural protein called hemagglutinin-esterase (HE)
is observed. However, it is not entirely clear that the direct origin
of SARS-CoV-2 is from the bat. For instance, some studies
suggested the pangolin as a missing link between bats and
humans (Zhang et al., 2020). For entering into the host cell
and triggering infection, several human proteins assume the role
of viral receptors: angiotensin-converting enzyme 2 (ACE2) for
SARS-CoV (Li et al., 2003), SARS-CoV-2 (Hoffmann et al.,
2020), and HCoV-NL63 (Hofmann et al., 2005);
aminopeptidase N (APN) and dipeptidyl peptidase 4 (DPP4)
are entry receptors for HCoV-229E and MERS-CoV,
respectively; the mice-originated beta-CoVs HCoV-OC43 and
HCoV-HKU1 need 9-O-acetylated sialic acid (9-OASA) as a

viral receptor (Cui et al., 2019). The summary of these features is
reported in Figure 1.

As the circulating common cold HCoVs (i.e., OC43 and
HKU1) share some homologous sequences with SARS-CoV-2,
HCoV cross-reactive T-cell responses could influence the
susceptibility to SARS-CoV-2 infection and the course of
COVID-19 (Mateus et al., 2020). In the present study, we
have better investigated the genome similarities among the
HCoVs. Indeed, in the study by Mateus et al., (2020), it was
found that the preexisting reactivity against SARS-CoV-2 comes
from memory T cells and cross-reactive T cells can specifically
recognize a SARS-CoV-2 epitope and the homologous epitope
from circulating common cold HCoVs. Specifically, CD4+ T cell
responses to S protein, the most important target for vaccine
development, were strongly correlated with the magnitude of the
anti-SARS-CoV-2 IgG and IgA titers (Gussow et al., 2020a).
However, as reported (Grifoni et al., 2020; Kundu et al., 2022), not
only S protein but also M and N proteins accounted for 11%–27%
of the total CD4+ response, with additional significant responses
directed against nsp3, nsp4, nsp12, ORF3a, and ORF8. Regarding
SARS-CoV-2 CD8+ T cell responses, S and M were both
recognized and significant reactivity was also noted for nsp6,
ORF3a, and N, which comprised nearly 50% of the total CD8+

T cell response. These findings underline the importance of
determining the impacts of preexisting immune memory in
COVID-19 disease severity, particularly to better and quickly
investigate the emerging variants that may have an impact on the
virus transmissibility and pathogenicity. Computational studies
could be effective to examine the most recent Delta and Omicron
variants. For instance, in a recent study (Kumar et al., 2021), it has
been found that the Omicron S protein has a higher affinity for
human angiotensin-converting enzyme 2 (ACE2) than the Delta
variant due to a significant number of mutations in the SARS-
CoV-2 receptor-binding domain (RBD), indicating higher
potential for transmission. In this context, future efforts are
needed to investigate the epidemiological and biological
consequences of the variants. Starting with this assumption,
we investigated the similarities among the S protein sequences
of the SARS-CoV-2 (including wild type, Omicron, and Delta)
and the other HCoVs, with particular attention to S proteins, to
better understand the cross-reactivity of SARS-CoV-2 and other
circulating HCoVs. This is an important starting point for
exploring the pattern of immunodominance in COVID-19, for
interpreting its pathogenesis, and for the calibration of pandemic
control measures. This is why we performed systematic sequence
alignments on structural proteins and NSPs among SARS-CoV-2
and all the other HCoVs listed in Figure 1.

Following this analysis, we have trained and tested a neural
network model for aligning protein structures. The network is a
Siamese long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) model trained to score the alignments
based on BLAST supervisions and tested on the set of
COVID-19 proteins previously analyzed. We obtained very
promising results, showing that neural networks can be a
useful resource for scoring alignments, with lower
computational demand than traditional methods, such as
BLAST itself.
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MATERIALS AND METHODS

The NCBI SARS-CoV-2 database (MM1) provides many useful
COVID-related resources and data, among which the SARS-
CoV-2 and other human coronavirus sequences were used in
this study. In particular, our data set comprises sequences of two
alpha-HCoVs, 229E and NL63, and five beta-HCoVS: OC43,
HKU1, MERS-CoV, SARS-CoV, and SARS-CoV-2. Alignments
were performed with BLAST (Zhang et al., 20002000) (MM2),
both on the complete genome of the viruses and more specific
protein-coding regions. The first experiment started with the
multiple sequence alignment of the whole genomes of the SARS-
CoV-2 and the other coronaviruses in our data set. Then, each
coronavirus genome was independently aligned with the genome
of SARS-CoV-2, evaluating the percentage sequence identity and
homology. In the second experiment, which was also carried out
with BLAST, the percentage sequence identity and homology of
subsequences coding for specific structural and non-structural
proteins were evaluated. The complete list of proteins of SARS-
CoV-2 is available on the NCBI SARS-CoV-2 database (U.S.
National Library of Medicine, 2019), and the used BLASTn and
BLASTp parameters are shown in Table 1. Alignments were
carried out for each of the proteins (genes) of SARS-CoV-2:
ORF1ab polyprotein (ORF1ab), ORF1a polyprotein (ORF1a),
spike glycoprotein (S), ORF3a protein (ORF3a), envelope

protein (E), membrane glycoprotein (M), ORF6 protein
(ORF6), ORF7a protein (ORF7a), ORF7b protein (ORF7b),
ORF8 protein (ORF8), nucleocapsid protein (N), and ORF10
protein (ORF10). Finally, a multiple sequence alignment, among
all considered alpha- and beta-HCoVS, was performed based on
CLUSTAL to obtain a percent identity matrix and a similarity
phylogram tree, constructed by using the neighbor-joining
method.

After the traditional experimentation, we performed machine
learning (ML) experiments to replicate the same alignments with
an artificial intelligence technique. To efficiently process our
sequences, we resorted to LSTM (Hochreiter and
Schmidhuber, 1997) networks: a type of neural network which
has been used for sequential data processing for more than
20 years, in a wide variety of applications, including many
biological tasks. In particular, in order to perform pairwise
alignments of protein sequences, we built a Siamese LSTM.
Indeed, Siamese networks (Bromley et al., 1993) are neural
networks comprising two identical modules. The network
takes pairs of examples as the input, feeding one example to
each module. Siamese neural networks are specialized in the
regression of distance between the two given examples. Weight
sharing allows training the network to extract the information it
needs for distance estimation while keeping the two modules
identical throughout the process. In our case, we exploit this

FIGURE 1 | Basic features of seven HCoVs. The two blue panels list alpha-HCoVs and the five orange panels list beta-HCoVs. All the boxes include the year of
identification, receptor, and major proteins. Two beta-HCoVs (HCoV-OC43 and HCoV-HKU1) originate in mice and contain hemagglutinin-esterase (HE) structural
protein along with S, E, M, and N. Other five HCoVs originated in bats and have four major structural proteins S, E, M, and N.
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paradigm for estimating the similarity score of the two sequences
we are aligning, as the complementary of their distance.

To train and validate the neural network, we built a data set of
examples based on the NCBI (NCBI Resource Coordinators,
2016) protein clusters (https://www.ncbi.nlm.nih.gov/
proteinclusters). Each cluster comprises similar proteins up to
a specific level of homology. This allowed us to build a data set
with a relatively homogeneous and balanced distribution of
distances between examples (number of pairs proportional to
similarity), as shown in Figure 2. In particular, we sampled
proteins from each of the following NCBI protein clusters:
CHL002, CHL005, CHL008, CHL009, CHL204, CHL206,
PLN4514, PLN4516, PLN4517, PLN4518, PLN4519, PLN0009,
PLN0009, PLN0010, PLN0012, PLN0068, PLN0083, PLN0084,
PLN0089, and PLN0091. Since 58% (35 out of 60) of COVID
proteins have amino acid length between aminimum of 100 and a
maximum of 550, the proteins in the clusters were filtered by
length, keeping only the proteins matching this length range. This
strategy allowed us to build a Siamese network which can better
compare COVID proteins. After filtering, we obtained a data set
of 109 proteins, with different lengths, distributed as in Figure 3.
The 109 proteins have been then aligned with BLASTp, using the
same parameters as in the previous experiments, and we obtained
a data set of pairwise alignments comprising 1978 pairs.

The data set of 1978 protein pairs was split using a pseudo-
random split generator into a training set, covering 80% of the
examples (1,582 alignments), and a validation set, covering 20%
of the examples (396 alignments). The latter set is used to search

for the best hyperparameter values and a first assessment of the
model performance. The real evaluation is carried out on the test
set comprising COVID-19 sequences, which corresponds to the
set of sequences from the previous experimentation.

The network and the experimentation code were written in
Python language, using Keras (https://keras.io/) and Scikit-learn
(Pedregosa et al., 2011) libraries. The neural network
hyperparameters were selected after a grid search. Each
Siamese module comprises a single 32-unit LSTM layer, with
an input size of 550 × 21. The dimension of 21 depends on the
number of amino acids (20) plus a character corresponding to an
error in the protein sequencing or to an unknown amino acid.
These 21 characters are one-hot encoded to form each protein
sequence; sequences shorter than 550 are padded with a dedicated
one-hot value. The representations coming from the twomodules
are combined by a merged layer, followed by a normalization
layer. Finally, a single dense layer with ReLu activation estimates
the distance between the two elements of the pair. The network is
trained for 100 epochs, with batch size 32, mean squared error
loss and Adam optimizer (Kingma and Ba, 2014).

RESULTS

The circulating common cold HCoVs, usually responsible for
mild respiratory symptoms and characterized by a low case
fatality rate (CFR) (Gussow et al., 2020a), share partial
sequence homology with SARS-CoV-2 and are extensively
widespread in the population (Mateus et al., 2020). A deeper
knowledge of preexisting cross-reactive T cell immunity to SARS-
CoV-2 has broad implications because it could explain aspects of
differential COVID-19 clinical outcomes, influence
epidemiological models of herd immunity, or affect the
performance of COVID-19 vaccines. Thus, we have first
investigated potential similarities among the HCoV complete
genome: the alpha-CoV 229E (NC_002645, 27317 base pair (bp))
and NL63 (JX504050, 27553 bp), the beta-CoV SARS-CoV-2
(MW494315 complete genome isolated in New York City,
United States, 29903 bp), OC43 (NC_006213, 30741 bp),
HKU1 (KF686346,29982 bp), MERS-CoV (NC_019843, 30119
bp), and SARS-CoV (NC_004718, 2 9751 bp). Our selection of
the SARS-CoV-2 complete genome is based on recent studies that
provided a first analysis of the SARS-CoV-2 viral genotypes
collected from patients living in the NYC metropolitan area,
an international hub that provides a picture of COVID-19
pandemic dynamics at the global level (Gonzalez-Reiche et al.,
2020; Butler et al., 2021). The alignment of SARS-CoV-2 and the
other HCoVs was obtained by BLAST. As expected, the higher

TABLE 1 | Parameters used in BLASTn and BLASTp in the alignment of the coronavirus genomes and proteins.

BLASTn BLASTp

Word size 28 Word size 3
Gap cost Linear Gap cost Existence: 11 Extension: 1
Match/mismatch score 1, −2 Matrix BLOSUM62

Compositional adjustment Conditional score matrix adjustment

FIGURE 2 | Distribution of similarity between pairs of examples in the
data set. The number of pairs is proportional to similarity.
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sequence identity for the SARS-CoV-2 complete genome resulted
with SARS-CoV (Identity 82%, Query cover 89%, and Gaps 1%),
followed by HKU1 (Identity 72% but very low Query cover 5%)
and by NL63 (Identity 72% but very low Query cover 2%). To
obtain a whole picture of the similarities among all the considered
viral strains, by performing a multiple sequence alignment
(MSA), a percent identity matrix for all the sequences was
generated (Figure 4A), and a similarity phylogram tree,

confirming other phylogenetic analyses (Gussow et al., 2020b;
Heinz and Stiasny, 2020; Jaimes et al., 2020; Chen et al., 2021;
DingLiuJiaFung, 2021; Eguia et al., 2021), was created using the
neighbor-joining algorithm (Figure 4B). For more details about
the MSA, see Supplementary Materials (1. Schematic matches/
mismatches of HCoV genomes and the whole MSA).

Each of the most closely related pairs of sequences is aligned to
each other. Next, each new alignment is analyzed to build a
sequence profile. Finally, alignment profiles are aligned to each
other or to other sequences until a full alignment is built. Again,
the higher sequence identity for the SARS-CoV-2 complete
genome appeared to be with SARS-CoV (identity 80.04%),
followed by MERS (56.93%) and the two beta-HCoVs, HcoV-
C43 and HcoV-HKU1 (50.49 and 51.59%, respectively). The
alpha-CoVs, HcoV-229E and HcoV-NL63, had lower identity
values with respect to MERS, SARS-CoV, and SARS-CoV-2,
despite which they showed 68.31% of identity each other.
HCoV-OC43 and HCoV-HKU1 showed an identity equal to
73.38% of each other, followed by HCoV-229E and HCoV-NL63
(about 53%) and the high-CFR HCoVs (MERS, SARS-CoV, and
SARS-CoV-2) with values around 50%. Figure 4B shows the
phylogram of the HCoVs. A phylogram is a scaled phylogenetic
tree in which the branch lengths are proportional to the amount
of evolutionary divergence. Specifically, the branch length is
determined by the number of nucleotide substitutions that
have occurred after branching. If the branch lengths are
proportional to the number of character changes, it is possible
to notice the high similarity between the alpha-CoVs 229E and

FIGURE 3 | Distribution of protein sequence length in the data set.

FIGURE 4 | Percent identity matrix. In (A), the percent identity matrix is reported, which shows the% of identities among the HCoVs. In (B), the similarity phylogram
tree is shown. The branch length is proportional to the number of nucleotide substitutions, that is, to the number of evolutionary events that took place after the
branching point.
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TABLE 2 | Protein sequence alignment results. Amino acid sequence alignment between the mentioned SARS-CoV-2 proteins and the other HCoVs. “—” in the column
“Epitopes” indicates that no epitope has been reported in IEDB.

Structural/
Non-
structural
proteins

Protein HCoV Accession %
Query
cover

E-value %
Identity

%
Gaps

Epitopes

Non-structural
proteins

Nsp3 (YP_009725299) SARS-CoV-2 229E AGT21366 66 5e-55 28 14 —

NL63 AFD98833 49 1e-48 28 12 —

OC43 YP_009924321 74 1e-152 30 6 —

HKU1 YP_009944271 75 1e-142 29 6 —

MERS YP_009047231 95 0 31 9 —

SARS-
CoV

NP_828862 100 0 76 1 —

Nsp4 (YP_009725300) SARS-CoV-2 229E AGT21366 92 3e-46 27 8 —

NL63 AFD98833 96 2e-53 29 10 —

OC43 YP_009924322 95 5e-142 43 2 —

HKU1 YP_459935 99 6e-137 42 2 —

MERS YP_009047232 98 3e-142 40 1 —

SARS-
CoV

NP_904322 100 0 80 0 —

Nsp6 (YP_009725302) SARS-CoV-2 229E AGT21366 85 e-28 31 7 —

NL63 AFD98833 80 6e-28 31 3 —

OC43 YP_009924324 100 5e-44 32 4 —

HKU1 YP_009944274 100 1e-44 30 2 —

MERS YP_009047218 100 6e-57 56 4 —

SARS-
CoV

YP_009944371 98 0 88 0 —

Nsp12 (YP_009725307) SARS-CoV-2 229E ALJ99946 30 5e-129 64 0 —

NL63 AIW52827 99 0 59 0 —

OC43 AIW52827 99 0 66 0 —

HKU1 AXT92527 99 0 67 0 —

MERS ATU80202 13 3e-60 69 0 —

SARS-
CoV

— 100 0 96 0 —

ORF3a (YP_009724391) SARS-CoV-2
Epitope: LLYDANYFL

229E — — — — — —

NL63 AFO70498 — — — — PLTARGRVA
OC43 — — — — — —

HKU1 AXT92527 — — — — MKYHPNTVD
MERS AKQ21056 — — — — PLYVPE
SARS-
CoV

AAP41038 100 8e-156 72 0 LLYDANYFV

ORF7a (YP_009724395) SARS-CoV-2
Epitope: QLRARSVSPKLFIRQEEVQELY

229E — — — — — —

NL63 — — — — — —

OC43 — — — — — —

HKU1 — — — — — —

MERS — — — — — —

SARS-
CoV

AAP41038 — — — — QIGGYSEDRHSGVKDYVVVHGYF

ORF8 (YP_009724396) SARS-CoV-2
Epitope: IRVGARKSAPLIEL

229E — — — — — —

NL63 — — — — — —

OC43 — — — — — —

HKU1 AZS52623 — — — — VPV-HMPVHPMVMP
MERS AVV62534 — — — — LEQ-DQKLTSLSEL
SARS-
CoV

AAP41043 31 0,001 30 15 YEG-NSPFHPLADN

Structural
proteins

S (YP_009724390) SARS-CoV-2 Epitope:
QYIKWPWYIW

229E CAA71056 57 1e-111 31 12 TYIK
NL63 QEG59362 60 2e-104 31 13 n.a.
OC43 AIX10763 89 4e-142 38 5 YYVKWPWYVW
HKU1 AGW27863 70 9e-141 35 6 MYVKWPWYVW
MERS QBM11748 78 e-177 35 7 YYNKWPWYIW
SARS-
CoV

AAR86775 100 0 76 2 QYIKWPWYVW

N (YP_009724397) SARS-CoV-2
Epitope: SPRWYFYYL

229E AGW80953 65 6e-24 29 12 SPKLHFYYL
NL63 ABK63972 13 9e-14 47 1 PPKVHFYYP
OC43 YP_009555245 74 6e-55 38 14 LPRWYFYYL
HKU1 AKQ21062 — — — — APRWYFYYT

(Continued on following page)
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NL63 (number of mismatches about 3,400) and between the beta-
CoVs with low-CFR (Gussow et al., 2020a) HKU1 and OC43
(number of mismatches about 2,900). Phylogenetically, SARS-
CoV and SARS-CoV-2 share a most recent common ancestor
within the subgenus Sarbecovirus (number of mismatches about
4,400) and are relatively distant to MERS-CoV (belonging to the
subgenus Merbecovirus) in the genus Betacoronavirus (Chen
et al., 2021).

In the case of T cell responses, no obvious pattern of antigen
specificity was observed based on SARS-CoV-2 genome
organization (Grifoni et al., 2020). Starting from this
assumption, we better focused this study on the exploration of

the similarity among different HCoV proteins, involved in CD4+

and CD8+ T cell responses. As reported in the study by Grifoni
et al. (2020), the structural proteins S, M, and N are involved in
CD4+ T cell response. Moreover, it is not negligible, and the
additional significant response is directed against NSPs, such as
nsp3, nsp4, nsp12, ORF3a, and ORF8 (Grifoni et al., 2020).
Regarding SARS-CoV-2 CD8+ T cell responses, S and M were
both recognized and significant reactivity was also observed for
nsp6, ORF3a, and N (Grifoni et al., 2020). These data indicate that
optimal vaccine T cell response to SARS-CoV-2 might benefit
from additional classes of epitopes, such as the ones derived from
the above-listed structural and non-structural proteins. This is the

TABLE 2 | (Continued) Protein sequence alignment results. Amino acid sequence alignment between the mentioned SARS-CoV-2 proteins and the other HCoVs. “—” in the
column “Epitopes” indicates that no epitope has been reported in IEDB.

Structural/
Non-
structural
proteins

Protein HCoV Accession %
Query
cover

E-value %
Identity

%
Gaps

Epitopes

MERS QBM11755 91 5e-93 48 6 APRWYFYYT
SARS-
CoV

AYV99827 100 0 91 0 SPRWYFYYL

M (QQD86931) SARS-CoV-2 Epitope:
KEITVATSRTLSYYK

229E QNT54758 99 2e-25 31 3 EYMTVAVPSTTIIYS
NL63 AFV53151 90 2e-36 31 4 KYVIVATPSTTIVCD
OC43 AAA45462 95 4e-55 41 0 AYMTVAKVTHLCTYK
HKU1 YP_173241 93 3e-51 36 0 VYVTVAKVQVLCTYK
MERS AHX00737 90 2e-61 43 0 NEVTVAKPNVLIALK
SARS-
CoV

ACZ72273 100 3e-154 90 0 KEITVATSRTLSYYK

FIGURE 5 | Percent identity matrix. In A, the percent identity matrix is reported, which shows the % of identities among the S proteins of HCoVs.
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reason why we performed amino acid sequence alignment
between the mentioned SARS-CoV-2 proteins and the other
HCoVs (summarized in Table 2) with the aim of
understanding their similarities in all HCoVs as a starting
point for further epitope studies. In addition, preliminary
identification of epitopes in SARS-CoV-2 was carried out
using the Immune Epitope Database (IEDB) (https://www.
iedb.org/). Experimental data on epitopes tested in the major
number of T cell assays have been selected in the context of
infectious diseases such as SARS-CoV-2 and then an alignment of
the retrieved epitopes with homologous regions in other
coronaviruses was performed. The obtained results are listed
in Table 2. Moreover, the complete alignment is reported in
the Supplementary Material, section 3.

Thus, to evaluate the potential for cross-reactivity, we
compared the structural and non-structural protein sequence
homology among SARS-CoV-2 and the other HCoVs: MERS-
CoV, SARS-CoV, HCoV-OC43, and HCoV-HKU1 and the
alpha-CoVs HCoV-229E and HcoV-HKU1-NL63. The
sequence alignments revealed a higher identity % of S, N, and
M proteins between SARS-CoV-2 and SARS-CoV, followed by
MERS for N and M proteins, and HCoV-OC43 for S protein,
although the identity is only about 38%. Among the common cold
HCoVs, HCoV-OC43 was found to have the most similar
sequence for SARS-CoV-2 structural proteins. For ORF3a and
ORF8, similarity was found only between SARS-CoV-2 and
SARS-CoV, whereas no similarity was retrieved for ORF7a. As
far as it concerns nsp3, nsp4, and nsp6, the amino acid sequence
alignment showed higher identity for SARS-CoV, followed by
MERS and HCoV-OC43. In the case of nsp12, the results for
HCoV-HKU1 and HCoV-OC43 were quite comparable with
high Query cover (99%) and Identity (67 and 66%,
respectively). Similar to what has been observed with the
genome alignment, the alpha-CoVs shared the smallest
sequence identity and sequence coverage with SARS-CoV-2
structural and non-structural proteins.

This multiple alignment investigation could also be extended
to the “variant of concern” (VOC) for SARS-CoV-2 (such as
Delta and Omicron), which refers to viral variants with mutations

in their spike protein receptor-binding domain (RBD) that
dramatically improve binding affinity in the RBD-hACE2
complex, while also causing fast dissemination in human
populations (Kumar et al., 2021).

The S protein mediates the attachment of the virus to host
cell-surface receptors and the fusion between virus and cell
membranes. It is also the principal target of neutralizing
antibodies generated following infection by SARS-CoV-2.
Consequently, mutations that affect the antigenicity of the S
protein are of particular importance. Thus, we have focused our
attention on the S protein—see Supplementary Materials (3.
Spike MSA)—in order to better investigate the similarities/
differences in protein sequences among different HCoVs,
including SARS-CoV-2 S and the most recent variants
Omicron and Delta. We can confirm a lower sequence
identity among alpha-CoVs and SARS-CoV-2. Moreover,
concerning variants Delta_QWK65230.1 and
Omicron_7QO9, the latter shared a smaller S protein
sequence identity than the former (99.37 and 93.02%,
respectively) (Figure 5). This trend holds true also for the
higher sequence identity of Delta variants with the other
HCoVs in comparison to Omicron, with the only exception
constituted by the alpha-CoVs. Such smaller sequence identity
between Omicron and SARS-CoV-2 S proteins could lead to
significant changes, especially in the RBD region, that might
contribute to high binding specificity with hACE2, which in
turn may result in a higher transmission rate and considerable
impact on pathogenesis when compared to the Delta variant.

The distance estimation experiments with Siamese LSTMs also
showed very promising results. After selecting the best
hyperparameters with a grid search over the validation set, the
best model (described in Section 3) obtained an error of 0.48% on
the validation set itself. Evaluating the same model on the
COVID-19 test set confirmed the quality of the model on data
it had not been adapted to, showing an error rate of 8%, as
reported in Table 3.

The Siamese network has been trained to estimate the distance
obtained from BLAST in the following way:

si � iipci,

where si is the measure of the similarity obtained from the
multiplication of the BLAST identity score, ii, by its cover
score, ci, with respect to the ith sequence. After that, we
calculated the value of the distance as the complementary of
similarity:

di � 1 − si.

TABLE 3 | Error score of the Siamese network on training, validation, and COVID
proteins sets.

% Error on the
Training set

0.4

% error on validation set 0.48
% error on coronavirus set 8

TABLE 4 | Best comparison of BLAST and the Siamese network distance score in COVID protein set after filtering the test data set.

Protein HCoV Blast distance Siamese distance

Nsp4 SARS-CoV-2 OC43 0.6 0.65
MERS 0.2 0.1
SARS-CoV 0.14 0.22

ORF3a SARS-CoV-2 SARS-CoV 0.28 0.07
N SARS-CoV-2 MERS 0.56 0.4

SARS-CoV 0.09 0.09
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The results of the network are as close to the BLAST score as
the proteins represent near homologous conditions. The training
set proteins contain highly conserved pairs. Conversely, the score
of protein pairs which are far homologous is hardly calculated by
the network.

In Table 4 the best alignment scores are reported. However, by
choosing a larger training set containing more pairs of proteins
with a lower degree of homology, it is possible to approximate the
more accurate BLAST score.

DISCUSSION

Grifoni et al. (2020) suggested that a COVID-19 vaccine
consisting only of SARS-CoV-2 S protein would be able to
elicit SARS-CoV-2–specific CD4+ T cell responses. However,
the data also indicate that there are many potential CD4+

T cell targets in SARS-CoV-2, and the inclusion of additional
SARS-CoV-2 structural antigens such as M and N would better
mimic the natural SARS-CoV-2–specific CD4+ T cell response.
Concerning SARS-CoV-2 CD8+ T cell responses, the S protein
was an important target. SARS-CoV-2 M was just as strongly
recognized, and significant reactivity was observed for other
antigens (nsp6, ORF3a, and N), which comprised nearly 50%
of the total CD8+ T cell response. Starting from this assumption,
we have first performed a sequence alignment to better
understand the complete genome similarity among the HCoVs
and then we focused our attention on each protein involved in
T cell response. By means of sequence alignment, we investigated
the potential cross-reactive immunity to HCoVs of structural and
non-structural proteins.

Structural Proteins
• S protein: it is a type I transmembrane N-linked
glycosylated protein (150–200 kDa) consisting of 1,273
amino acids and displays a varying degree of
conservation across the Coronaviridae family (Yadav
et al., 2021). As reported in Table 2, the sequence
identity of S protein in SARS-CoV-2 to other beta-
HCoVs goes from 35% (for HKU1 and MERS) to 76%
for SARS-CoV, while it is lower (31%) for alpha-HCoVs,
with a higher number of gaps found. Among the common
cold HCoVs, characterized from low-CFR, the HCoV-OC43
was found to have the most similar S sequence to SARS-
CoV-2, despite 38% of identity. Delta_QWK65230.1 and
Omicron_7QO9 shared a sequence identity of, respectively,
99.37 and 93.02% with SARS-CoV-2. These results
suggested that the Omicron variant, characterized by
multiple mutations in the S protein, could reduce
antibody neutralization and vaccine protection from
infection.

• N protein: it is complexed in the structural organization of
the nucleocapsid comprising three highly conserved
domains (Yadav et al., 2021). SARS-CoV-2 is most
similar to SARS-CoV, harboring sequence homology of
91% in N protein, followed by MERS-CoV (48%).
Among the common cold beta-HCoVs, HCoV-OC43

shares the higher percentage of Query cover and gaps
(respectively 74 and 14%). Differently, between the
alpha-HCoVs, 229E resulted to have 65% of query cover
and 29% of identity, whereas NL63 showed, respectively, 13
and 47%. No alignment is observed for HCoV-HKU1.

• M protein: it is an O-linked glycoprotein of around
25–30 kDa and is the most abundant among various
structural proteins (Yadav et al., 2021). It facilitates the
molecular assembly of virus particles and may be involved
during pathogenesis. The M protein identity in SARS-CoV-
2 was 90%, followed by MERS and HCoV-OC43. Regarding
alpha-HCoVs, HCoV-229E and HCoV-NL63 share,
respectively, 99 and 90% of query cover. Conversely, the
sequence identity is lower.

Non-Structural Proteins
• Nsp3: it is the largest protein encoded by the CoV genome,
and the average molecular mass is around 200 kD, which is
very important in the replication/transcription complex (Lei
et al., 2018). SARS-CoV and MERS were found to have high
query cover and 76 and 31% of sequence identity,
respectively. Among common cold beta-HCoVs, OC43
and HKU1 have a query cover-up than 70%, but only 30
and 29% of sequence identity. The alpha-HCovs 229E and
NL63 showed lower values of query cover and identity.

• Nsp4: it has an essential role in replication and in the
assembly of the replicative structures (Raj, 2021). As
reported in Table 2, nsp4 was found to have the highest
identity values in SARS-CoV (80%) and in HCoV-OC43
(43%) among the beta-HCoVs with a low percentage of gaps
too. In alpha-HCoVs, the sequence identity of NL63 is 29%
and in 229E is 27%, with a query cover value more than 90%.

• Nsp6: it generates autophagosomes from the endoplasmic
reticulum and is involved in autophagy (Raj, 2021). Nsp6
showed high query cover values. The sequence identity was
found to be 88% in SARS-CoV, followed by MERS, OC43,
and HKU1 (56, 32, and 30%). The query cover value is 100%
in OC43, HKU1, and MERS and 98% in SARS-CoV.

• Nsp12: it is the RNA-dependent RNA polymerase, the
central component of coronaviral replication and
transcription machinery (Raj, 2021). The nsp12 query
cover is around 99% in the beta-HCoVs, with the only
exception of MERS. As far as it concerns the identity, in
SARS-CoV, it is 96%, while in the other beta-HCoVs, it goes
from 66% (HCoV-OC43) to 69% (HCoV-MERS). In the
alpha-HCoVs, the sequence identity is lower.

• ORF3a, ORF7a, and ORF8: ORF3a plays a fundamental
role in virus replication and release, ORF7a is a viral
structural protein, and ORF8 is an accessory protein
correlated with the ability of the virus to spread (Pereira,
2020). These ORFs are specific for SARS-CoV and do not
show significant homology to proteins of other HCoVs.

Identification of conserved epitopes in structural and non-
structural proteins is of strong interest to help design broad-
spectrum vaccines against the present outbreak of SARS-CoV-2.
Indeed, high-affinity neutralizing antibodies against conserved
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epitopes could provide immunity to SARS-CoV-2 and protection
against future pandemic viruses. Our systematic MSA analysis of
all structural and non-structural proteins allowed a better
investigation of sequence similarities, and it is a starting point
for a deeper epitope analysis (see Supplementary Material,
section 3 for S protein MSA and epitope visualization). The %
identity of all the proteins is summarized above, in particular the
sequence alignments revealed a higher identity % of S, N, and M
proteins between SARS-CoV-2 and SARS-CoV, followed by
MERS, HCoV-OC43, and HCoV-HKU1. In nsp3, nsp4, and
nsp6, amino acid sequence alignment showed a higher identity
for SARS-CoV, followed by MERS and HCoV-OC43, whereas,
concerning ORF3a and ORF8, the similarity was found only
between SARS-CoV-2 and SARS-CoV, and no identity was found
for ORF7a. In several studies, it has already been shown that the
vast majority of N protein epitopes are characterized by low rates
of evolutions. For the S protein, epitopes are preferentially located
in regions that are predicted to be ordered and well-conserved
andmay help develop long-lasting, broad-spectrum SARS-CoV-2
vaccines (Chen et al., 2020b; Forcelloni et al., 2020). Owing to our
alignment experiments carried out with Siamese LSTM neural
networks, it was possible to show that such an alternative
technique provides very low error rates and could be a
starting point for further epitope investigation. This approach
also became effective for the potential emerging SARS-CoV-2
variant investigation. Moreover, it could be a model applicable
not only for SARS-CoV-2 but also for other biological queries.

CONCLUSION

A preexisting immune memory due to exposure to common cold
HCoVs seems to have a significant impact on the COVID-19
disease severity, thus suggesting the fundamental role of the
protein sequence similarities with different circulating
coronaviruses to understand SARS-CoV-2 cross-reactivity.

As expected, the sequence alignments revealed a higher
identity % of S, N, and M proteins between SARS-CoV-2 and
SARS-CoV, followed by MERS. Among the common cold
HCoVs, HCoV-OC43 was found to have the most similar
structural proteins to SARS-CoV-2 involved in T cell
responses, followed by HCoV-HKU1. Regarding NSPs, nsp3,
nsp4, and nsp6, amino acid sequence alignment showed a
higher identity for SARS-CoV, followed by MERS and HCoV-
OC43, with the only exception of nsp12, which was found to have
a higher query cover and identity in the cases of HCoV-HKU1
and HCoV-OC43. Concerning ORF3a and ORF8, the similarity
was found only between SARS-CoV-2 and SARS-CoV, whereas
no identity was found for ORF7a. Similar to what was observed
with genome alignments, the alpha-CoVs shared smaller
sequence identity and sequence coverage with SARS-CoV-2 in
structural and non-structural proteins. In conclusion, the aims of
this work are as follows:
1. To perform MSA of both structural and non-structural

proteins in a systematic way. The punctual list of identity

(%) could be helpful in addressing deeper studies on cross-
reactive epitopes. A deeper investigation of cross-reactive
T-cell immunity to SARS-CoV-2 has extensive
implications in differential COVID-19 clinical outcomes
and can influence the performance of COVID-19 vaccines.
Structural proteins and NSPs are involved in CD4+ and
CD8+ T cell response; thus, we have better examined the
similarity of their amino acid sequence across HCoVs as a
starting point for further studies about cross-reactive
T-cell recognition between circulating common cold
HCoVs and SARS-CoV-2.

2. Finally, alignment experiments carried out with the Siamese
LSTM neural networks showed that artificial intelligence
techniques show very low error rates with respect to the
ground truth provided by BLAST. This indicates that such
models are competitive with the traditional methods for pair
alignment, being less expensive in terms of computational
costs. Taking into account that we align sequences of
comparable length and n being the length of the longest
one andm the number of units in the LSTM layer, BLAST has
a time complexity of O (n2), while the Siamese network has a
time complexity in the order of O (n×m), with m << n. Being
trained on BLAST supervisions with good results, our model
is competitive with BLAST, but it cannot be better than it.
Moreover, all the considerations made in the literature
concerning the BLAST alignment scores hold true for our
score. It is to be noted, though, that our model can be
repurposed, according to the needs of the user, by training
it on supervisions from any available alignment method.
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