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Abstract
A family of consistent tests, derived from a characterization of the probability gen-
erating function, is proposed for assessing Poissonity against a wide class of count 
distributions, which includes some of the most frequently adopted alternatives to the 
Poisson distribution. Actually, the family of test statistics is based on the difference 
between the plug-in estimator of the Poisson cumulative distribution function and 
the empirical cumulative distribution function. The test statistics have an intuitive 
and simple form and are asymptotically normally distributed, allowing a straightfor-
ward implementation of the test. The finite sample properties of the test are investi-
gated by means of an extensive simulation study. The test shows satisfactory behav-
iour compared to other tests with known limit distribution.

Keywords  Asymptotics · Consistent test · Normal distribution · Poissonity · 
Probability generating function

MSC Classification  62G10 · 62G20 · 62E10

Antonio Di Noia, Marzia Marcheselli, Caterina Pisani and Luca Pratelli have contributed equally to 
this work.

 *	 Caterina Pisani 
	 caterina.pisani@unisi.it

	 Antonio Di Noia 
	 antonio.dinoia@student.unisi.it

	 Marzia Marcheselli 
	 marzia.marcheselli@unisi.it

	 Luca Pratelli 
	 luca_pratelli@marina.difesa.it

1	 Department of Economics and Statistics, University of Siena, P.za San Francesco 8, 
53100 Siena, Italy

2	 Naval Academy, Viale Italia 72, 57100 Livorno, Italy
3	 NBFC, National Biodiversity Future Center, 90133 Palermo, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10182-023-00478-8&domain=pdf
http://orcid.org/0000-0001-8456-3449


210	 A. Di Noia et al.

1 3

1  Introduction

Assessing the Poissonity assumption is a relevant issue of statistical inference, 
both because Poisson distribution has an impressive list of applications in biol-
ogy, epidemiology, physics, and queue theory (see e.g. Johnson et al 2005; Puig 
and Weiß 2020) and because it is a preliminary step in order to apply many popu-
lar statistical models. The use of the probability generating function (p.g.f.) has 
a long tradition (see e.g. Kocherlakota and Kocherlakota 1986; Meintanis and 
Bassiakos 2005; Rémillard and Theodorescu 2000) for testing discrete distribu-
tions and some omnibus procedures based on the p.g.f. have been proposed for 
Poissonity (e.g. Nakamura and Pérez-Abreu 1993; Baringhaus and Henze 1992; 
Rueda and O’Reilly 1999; Gürtler and Henze 2000; Meintanis and Nikitin 2008; 
Inglot 2019; Puig and Weiß 2020). Omnibus tests are particularly appealing since 
they are consistent against all possible alternative distributions but they com-
monly have a non-trivial asymptotic behavior. Moreover, the distribution of the 
test statistic may depend on the unknown value of the Poisson parameter, imply-
ing the necessity to use computationally intensive bootstrap, jackknife, or other 
resampling methods to approximate it. On the other hand, Poissonity tests against 
specific alternatives may achieve high power but rely on the knowledge of what 
deviations from Poissonity can occur. An alternative approach, proposed by 
Meintanis and Nikitin (2008), is to consider tests with suitable asymptotic prop-
erties with respect to a fairly wide class of alternatives, which are also the most 
likely when dealing with the Poissonity assumption.

In this paper, by referring to the same class of alternative distributions and by 
using the characterization of the Poisson distribution based on its p.g.f., we propose 
a family of consistent and asymptotically normally distributed test statistics, based 
on the difference between the plug-in estimator of the Poisson cumulative distribu-
tion function (c.d.f.) and the empirical c.d.f., and a data-driven procedure for the 
choice of the parameter indexing the statistics. In particular, the test statistics not 
only have an intuitive interpretation but, being simple to compute, allow a straight-
forward implementation of the test and lead to test procedures with satisfactory per-
formance also in presence of contiguous alternatives.

2 � Characterization of the Poisson distribution

Let X be a random variable (r.v.) taking natural values with probability mass func-
tion pX and E[X] = � . Moreover, let ΨX(t) = E[tX] , with t ∈ [0, 1] , be the p.g.f. of X. 
Following Meintanis and Nikitin (2008), we consider the class of count distributions 
Δ such that

is not negative for any t ∈ [0, 1] or not positive for any t ∈ [0, 1] for all 𝜇 > 0 , where 
Ψ�

X
(t) is the first order derivative of the p.g.f..

D(t,�) = Ψ�
X
(t) − �ΨX(t)
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As proven by Meintanis and Nikitin (2008), this class contains many popu-
lar alternatives to the Poisson distribution, such as the Binomial distribution, the 
Negative Binomial distribution, the generalized Hermite distribution, the Zero-
Inflated and generalized Poisson distribution, among others.

It must be pointed out that D(t,�) = 0 for any t ∈ [0, 1] and for some 𝜇 > 0 if 
and only if X is a Poisson r.v.. This characterization allows to construct a good-
ness of fit test for Poissonity against alternatives belonging to the class Δ , that is 
for the hypothesis system

where Π� denotes the Poisson distribution with parameter � . In particular, Meintanis 
and Nikitin (2008) adopt the previous characterization to construct a consistent test 
for the Poisson distribution by means of the empirical counterpart of D(t,�) suitably 
weighted. An alternative approach can be based on the L1 distance of D(t,�) from 0, 
whose positive values evidence departures from Poissonity. The following Proposi-
tion, giving bounds for this distance, provides insight into the introduction of a fam-
ily of test statistics.

Proposition 1  For any natural number k, let fk(�) = e−�(1 +…+
�k

k!
). For any 

X ∈ Δ and for any 𝜇 > 0 , it holds

where T (k) = fk(�) − pX(0)(1 +…+
�k

k!
). In particular, for k = 0,

Proof  Since X ∈ Δ

As D(t,�)e−�t = {ΨX(t)e
−�t}� , then

By dividing and multiplying for 1 +…+
�k

k!
 , the thesis immediately follows. 	�  ◻

H0 ∶ X ∈ Π𝜇, for some 𝜇 > 0

H1 ∶ X ∈ Δ

(1)
1

1 +…+
�k

k!

|T (k)| ≤ �
1

0

|D(t,�)| dt ≤e�|T (k)|,

|e−� − pX(0)| ≤ �
1

0

|D(t,�)| dt ≤e� |e−� − pX(0)|.

|
|�

1

0

D(t,�)e−�t dt|| ≤ �
1

0

|D(t,�)| dt = �
1

0

e�t|D(t,�)e−�t| dt

≤ e� �
1

0

|D(t,�)e−�t| dt = e�||�
1

0

D(t,�)e−�t dt||.

∫
1

0

D(t,�)e−�t dt = e−� − pX(0).
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Thanks to inequality (1), a family of test statistics, indexed by k and depending 
on an estimator of

can be defined. Note that fk(�) and pX(0)(1 +…+
�k

k!
) are equal to P(X ≤ k) when X 

belongs to Π� and obviously T (k) ≠ 0 for some k ≥ 0 iff X is not a Poisson r.v. iff T (0) ≠ 0.

3 � The test statistic

Given a random sample X1,… ,Xn from X, let Xn be the sample mean and

The simplest test statistic arises from the estimator T̂ (0) = e−Xn − p̂X(0) of T (0) . This 
statistic is really appealing also owing to its straightforward interpretation, being 
based on the comparison of the probability that X takes value zero with the probabil-
ity of zero for a Poisson r.v. Unfortunately, its performance may be not satisfactory, 
especially when the sample size is small while � is relatively large, as the estimation 
of pX(0) becomes even more crucial.

Nevertheless, for k > 0 , as T (k) = T (0)(1 +…+
�k

k!
) , the natural estimator of 

T (k) , given by T̂ (0)(1 +…+
Xn

k

k!
) , suffers from the same drawbacks of T̂ (0) . To 

avoid the estimation of pX(0) , since pX(0)(1 +…+
�k

k!
) is equal to P(X ≤ k) under 

H0 , the following estimator of T (k) is proposed

where

It is worth noting that, since k is a fixed natural number (often k = 0 ), 
√
nT̂ (k)

n
 is the 

k-th r.v. of the estimated (discrete) empirical process introduced by Henze (1996) for 
dealing with goodness-of-fit tests for discrete distributions and also considered by 
Gürtler and Henze (2000) in their critical synopsis of several procedures for assess-
ing Poissonity. However, as 

√
nT̂ (k)

n
 is a r.v., its asymptotic distribution can be eas-

ily derived from classical Central Limit Theorems under very mild assumptions, as 
shown in the following Proposition.

Proposition 2  Let X be a r.v. with Var[X] finite and k be a fixed natural number. Let

T (k) = fk(�) − pX(0)(1 +…+
�k

k!
)

p̂X(0) =
I(X1 = 0) +… + I(Xn = 0)

n
.

T̂ (k)
n

= fk(Xn) − Fn(k),

Fn(k) =
I(X1 ≤ k) +… + I(Xn ≤ k)

n
.
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If X ∈ Π� then V (k)
n

 converges in distribution to N(0, �2
�,k
) as n → ∞ , where

Moreover, if rk = P(X ≤ k) − fk(�) ≠ 0 for some k,  namely X is not a Poisson r.v., 
then |V (k)

n
| converges in probability to ∞.

Proof  Note that f �
k
(�) = −e−�

�k

k!
. Owing to the Delta Method

where g is the function defined by x ↦ −e−�
�k

k!
(x − �) − {I(x ≤ k) − P(X ≤ k)} . 

When X ∈ Π� , rk = 0 , E[g(X)] = 0 and E[o2
P
(1)] is o(1) since 

|fk(Xn) − fk(�)| ≤ |Xn − �|. Then, under H0 , V (k)
n

 converges in distribution to 
N(0, Var [g(X)]) owing to the Central Limit Theorem. Moreover, since

and

relation (2), and consequently the first part of the proposition, is proven.
Now, let X be a r.v. such that rk ≠ 0 , in particular X is not a Poisson r.v.. Thus, 

|V (k)
n
| converges in probability to ∞ because g(X1)+…+g(Xn)√

n
+ oP(1) is bounded in prob-

ability and 
√
n�rk� converges to ∞ . The second part of the proposition is so proven. 	

� ◻

Thanks to Proposition 2, fixed a natural number k ≥ 0 and under the null hypoth-
esis H0 , 

√
n T̂ (k)

n
∕��,k converges to N(0, 1) . Therefore, an estimator of ��,k is needed 

to define the test statistic. As the plug-in estimator

V (k)
n

=
√
n T̂ (k)

n
.

(2)�2

�,k
= Var

[

e
−� �

k

k!
X + I(X ≤ k)

]

= f
k
(�){1 − f

k
(�)} −

e
−2��2k+1

(k!) 2
.

V (k)
n

=
√
n{fk(Xn) − fk(�) + fk(�) − Fn(k)}

= −
√
n{e−�

�k

k!
(Xn − �) + Fn(k) − fk(�)} + oP(1)

=
g(X1) +… + g(Xn)

√
n

−
√
nrk + oP(1),

Var [g(X)] =
e−2��2k+1

(k!)2
+ fk(�){1 − fk(�)} + 2e−�

�k

k!
Cov

[
X, I(X ≤ k)

]

Cov
[
X, I(X ≤ k)

]
=

k∑

j=1

e−��j

(j − 1)!
− �fk(�) = −e−�

�k+1

k!
,

�̃2
n,k

= e−2Xn

{(
1 +…+

X
k

n

k!

)(
eXn − 1 −…−

X
k

n

k!

)
−

X
2k+1

n

(k!)2

}
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converges a.s. and in quadratic mean to �2
�,k

 , for any natural number k, the test statis-
tic turns out to be

An �-level large sample test rejects H0 for realizations of the test statistic whose 
absolute values are greater than z1−�∕2 , where z1−�∕2 denotes the 1 − �∕2-quantile of 
the standard normal distribution.

Corollary 1  Under H1 , for any natural number k such that P(X ≤ k) − fk(�) ≠ 0 , Zn,k 
converges in probability to ∞.

Proof  As �̃2
n,k

 converges a.s. to �2
�,k

 , the proof immediately follows from the second 
part of Proposition 2. 	�  ◻

It is at once apparent that Zn,k actually constitutes a family of test statistics giving 

rise to consistent test for k = 0 and for all the other values of k for which there is a dis-
crepancy between the cumulative distribution of the Poisson and of X. Among this fam-
ily of test statistics, only Zn,0 belongs to the family of the Poisson zero indexes (Weiß 
et al 2019). It is particularly attractive owing to its simplicity but, as already pointed 
out, its finite-sample performance may deteriorate, especially if the sample size is small 
and � is relatively large. Therefore, the selection of the parameter k ensuring consist-
ency and good discriminatory capability is crucial and a data-driven selection criterion 
is proposed.

4 � Data‑driven choice of k

An heuristic, relatively simple, criterion for choosing k is based on the relative discrep-
ancy measure T (k)

n
∕fk(�) which can be estimated by �̃n,k

fk(Xn)
√
n
Zn,k . Recalling that, under 

H0 , Zn,k is approximately a standard normal r.v. also for moderate sample size, as 
�̃n,k

fk(Xn)
√
n
 converges a.s. to 0 when n → ∞ , for any fixed n, k may be selected in a such a 

way that �̃n,k

fk(Xn)
√
n
 is not negligible. This choice should ensure both high power and an 

actual significance level close to the nominal one. To this purpose, note that the func-
tion � ↦ fk(�) is decreasing for any k and if � ≥ 1 , it holds f 2

k
(�)∕fk(1) ≤ fk(�) and 

supk 1∕fk(�) = 1∕f0(1) = e . Then k can be selected as the smallest natural number such 
that �̃n,k

f 2
k
(Xn)

√
n
 is not greater than e when Xn ≥ 1 , that is

Zn,k =

√
n T̂ (k)

n

�̃n,k
.

k∗
n
= min

�

k ≥ 0 ∶ I(Xn ≥ 1)
�̃n,k

f 2
k
(Xn)

√
n
≤ e

�

.
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Notwithstanding k∗
n
 converges a.s. to 0 since �̃n,k ≤ 1∕2 from (2), the convergence 

rate may be very slow for large values of � in such a way that k∗
n
 can be rather larger 

than 0 even for large sample sizes. Finally, by considering the test statistic corre-
sponding to k∗

n

its asymptotic behaviour can be obtained. Obviously in this case 
√
n T̂

(k∗
n
)

n  is no more 
a r.v. belonging to the estimated empirical process (Henze 1996).

Corollary 2  Under H0 , Wn converges in distribution to N(0, 1) as n → ∞ and, under 
H1 , Wn converges in probability to ∞.

Proof  Since k∗
n
 converges to 0, Wn and Zn,0 have the same asymptotic behaviour and 

the proof immediately follows from Proposition 2 and Corollary 1. 	�  ◻

It is worth noting that the selection of k∗
n
 by means of the proposed data-driven 

criterion ensures consistency, maintaining the asymptotic normal distribution of the 
test statistic.

5 � Asymptotic behaviour under contiguous alternatives

The asymptotic behaviour of the proposed test is investigated for detecting Poisson 
departures from contiguous alternatives. More precisely, given a positive number � , 
for any n ≥ �2 , let X(n) be a mixture of r.v.s given by

where X ∈ Π� , Y is a positive random variable with E[Y] = � and E[Y2] < ∞ , 
X, Y , I(An) are independent and P(An) = (1 −

�
√
n
) . Roughly speaking, � represents a 

parameter quantifying the discrepancy between the distribution of X and the distri-
bution of X(n) . Obviously, for small � values detecting departures from Poisson is 
extremely difficult. Note that X(n) belongs to Δ if Y belongs to Δ and converges to a 
Poisson r.v..

Proposition 3  For any n ≥ �2 , given a random sample X(n)

1
,… ,X(n)

n
 from X(n) , for a 

fixed natural number k, let

where X
′

n
 and F′

n
 are the sample mean and the empirical cumulative distribution 

function. Then U(k)
n

 converges in distribution to N(�k, �
2
�,k
) as n → ∞ , where 

W
n
=

√
n T̂

(k∗
n
)

n

�̃
n,k∗

n

,

(3)X(n) ∼ I(An)X + I(Ac
n
)Y

U(k)
n

=
√
n
�
fk
�
X
�

n

�
− F�

n
(k)

�
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�k = −�{P(Y ≤ k) − fk(�)} . In particular U(k∗
n
)

n  , where k∗
n
 is obtained by the data-

driven criterion, is equivalent to U(0)
n

 , which converges in distribution to 
N(�{e−� − P(Y = 0)}, e−2�(e� − 1 − �)).

Proof  Note that |f ′′
k
| ≤ 2 for any k. Owing to the Taylor’s Theorem

Since

U(k)
n

 and gn(X
(n)

1
)+…+gn(X

(n)
n )

√
n

−
√
nrn,k have the same asymptotic behaviour, where gn is 

the function defined by x ↦ −e−�
�k

k!
(x − �) − {I(x ≤ k) − P(X(n) ≤ k)} and 

rn,k = P(X(n) ≤ k) − fk(�) . Since limn −
√
nrn,k = �∗

k
 , the thesis follows from the con-

vergence in distribution of gn(X
(n)

1
)+…+gn(X

(n)
n )

√
n

 to N(0, �2
�,k
). 	�  ◻

The previous proposition can be considered a non-parametric version of classical 
asymptotic analysis under the so-called shrinking alternative. Moreover, the test sta-
tistic has a local asymptotic normal distribution which is useful to highlight its dis-
criminatory capability under not trivial contiguous alternatives. In a parametric set-
ting, by means of Le Cam lemmas (Le Cam 2012), it could be possible to derive the 
limiting power function and to build an efficiency measure for test statistics. Clearly, 
in a non-parametric functional setting, a closed form of the power function is not 
available and must be assessed by means of simulation studies.

6 � Simulation study

The performance of the proposed test has been assessed by means of an extensive 
Monte Carlo simulation. First of all, fixed the nominal level � = 0.05 , the signifi-
cance level of the test is empirically evaluated, as the proportion of rejections of 
the null hypothesis, by independently generating 10000 samples of size n = 50 from 
Poisson distributions with � varying from 1 to 16 by 0.5. As early mentioned, the 
family of test statistics Zn,k depends on the parameter k and therefore, for any � , 
the empirical significance level is computed for k = 0, 1, 2, 3 and reported in Fig. 1. 
Simulation results confirm that for large values of � the empirical level is far from 
the nominal one even for a reasonably large sample size and that a data-driven pro-
cedure is needed to select k. Thus, the test statistic Wn is considered, and its per-
formance is compared to those of two tests having known asymptotic distributions: 
the test by Meintanis and Nikitin (2008), MNn , also recommended by Mijburgh and 

�
√
n {fk

�
X
�

n

�
− fk(�)} +

√
ne−�

�k

k!

�
X
�

n
− �)� ≤ √

n(X
�

n
− �)2

E
�√

n(X
�

n
− �)2

� ≤ � + Var[Y]
√
n

,
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Visagie (2020) to achieve good power against a large variety of deviations from the 
Poisson distribution, and the Fisher index of dispersion, IDn , which, owing to its 
simplicity, is often considered as a benchmark. The explicit ready-to-implement test 
statistic MNn has a non-trivial expression and it is based on ∫ 1

0
D(t,�)tadt, where a 

is a suitable parameter. MNn is proven to have an asymptotic normal distribution. In 
the simulation, a is set equal to 3 as suggested when there is no prior information on 
the alternative model. The Fisher index of dispersion test is performed as an asymp-
totic two-sided chi-square test and it is based on the extremely simple test statistic 
IDn =

∑n

i=1
(Xi − Xn)

2∕Xn.

Initially, given � = 0.05 , the three tests are compared by means of their empirical 
significance level computed generating 10000 samples of size n = 20, 50 from Pois-
son distributions with � varying from 1 to 16 by 0.5. From Fig. 2, it is worth noting 
that, even for the moderate sample size n = 20 , the test based on Wn captures the 
nominal significance level satisfactory, highlighting a rather good speed of conver-
gence to the normal distribution, also confirmed by the empirical level for n = 50 . 
The Fisher test shows an empirical significance level very close to the nominal one 
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Fig. 1   Proportion of rejections of the null hypothesis for the test based on Z
n,k for k = 0, 1, 2, 3 and 

n = 50 ( � = 0.05)
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even for n = 20 , except when � is small. The test based on MNn , on the contrary, 
maintains the nominal level of significance rather closely only for n = 50.

The null hypothesis of Poissonity is tested against the following alternative 
models (for details see Johnson et  al 2005): mixture of two Poisson denoted 
by MP(�1,�2) , Binomial by B(k, p) , Negative Binomial by NB(k, p) , General-
ized Hermite by GH(a, b, k) , Discrete Uniform in {0, 1,… , �} by DU(�) , Discrete 
Weibull by DW(q, �) , Logarithmic Series translated by -1 by LS−(�) , Logarithmic 
Series by LS(�) , Generalized Poisson denoted by GP(�1,�2) , Zero-inflated Bino-
mial denoted by ZB(k, p1, p2) , Zero-inflated Negative Binomial by ZNB(k, p1, p2) , 
Zero-inflated Poisson by ZP(�1,�2) . Various parameters values are considered 
(see Table 1). Moreover, the significance level of the tests is reported for Poisson 
distributions with � = 0.5, 1, 2, 5, 10, 15 . The alternatives considered in the simu-
lation study include overdispersed and underdispersed, heavy tails, mixtures and 
zero-inflated distributions together with distributions having mean close to vari-
ance. Some alternatives that do not belong to the class Δ , such as the logarithmic 
and shifted-logarithmic with parameters 0.7, 0.8, and 0.9 and the discrete uniform 
in {0, 1, 2, 3} , have been included to check the robustness of the Wn and MNn tests.

From each distribution, 10000 samples of size n = 20, 30, 50 are independently 
generated and, on each sample, the three tests are performed. The empirical power 
of each test is computed as the percentage of rejections of the null hypothesis. The 
simulation is implemented by using R Core Team (2021) and in particular the pack-
ages extraDistr, hermite and RNGforGPD.

Simulation results are reported in Table 1. The MNn test is somewhat too con-
servative for smaller sample sizes and the IDn test does not capture the significance 
level for small � , while Wn shows an empirical significance level rather close to the 
nominal one even for small sample size and small �.

As expected, also from the theoretical results by Janssen (2000), none of the three 
tests shows performance superior to the others for any alternative and for any sample 
size, and their power crucially depends on the set of parameters also for alternatives 
in the same class. Obviously, when the alternative model is very similar to a Poisson 
r.v., e.g. when the alternative is Binomial with k large and p small, or when dealing 
with the Poisson Mixtures or the Negative Binomial with k large, the power of all 
the tests predictably decreases. Low power is also observed against slightly overd-
ispersed or underdispersed discrete uniform distributions, while the power rapidly 
increases as overdispersion becomes more marked, with the performance of all three 
tests becoming comparable as n increases. For the Weibull distributions, the Wn test 
has a certain edge over its competitors, which, on the other hand, perform better 
when the generalized Poisson distributions are considered, even though their power 
is satisfactory only for GP(5, 0.4) . The power of the test based on Wn is the highest 
for all the logarithmic distributions, with less remarkable differences for � = 0.9 , 
while the three tests exhibit nearly the same power for the shifted log-normal dis-
tribution, where a decrease in the power of Wn occurs especially for n = 20 . As to 
the zero-inflated distributions, the three tests have a really unsatisfactory behaviour 
for ZNB(5, 0.9, 0.1) and ZP(1, 0.2) also for n = 50 , but Wn shows the best perfor-
mance for most of the remaining alternatives and sample sizes. Overall, the number 
of alternatives for which the three tests reach a power greater than 90% is almost 
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Table 1   Empirical power with 5% nominal significance level

Model W20 MN20 ID20 W30 MN30 ID30 W50 MN50 ID50

Π0.5 4.4 2.9 2.8 3.9 3.2 3.5 4.7 4.0 3.9
Π1 5.5 4.5 4.2 4.6 4.2 4.2 4.6 4.8 4.5
Π2 5.3 4.8 4.8 5.5 4.7 4.8 4.8 4.8 5.0
Π5 5.4 3.7 5.2 5.6 4.3 4.8 5.2 4.6 5.0
Π10 4.5 3.7 5.1 5.0 4.0 5.0 4.6 4.4 5.0
Π15 4.3 3.6 5.1 4.7 4.0 4.8 4.9 4.3 5.1
B(1, 0.5) 58.6 41.2 25.9 81.3 70.3 70.3 99.2 98.3 96.6
B(4, 0.25) 11.6 9.1 6.8 14.6 13.2 12.3 21.9 22.8 21.3
B(30, 0.1) 5.9 3.7 4.8 5.8 4.5 5.4 6.4 5.7 6.7
NB(1, 0.5) 41.2 50.1 50.1 55.2 65.6 65.8 76.8 84.4 83.9
NB(4, 0.75) 11.2 15.2 16.6 14.1 20.5 22.2 21.1 29.6 32.2
NB(10, 0.9) 5.9 6.3 6.6 5.6 7.1 7.6 6.5 8.4 9.1
GH(1, 1.25, 2) 18.6 50.2 43.5 27.0 65.2 58.4 43.7 84.1 78.8
GH(1, 1.5, 2) 21.6 53.1 46.8 32.1 68.4 61.5 51.4 86.4 81.4
GH(1, 1.75, 2) 22.3 54.9 48.5 35.1 70.1 64.0 58.9 87.8 83.8
DU(3) 5.9 1.9 2.7 4.6 2.2 3.7 6.2 2.2 6.3
DU(5) 6.8 18.7 4.9 9.4 26.8 6.2 15.6 41.9 8.9
DU(10) 35.5 87.9 71.7 54.9 96.1 86.9 83.2 99.7 97.3
DU(15) 56.6 98.1 95.3 78.9 99.8 99.1 97.4 100.0 100.0
DW(0.5, 3) 56.0 38.9 24.3 77.3 65.4 65.4 97.6 95.8 94.3
DW(0.8, 5) 100.0 99.7 99.0 100.0 100.0 100.0 100.0 100.0 100.0
LS−(0.6) 45.0 50.4 51.1 59.9 66.2 66.7 79.1 83.8 83.7
LS−(0.7) 63.3 70.0 70.1 79.0 84.9 85.0 93.9 96.3 96.0
LS−(0.8) 81.8 88.3 88.3 93.8 96.6 96.5 99.4 99.8 99.7
LS−(0.9) 94.9 98.7 98.6 99.2 99.9 99.9 100.0 100.0 100.0
LS(0.6) 92.0 48.2 37.0 98.4 58.4 39.9 100.0 71.8 42.9
LS(0.7) 79.8 25.4 32.1 92.0 27.1 36.0 99.1 29.8 42.5
LS(0.8) 76.5 35.3 56.0 88.9 41.1 68.7 97.9 51.8 82.9
LS(0.9) 91.7 83.2 91.5 97.8 92.9 97.4 99.9 98.9 99.8
GP(1, 0.1) 8.6 11.1 11.6 9.4 13.4 14.6 13.6 18.9 20.7
GP(3, 0.25) 21.9 42.8 45.6 31.7 56.7 59.6 48.2 75.8 79.3
GP(5, 0.4) 51.8 83.8 85.5 69.6 94.2 95.3 90.6 99.5 99.6
ZB(5, 0.9, 0.2) 21.5 49.6 14.6 43.5 57.7 13.6 75.4 72.4 13.2
ZB(5, 0.5, 0.3) 44.5 27.3 9.5 65.1 39.8 12.2 90.8 60.7 19.6
ZB(5, 0.4, 0.5) 67.5 53.1 36.3 85.7 74.4 53.9 98.2 94.1 78.1
ZNB(5, 0.9, 0.1) 6.9 7.3 7.7 8.3 9.7 10.1 10.6 12.8 13.4
ZNB(5, 0.5, 0.3) 68.8 99.6 98.5 87.9 100.0 99.9 98.5 100.0 100.0
ZNB(10, 0.4, 0.5) 97.5 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0
ZP(1, 0.2) 8.5 8.6 8.1 10.9 11.9 11.5 17.1 16.9 14.0
ZP(1.5, 0.3) 28.2 26.6 22.0 39.6 38.6 31.8 62.5 59.4 48.5
ZP(2, 0.5) 77.8 74.4 65.1 91.9 90.4 83.6 99.4 98.9 96.8
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the same for n = 20 and n = 30 . Interestingly, for n = 50 the proposed test reaches a 
power greater than 90% more frequently not only than the straightforward Fisher test 
but also than the Meintanis test, which is more complex to be implemented.

Finally, the discriminatory capability of the tests under contiguous alterna-
tives is evaluated. In particular, the tests based on Wn , MNn and IDn are consid-
ered and, for sake of brevity, let Pn be the power function corresponding to each 
test statistic. Obviously Pn is a function of � , where � ∈ ]0,

√
n[ , which ensures 

that the contiguous mixture never completely degenerates, keeping its mixture 
nature for any � . Hence a basic efficiency measure is the following

which evidently takes values in ]0, 1[ and, since Pn is not known, the Monte Carlo 
estimate

is considered, where �i = i� , with i = 1,… ,m and m ≤ ⌈

√
n

�
⌉ − 1 , for � sufficiently 

small, and P̂n is the empirical power.
To assess the performance of the three tests fairly, the alternative distribu-

tions of type (3) are obtained by selecting Y such that the tests achieve similar 
power when Y is the alternative distribution. In particular, Y is B(1, 0.5) and X 

rn =
1
√
n ∫

√
n

0

Pn(�)d�

r̂n =
1

m

m∑

i=1

P̂n(𝜆i)
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Fig. 3   Empirical power of W
n
 , MN

n
 and ID

n
 against shrinking alternative for n = 20 (on the left) and 

n = 50 (on the right)

Table 2   r
n
 with n = 20 and 

n = 50
W

n
MN

n
ID

n

n = 20 0.182 0.101 0.101
n = 50 0.461 0.387 0.404
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is Π0.5 . In this case, it should be noted that the behaviour of Wn coincides with 
that of the simpler version Zn,0 since k∗

n
= 0 almost surely. In Fig. 3 the empirical 

power as a function of � , computed on 10,000 independently generated sam-
ples, is reported for both n = 20 and n = 50 sample sizes and for � = 0.25 , and in 
Table 2 the corresponding values of r̂n are reported.

Graphical and numerical results show that, even if all the tests improve as n 
increases, the proposed test performs better for both sample sizes. In contrast, 
the IDn and MNn tests have very similar behaviour.

7 � Some applications in biodosimetry

Biodosimetry, the measurement of biological response to radiation, plays an impor-
tant role in accurately reconstructing the dose of radiation received by an individual 
by using biological markers, such as chromosomal abnormalities caused by radia-
tion. When radiation exposure occurs, the damage in DNA is randomly distributed 
between cells producing chromosome aberrations and the interest is the number of 
aberrations (generally dicentrics and/or rings) observed. The Poisson distribution 
is the most widely recognised and commonly used distribution for the number of 
recorded dicentrics or rings per cell (Ainsbury et al 2013) even though, due to the 
complexity of radiation exposure cases, other distributions may be suitably applied. 
Indeed, in presence of partial body irradiation, heterogeneous exposures, and expo-
sure to high Linear Energy Transfer radiations, the Poisson distribution does not fit 
properly and the distribution of the chromosome aberrations provides useful insight 
about the patient’s exposure. Therefore, when dealing with data coming from the 
framework of biodosimetry, a first necessary step consists of testing Poissonity.

Following Puig and Weiß (2020), we test Poissonity on the following datasets:

–	 Dataset 1: number of chromosome aberrations (dicentrics and rings) from a 
patient, exposed to radiation after the nuclear accident of Stamboliyski (Bul-
garia) in 2011;

–	 Dataset 2: total number of dicentrics from a male exposed to high doses of radia-
tion caused by the nuclear accident happened in Tokai-mura (Japan) in 1999;

–	 Dataset 3: total number of rings from a male exposed to high doses of radia-
tion caused by the nuclear accident happened in Tokai-mura (Japan) in 1999;

–	 Dataset 4: number of dicentrics observed from a healthy donor when exposed 
to 5 Gy of X rays;

–	 Dataset 5: number of dicentrics observed from a healthy donor when exposed 
to 7 Gy of X rays.

Data are reported in Table 3 and the values of the test statistic, together with the 
corresponding p-values, are given in Table 4. The test suggests that there are not 
noticeable departures from the Poisson distribution for Dataset 1 and Dataset 2, 
while for Dataset 3 the result of the test is statistically significant at 5% level. 
Finally, the p-values of the test for Dataset 4 and Dataset 5 reveal a strong evi-
dence against the null hypothesis of Poisson distributed data.
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8 � Discussion

Notwithstanding many tests for Poissonity are in literature, the proposed family 
of test statistics seems to be an appealing alternative in the absence of prior infor-
mation regarding the type of deviation from Poissonity. In particular, the statistics 
are rather simple and easily interpretable and the test implementation does not 
require intensive computational effort. Moreover, the test is consistent against any 
fixed alternative when k is equal to 0 and when it is selected using the data-driven 
criterion, that is k = k∗

n
 . For k = 0 the test statistic basically compares an estima-

tor of P(X = 0) assuming that X is Poisson with the relative frequency of 0 but the 
finite sample performance of the test may not be satisfactory, especially for small 
sample size and relatively large Poisson parameter. The performance improves for 
k∗
n
 , when the test juxtaposes the plug-in estimator of the cumulative distribution 

function of a Poisson r.v. and the empirical cumulative distribution function in k∗
n
 . 

Indeed, even if k∗
n
 converges a.s. to 0, the convergence rate may be very slow for 

large values of the Poisson parameter, and thus, even for large sample sizes, k∗
n
 

can be rather larger than 0. Finally, the simulation study shows that, with respect 
to the test by Meintanis and Nikitin (2008) and that based on the Fisher index of 
dispersion, the test based on k∗

n
 offers a rather satisfactory protection against a 

range of alternatives.

Funding  Open access funding provided by Università degli Studi di Siena within the CRUI-CARE 
Agreement.

Table 3   Frequency of the 
number of aberrations for 
datasets 1–5

Number of 
aberrations

Frequency

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

0 117 19 107 3 0
1 94 17 42 23 4
2 51 50 23 58 23
3 15 40 3 38 35
4 6 23 − 15 35
5 0 16 − 10 29
6 0 4 − 2 10
7 1 4 − 1 9
8 − 0 − − 4
9 − 2 − − 1

Table 4   Values of W
n
 and p 

values (in parenthesis) for the 
datasets in Table 3

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5

−1.5391 1.5377 −1.9705 4.0627 3.1270
(0.1237) (0.1241) (0.0488) (0.0000) (0.0018)
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