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Land use/land cover mapping is usually performed by classifying satel-
lite imagery (e.g., Landsat, Sentinel) for the whole survey region using classi-
fication algorithms implemented with training data. Subsequently, probabilis-
tic samples are usually implemented with the main purpose of assessing the
accuracy of these maps by comparing the map class and the ground condition
determined for the sampled units. The main proposal of this paper is to di-
rectly exploit these probabilistic samples to estimate the land use/land cover
class at any location of the survey region in a design-based framework by
the well-known nearest-neighbour interpolator. For the first time, the design-
based consistency of nearest-neighbour maps (i.e., categorical variables) is
theoretically proven and a pseudo-population bootstrap estimator of their pre-
cision is proposed and discussed. These nearest-neighbour maps provide the
ability to place mapping within a rigorous design-based inference framework,
in contrast to most traditional mapping approaches which often are imple-
mented with no inferential basis or by necessity (due to lack of a probabilistic
sample) model-based inference. A simulation study is performed on an esti-
mated land use map in Southern Tuscany (Italy)—taken as the true map—to
check the finite-sample performance of the proposal as well as the matching
of the area coverage estimates arising from the map with those achieved by
traditional estimators. The Italian land use map arising from the IUTI surveys
and the U.S. land cover map arising from the LCMAP program are consid-
ered as case studies.

1. Introduction. Land use/land cover (LULC) refer to the composition of land surface
by classes with different characteristics. Their knowledge is of basic importance in a wide
range of human activities such as scientific research, landscape management, and political de-
cisions. The National Research Council (2001) of the United States proclaimed land change
dynamics as one of the major challenges facing environmental science, and Turner, Lambim
and Reenberg (2007) further highlighted the critical importance of land change science. As
LULC varies in space, its mapping is an essential part of LULC analysis.

In the last few decades, LULC mapping is, in most cases, the product of satellite data,
whose costs are continuously decreasing owing to the continuous improvement of remote
sensing technologies and the launch of new satellites. In addition to the increasing availabil-
ity of remote sensing information, the improvement of computational facilities has allowed
the processing of large data sets even by small teams of researchers (e.g., Cihlar (2000), Al-
doski et al. (2020)). In this framework satellite data, acquired for the whole survey region,
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are transformed into LULC labels by a wide variety of image classification algorithms such
as decision trees (e.g., Hansen, Dubayah and De Fries (1996)), neural networks (e.g., Yool
(1998)), fuzzy classification (e.g., Mannan, Roy and Ray (1998)), mixture modelling (e.g.,
van der Meer (1995)), and many others (see, e.g., Nguyen et al. (2020)). At the end of these
classification procedures, LULC maps are produced, usually referred to as map data. These
classification algorithms are typically applied using a “training sample” that consists of a set
of locations for which the reference LULC class labels have been obtained where reference
labels are considered the best available assessment of ground conditions. These reference
labels along with the remote sensing-based covariates are then used to create the predictive
models that produce the class labels at all locations in the survey region. The training sample
is typically not a probability sample but instead is selected because of convenience or judg-
ment (e.g., Nguyen et al. (2020), Section 2.3.2). Finally, the last step of any LULC mapping is
an assessment of the quality of the resulting map. As stated by Cihlar (2000), “No land cover
classification project would be complete without an accuracy assessment.” In the traditional
assessments, the map labels are compared to the reference labels where the reference labels
represent the best assessment of ground condition. Because the reference labels are typically
more expensive and time consuming to obtain, it is impractical to completely census the
entire survey region, so assessments are usually performed using the reference class labels
recorded for a sample of locations. The most widely used summarization of these assessments
is the confusion matrix, that is, a cross-tabulation of the predicted classes at the sample points
against the reference class labels. Several synthetic measures are then derived from the con-
fusion matrix, in particular, measures of the accuracy regarding each class (Stehman (1997)).
If sample locations are selected by a probabilistic sampling scheme, the reference data also
allow—as a secondary aim—for the design-based estimation of the areas of LULC classes.
There is a vast literature dealing with the sampling strategies suitable for performing accu-
racy assessments (e.g., Fitzpatrick-Lins (1981), Stehman and Czaplewski (1998), Nusser and
Klaas (2003), Fattorini, Marcheselli and Pisani (2004), Stehman (2009), Stehman and Foody
(2019)).

A serious drawback of these assessment procedures is that they invariably provide esti-
mates of aggregate areas correctly classified or misclassified giving no insight on the preci-
sion of the map at any single point of the survey region. Uncertainty measures at any point
of the survey region have been proposed in literature and reviewed by Stehman and Foody
(2019, Section 4.7). These approaches are inherently model-based representations of per lo-
cation uncertainty. For example, the classification procedure of satellite data may produce
a measure of uncertainty for each location, such as the class membership probabilities of a
maximum likelihood classifier, or spatial modelling techniques could be applied to the valida-
tion sample data to generate a spatial map of uncertainty (e.g., Comber et al. (2013); Khatami,
Mountrakis and Stehman (2017); Rodríguez-Jeangros et al. (2016), (2017)). In general, the
importance of inference for LULC mapping applications has been emphasized (McRoberts
(2011)), and this includes inference for estimates of area coverage as well as for precision of
the map class labels at points in the study region.

The main proposal of this paper is to directly exploit reference data to construct LULC
maps in a design-based framework without the use of satellite data. Toward this end, we have
adapted the design-based treatment of the well-known nearest-neighbour (NN) interpolator,
recently proposed by Fattorini et al. (2022) for mapping a quantitative variable, to the inter-
polation of LULC classes. In addition to providing the NN LULC map, we have proposed a
quantification of the map precision at any point of the survey region in terms of the proba-
bility of assigning a wrong class. Then we have adapted the bootstrap procedure, originally
proposed by Fattorini et al. (2022) for estimating root mean squared errors of NN interpola-
tions, to the estimation of the error probabilities at any point of the survey region. In this way
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the procedure provides a map depicting the design-based precision at each point. Whereas
the traditional approach to mapping requires a training sample (typically not a probabilistic
sample) to produce the classification and an additional, separate probabilistic sample to as-
sess the accuracy of the resulting map. Conversely, our design-based proposal requires only
a probabilistic sample to produce the map and to estimate its precision. The design-based
assessment of the map precision at any point of the survey region also differs from the previ-
ously mentioned model-based procedures usually adopted for remote sensing-based maps.

As stated before, probabilistic samples are obtained in most LULC satellite-based surveys
to assess the accuracy of the resulting maps, and such a sample is, therefore, commonly
available to produce a design-based map. Moreover, probabilistic samples from which we
can achieve design-based NN maps, can be obtained from the first phases of most forest
inventories. Usually, forest inventories are performed by selecting a first-phase sample of
locations evenly distributed throughout the whole region, often by using spatially stratified
or systematic sampling schemes. Subsequently, the classes of these points are recorded from
aerial photos, thus providing the information for performing the NN interpolation, while only
forest points are considered in subsequent phases (e.g., Fattorini (2015); Rizzo and Gasparini
(2022)).

In Section 2 some preliminaries and notations are given about LULC maps. In Section 3
the theoretical results on the design-based NN interpolator achieved by Fattorini et al. (2022)
regarding quantitative variables are extended to categorical variables to prove the design-
based consistency of the LULC maps and to provide a pseudo-population bootstrap estimator
of the precision at any point of the survey region and within subregions. In Section 4 the
estimators of area coverage arising from the maps are theoretically compared with the tra-
ditional ones. In Section 5 a simulation study is performed on an estimated land use map in
Southern Tuscany (Italy)—taken as the true map—to check the finite-sample performance of
the proposal as well as the matching of the area estimates arising from the map with those
achieved by traditional estimators. In Section 6 the Italian land use map, arising from the
IUTI survey (Corona et al. (2012)), and the U.S. land cover map, arising from the LCMAP
program, are considered as case studies. Final remarks are provided in Section 7. Technical
details are provided by Appendices A and B in the Supplementary Material, Marcelli et al.
(2022b).

2. Preliminaries and notation. Denote by A the survey region of size |A|, partitioned
into K LULC classes c1, . . . , cK . For any point p ∈ A, let y(p) be the LULC class at p in
such a way that

(1)
{
y(p),p ∈ A

}
defines the LULC map of A. As exemplified in Figure 1, the survey region A is partitioned
into K sets, D1, . . . ,DK , where Dk = {p : p ∈ A,y(p) = ck} denotes the portion of the
survey region occupied by class ck . In a design-based approach, the LULC map is a fixed,
unknown characteristic of the survey region that must be estimated from the classes recorded
at the sampled locations rather than a realization of a spatial model, as assumed in model-
dependent approaches.

Regarding (1), it is at once apparent from Figure 1 that the map comprises disjoint regions
having constant values within regions, jumping from a class to another along borders, which
are sets of measure 0. Therefore, even with this categorical nature of the data, in mathematical
terms any LULC map can be viewed as a function that is continuous almost everywhere. This
feature will play an important role in determining the design-based inferential properties of
the NN LULC interpolator. In this framework denote by � = ⋃

k δDk the union of borders
where class changes occur and define a point p ∈ A to be a “boundary” point if p ∈ � and to
be an “interior” point if p ∈ A \ �.
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FIG. 1. Land use map in a square region located in Southern Tuscany (Italy) at the year 2008 estimated during
the IUTI survey. The five classes are those adopted in the IUTI classification.

3. Nearest-neighbour interpolation of land use/land cover maps. As stated in the In-
troduction, it is usually impractical to completely census the entire survey region. In most
cases the reference LULC classes are recorded at n sample locations P1, . . . ,Pn. Then a
criterion is necessary to estimate the LULC classes at any unsampled location p ∈ A. We
estimate LULC surfaces in a design-based framework in such a way that the properties of the
resulting maps are solely determined by the probabilistic sampling scheme implemented to
select the sample locations P1, . . . ,Pn.

For the interpolation of LULC classes, we modify the NN interpolator that was originally
developed by Fattorini et al. (2022) to estimate the values of a quantitative variable at non-
sampled locations. Therefore, the LULC class at a nonsampled location p ∈ A is estimated
by

(2) ŷ(p) = y(PNN(p)),

where PNN(p) = argmini=1,...,n ‖p − Pi‖ and ‖‖ denotes a norm in R
2. Based on (2), we

propose indices suitable for quantifying the precision of categorical maps (it should be no-
ticed that we refer to categorical maps because, unlike with choropleth/patch maps, our re-
gions are not predefined). Subsequently, based on these indices, we derive conditions ensur-
ing the design-based consistency of NN maps to support the statistical soundness of (2). To
this purpose, for each point p ∈ A denote by z(p) the random variable that is equal to 1 if
ŷ(p) �= y(p) and equal to 0 otherwise. Therefore, the expectation

(3) Err(p) = E
{
z(p)

} = Pr
{
ŷ(p) �= y(p)

}
gives the probability of providing a wrong interpolation at p and as such it can be taken
as a suitable index of the NN interpolator precision at p. Using (3), the precision can be
determined for the whole map or for any measurable subregion A0 ⊂ A by

(4) Err(A0) = 1

|A0|
∫
A0

Err(p)dp.

Based on (3) and (4), we define pointwise consistency of the NN interpolator at p ∈ A if

(5) lim
n→∞ Err(p) = 0,
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and we define consistency in mean if

(6) lim
n→∞ Err(A) = 0.

Without delving into the theoretical issues detailed in Appendix A of the Supplementary Ma-
terial (Marcelli et al. (2022b)), we have proven that consistency holds under suitable sampling
schemes at any interior point of the map, that is, almost everywhere. Hence, in these cases
consistency in mean holds.

In terms of the sampling schemes needed for consistency, in Appendix A of the Supple-
mentary Material (Marcelli et al. (2022b)) we have proven that consistency holds under those
schemes widely applied in environmental surveys, such as: (1) uniform random sampling
(URS) in which n locations are randomly and independently selected in the survey region,
(2) tessellation stratified sampling (TSS) in which the survey region is partitioned into n tas-
sels of equal size and one location is randomly selected within each patch, and (3) systematic
grid sampling (SGS) in which the survey region is partitioned into n regular polygons, one
location is randomly selected in one polygon and then repeated in the others. Moreover, in
Appendix A of the Supplementary Material (Marcelli et al. (2022b)) we have proven that, un-
der URS, the error probability at any inner point approaches zero at least as cn with c ∈ (0,1),
while under TSS and SGS, the error probability is definitively equal to 0 for a sufficiently
large sample size.

Regarding these schemes, SGS is widely used in forest surveys (e.g., Opsomer et al.
(2007), Tomppo, Gschwantner and McRoberts (2010)), even though its performance may
be worse than that of URS when spatial regularities occur. More recently, TSS has become
increasingly popular. It has been applied in the 2000–06 Italian National Forest Inventory
(Fattorini, Marcheselli and Pisani (2006)) and some years later in the USDA Forest Inven-
tory. TSS does not necessitate partitioning into regular polygons and does not suffer a loss of
precision under spatial regularities, as occurs under SGS.

Regarding the estimation of map precision, we adapt the procedure by Fattorini et al.
(2022), originally proposed to estimate the root mean squared errors of NN interpolations to
the estimation of the error probabilities (3). The procedure is based on a pseudo-population
bootstrap (PPB) approach in which a pseudo-population likely to resemble the true population
is constructed. Bootstrap samples are then selected from the pseudo-population using the
same sampling scheme adopted in the survey. Therefore, the key problem under PPB is to
reconstruct pseudo-populations able to mimic the characteristics of the unknown population
in such a way that the bootstrap distribution of any statistic can resemble the true distribution
with indices of precision approaching the true ones (e.g., Quatember (2015)).

Accordingly, to estimate (3) we pursue the idea by Fattorini et al. (2022) of using the
estimated maps as pseudo-populations from which bootstrap samples are selected using the
same spatial scheme adopted to select the original sample. Because under suitable schemes
the estimated maps converge to the true map, the bootstrap distributions of the NN interpo-
lator achieved by resampling from these maps should converge to the true distributions, also
providing consistent estimators of Err(p).

To this purpose, let ŷ(A) = {ŷ(p),p ∈ A} be the estimated LULC map based on the refer-
ence data y(P1), . . . , y(Pn). Then, we propose

(7) Êrr∗B(p) = 1

B

B∑
b=1

z∗
b(p)

as the bootstrap estimator of Err(p), where B is the number of bootstrap samples,
P ∗

1,b, . . . ,P
∗
n,b are the locations selected in the bth bootstrap resampling using the same
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scheme adopted to select the original sample, ŷ(P ∗
1,b), . . . , ŷ(P ∗

n,b) are the sample observa-
tions at these locations derived from the estimated map ŷ(A), and ŷ∗

b (p) is the bootstrapped
value of the nearest neighbour interpolator at p ∈ A, based on ŷ(P ∗

1,b), . . . , ŷ(P ∗
n,b), that is,

(8) ŷ∗
b (p) = ŷ

(
P ∗

NN(p),b

)
, p ∈ A,b = 1, . . . ,B,

where P ∗
NN(p),b = argmini=1,...,n ‖P ∗

i,b − p‖ and z∗
b(p) is the dichotomous quantity equal to

0 if ŷ∗
b (p) is equal to ŷ(p) and equal to 1 otherwise.

Because the NN interpolator is design-consistent at inner points, Err(p) converges to 0 as
n increases in such a way that E{Êrr∗B(p)} should also converge to 0. Therefore, in accor-
dance with Fattorini et al. (2022) we evaluate the effectiveness of the bootstrap estimator of
precision {Êrr∗B(p)} by

(9) boratB(p) = E{Êrr∗B(p)}
Err(p)

= E

{
Êrr∗B(p)

Err(p)

}
.

Unfortunately, because of the categorical nature of the LULC variable y(p), the requirements
necessary for proving the conservative nature of the bootstrap estimator (7) do not hold (see
Fattorini et al. (2022), Proposition 3). Rather, as argued in Appendix B of the Supplemen-
tary Material (Marcelli et al. (2022b)), the bootstrap estimator (7) may be quite unstable,
especially in the inner parts, those far from the boundaries where class changes occur, where
the error probabilities are likely to vanish. Obviously, (9) is undefined when Err(p) = 0. In
these cases, which frequently occur for large samples when the NN interpolation becomes
consistent, we are forced to consider the bias of (7),

(10) biasB(p) = E
{
Êrr∗B(p)

} − Err(p),

to obtain insights about the performance of the bootstrap.

4. Area estimation of land use/land cover classes. Given the K LULC classes
c1, . . . , cK that are present on A, a common use of LULC analysis has been the estimation of
class coverages γ1, . . . , γK , where

(11) |Dk| =
∫
A

I (p ∈ Dk)dp

is the area of the kth class and γk = |Dk|/|A| is the proportion of the survey region covered
by the kth class (k = 1, . . . ,K).

4.1. Traditional estimation. Estimation of class coverage has been traditionally per-
formed by counting the sample locations within the classes, say n1, . . . , nK , and considering
the frequencies of these locations in the sample, that is,

(12) fk = nk

n
, k = 1, . . . ,K.

Even though straightforward, the estimator (12) has appealing properties. Indeed, Gregoire
and Valentine (2008) rephrase (12) as a Monte Carlo integration of (11). Therefore, under
URS the estimator (12) coincides with the “basic Monte Carlo integration” and as such it is
unbiased, asymptotically (n → ∞) normal, and consistent with a variance of order n−1 that
can be unbiasedly estimated by

(13) V̂ 2
k = fk(1 − fk)

n − 1
.

Moreover, under TSS the estimator (12) coincides with the “modified Monte Carlo integra-
tion” and as such it is unbiased, asymptotically (n → ∞) normal if the n tassels partitioning
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the survey region are not too “stretched,” and consistent with a variance of order n−γ with
1 < γ ≤ 2 that is invariably smaller than the variance under URS and that can be conserva-
tively estimated by (13). Therefore, under TSS the estimator (12) is “super-efficient,” having
a variance of order greater than n−1 (Barabesi, Franceschi and Marcheselli (2012)). Less ap-
pealing results are achieved under SGS. That is, the variance of the estimator (12) under SGS
is not invariably smaller than the variance under URS, owing to the large loss of precision that
occurs under SGS when some spatial regularities are present (Barabesi (2003)). Moreover,
under SGS normality does not hold, and there is no way to prove that (13) is a conservative
estimator of variance.

4.2. Estimation from maps. The NN map of type (2) creates an alternative way to esti-
mate the area of each class. Indeed, denoting by

(14) D̂k = {
p : p ∈ A, ŷ(p) = ck

}
the set where the LULC class is estimated to be ck with k = 1, . . . ,K (in practice, the D̂k’s
are the sample counterparts of the Dk’s), we can estimate (11) by

(15) |D̂k| =
∫
A

I (p ∈ D̂k) dp

in such a way that

(16) γ̂k = |D̂k|
|A| , k = 1, . . . ,K

is the map estimator of γk . For finite samples the estimator (16) is biased with an intractable
variance, but under URS, TSS, and SGS,it asymptotically converges to γk owing to the con-
sistency of NN maps.

Regarding the estimation of the design-based variance of (16), it necessitates the bootstrap
procedure, described in Section 3, in which we resample from the estimated map using the
same scheme implemented to select the original sample. Therefore, the bootstrap estimator
of the root mean squared error of (16) is given by

(17) ̂rmse∗
k,B =

{
1

B

B∑
b=1

(
γ̂ ∗
k,b − γ̂k

)2

}1/2

,

where γ̂ ∗
k,b denotes the map estimate of γk achieved from the bootstrap sample b.

Note that we are not suggesting the use of the second method, as the traditional method is
more straightforward and it has several appealing properties. Rather, a problem arises when
the estimates achieved from the map differ substantially from the traditional estimates, a
situation that would create a dilemma in a reporting phase. Even if the problem disappears
asymptotically because both methods provide consistent estimators, it is, however, necessary
to verify that the two methods do not differ in a relevant way for finite moderate sample sizes.

5. Simulation study. To check the performance of the proposed methodology, we con-
ducted a simulation study. The population we considered was a 10 km × 10 km region located
in Southern Tuscany between the provinces of Siena and Grosseto (Central Italy). This region
provides a realistic composition (i.e., distribution of classes) and spatial pattern of land cover.
The quadrat was selected from the land use map of the whole of Italy for the year 2008 that
was estimated from a TSS sample of 1,217,032 points during the IUTI project (see the case
study in Section 6.1). The quadrat included five of the six land use classes adopted in the IUTI
classification: Forest land (1), Cropland (2), Grassland (3), Wetland (4), and Settlements (5).
The quadrat was taken as the true population in the simulation study (see Figure 1).
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Sampling was simulated selecting n = 100;400;1600;10,000 locations within the quadrat
by URS, TSS, and SGS, all ensuring consistency of the NN interpolator. URS was performed
by randomly and independently selecting n points in the quadrat. TSS was performed by par-
titioning the quadrat into a grid of 10 × 10, 20 × 20, 40 × 40, 100 × 100 tassels of equal size
and randomly and independently selecting a point in each subquadrat. SGS was performed
by selecting a point in one subquadrat and systematically repeating it in the remaining ones.

For each combination of sampling scheme and sample size, R = 10,000 samples were in-
dependently selected. Because it was impossible to perform interpolation in the continuum
of the survey region, we created a regular grid G of 201 × 201 nodes, and we performed
interpolation at each node of the grid. The grid density was determined in such a way to pro-
vide a suitable resolution of the resulting maps. Therefore, at each simulation run the classes
at the selected points were recorded from the map of Figure 1, and the NN interpolator (2)
was performed at each node of the grid, assigning to each node p ∈ G the land use class
of the nearest location in the sample. Moreover, at each simulation run, B = 1000 bootstrap
samples were independently selected using the same scheme adopted to select the original
sample. Then the classes at the selected points in the bootstrap samples were assigned from
the map estimated from the original sample, and the NN interpolation (2) was performed for
each node p ∈ G to compute the bootstrap estimates (7). Finally, to check the discrepancies
from the traditional estimators of area coverage and those achieved from the map, the esti-
mator (12) and the corresponding variance estimator (13), together with the estimator (16)
and the corresponding bootstrap estimator of root mean squared error (17), were computed
for each land use class.

At the completion of the simulation runs and for each combination of sampling scheme
and sample size, we had available R = 10,000 independent determinations z1(p), . . . , zR(p)

for each node p ∈ G, where zi(p) was equal to 1 if the interpolated class assigned to p at
the ith simulation run was wrong and 0 otherwise. From these Monte Carlo distributions, the
values of Err(p) were empirically determined by

(18) Err(p) ∼ 1

R

R∑
i=1

zi(p), p ∈ G.

In addition, for each node p ∈ G we had available R = 10,000 independent bootstrap esti-
mates of Err(p), Êrr∗B,1(p), . . . , Êrr∗B,R(p). From these Monte Carlo distributions, the expec-
tation of Êrr∗B(p) was empirically determined by

(19) E
{
Êrr∗B(p)

} ∼ 1

R

R∑
i=1

Êrr∗B,i(p), p ∈ G.

From the quantities (18) and (19), the values of boratB(p) and biasB(p) were achieved by
equations (9) and (10), respectively. For each combination of sampling scheme, sample size,
and land use class, we had available R = 10,000 independent traditional estimates of cover-
age, fk,1, . . . , fk,R , together with the corresponding standard error estimates υ̂k,1, . . . , υ̂k,R ,
and as many coverage estimates arising from map γ̂k,1, . . . , γ̂k,R , together with the corre-
sponding bootstrap estimates of root mean squared errors ̂rmse∗

k,B,1, . . . , ̂rmse∗
k,B,R . Then we

empirically computed the expectation and the standard error of the traditional estimators

E(fk) ∼ 1

R

R∑
i=1

fk,i, k = 1, . . . ,K,

SE(fk) ∼
{

1

R

R∑
i=1

(fk,i − γk)
2

}1/2

, k = 1, . . . ,K

(20)
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and the expectation of the standard error estimators

E(υ̂k) ∼ 1

R

R∑
i=1

υ̂k,i , k = 1, . . . ,K.

The unbiasedness of the fk’s is established by sampling theory, but we computed their expec-
tations for the purpose of checking the reliability of the simulation. Finally, we empirically
computed the expectation and the root mean squared error of the area estimators, based on
maps

E(γ̂k) ∼ 1

R

R∑
i=1

γ̂k,i , k = 1, . . . ,K

SE(γ̂k) ∼
{

1

R

R∑
i=1

(γ̂k,i − γk)
2

}1/2

, k = 1, . . . ,K

(21)

and the expectation of the bootstrap estimator of root mean squared error

E
( ̂rmse∗

k,B

) ∼ 1

R

R∑
i=1

̂rmse∗
k,B,i, k = 1, . . . ,K.

From the expectations (20) and (21) we computed the ratio Rk = E(γ̂k)/E(fk) to quantify
the discrepancies between the two estimators.

For each combination of sampling scheme and sample size, Table 1 gives the minima, aver-
ages, and maxima of the sets {Err(p),p ∈ G} and {biasB(p),p ∈ G}. Note that the averages
in the sets of error probabilities constitute the empirical evaluation of the overall precision of
the maps on the whole quadrat, theoretically given by equation (4). For each sample size, Fig-
ure 2 displays the spatial patterns of the sets {Err(p),p ∈ G}, and {biasB(p),p ∈ G} under
TSS. The same patterns under URS and SGS are displayed in Figures C1 and C2 in Appendix
C of the Supplementary Material (Marcelli et al. (2022b)). Figure 3 displays the cumulative
frequencies of {Err(p),p ∈ G} under URS, TSS, and SGS.

TABLE 1
Values of minima, averages, and maxima of the error probabilities (ERR) and the bias of their bootstrap

estimator (BOBIAS) evaluated at each node of the regular grid of 201 × 201 locations within the quadrat of
Figure 1

ERR BOBIAS

SCHEME n MIN AVERAGE MAX MIN AVERAGE MAX

URS 100 0.00 0.28 0.88 −0.74 −0.09 0.10
400 0.00 0.18 0.84 −0.69 −0.02 0.13

1600 0.00 0.10 0.84 −0.71 0.01 0.15
10,000 0.00 0.04 0.73 −0.54 0.01 0.13

TSS 100 0.00 0.22 0.75 −0.68 −0.06 0.16
400 0.00 0.16 0.85 −0.76 −0.02 0.18

1600 0.00 0.08 0.87 −0.79 0.00 0.16
10,000 0.00 0.04 0.74 −0.55 0.01 0.14

SGS 100 0.00 0.26 0.89 −0.78 −0.10 0.20
400 0.00 0.15 0.91 −0.81 −0.01 0.30

1600 0.00 0.07 0.90 −0.79 0.01 0.28
10,000 0.00 0.03 0.81 −0.70 0.00 0.15
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FIG. 2. Spatial patterns of the error probabilities (left column) and the bias of their bootstrap estimator (right
column) evaluated at each node of the regular grid of 201×201 locations within the quadrat of Figure 1 under
TSS and sample sizes n = 100,400,1600,10,000 (rows).

For each combination of sampling scheme, sample size, and land use class, Table 2 gives
the expectations and the standard errors of the traditional estimators and the expectations
of the standard error estimators, the expectations and the root mean squared errors of the
estimators based on maps, and the expectations of the bootstrap estimators of root mean
squared errors and the ratio of expectations Rk .

The results of the simulation study confirm the theoretical results. The NN interpolator
(2) proves to be consistent under the three sampling schemes with error probabilities that
quickly decrease on averages and maxima as the sample size increases. Comparatively, TSS
proves to be superior to URS and SGS in terms of maxima. Consistency is clearly apparent
from Figure 2 and Figures C1–C2 in the Supplementary Material (Marcelli et al. (2022b)),
where, as the sample size increases, the maps on the left side become whiter and whiter with
large zones in which interpolation is performed without error, and errors are restricted along
the borders where changes of class occur. Especially encouraging are the plots of cumulative
frequencies of errors (Figure 3), showing that, even with the smallest sample size of n =
100, in about 50% of the survey region the error probabilities are smaller than 0.25 and
that percentage quickly increases with sample sizes. Regarding the bootstrap estimator of
the error probabilities, the minimum values of bias (Table 1) may appear quite discouraging
with minimum values always smaller than -0.5, even for the very large sample size of 10,000
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FIG. 3. Cumulative frequencies of the error probabilities evaluated at each node of the regular grid of
201×201 locations within the quadrat of Figure 1 under URS, TSS, and SGS (rows) and sample sizes
n = 100,400,1600,10,000 (colors).

points. However, it is apparent from the maps on the right side of Figure 2 and Figures C1–C2
that, as sample size increases, the maps become whiter and whiter with large zones in which
the estimator is unbiased, while large underestimation is restricted to isolated points along
the borders where changes of class occur.

Regarding the estimation of areas, the similarity in the estimates, arising from the tradi-
tional and map methods, confirms that irrespective of the coverage extent, sampling scheme,
and sample size, the two estimators show very similar expectations with their ratio invariably
equal to one. Even if our purpose is not the comparison of the two methods, as sample size in-
creases, the map estimator tends to outperform the traditional estimator in terms of precision,
with improvements that are sometimes substantial. The overestimation of the variance and
the subsequent masking of the precision, a well-known problem of the traditional estimation
under TSS and SGS (Barabesi, Franceschi and Marcheselli (2012)), is less marked for map
estimator.

6. Case studies.

6.1. The IUTI land use survey. In 2008, the Italian Ministry of Environment and Protec-
tion of Land and Sea promoted and carried out a land use pure panel survey, referred to as
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TABLE 2
Percent values of expectation (ETR), standard error (SETR), and expectation of standard error estimators
(ESEE) for the traditional estimator and percent values of expectation (EMAP), root mean squared error

(RMSEMAP), and expectation of bootstrap estimator of root mean squared error (EBRMSEE) for the estimator
based on maps together with the ratio of expectations (RAT = EMAP/ETR)

CLASS SCHEME n ETR SETR ESEE EMAP RMSEMAP EBRMSEE RAT

Forest URS 100 70.40 4.51 4.56 70.21 4.34 3.74 1.00
land 400 70.39 2.29 2.28 70.42 1.85 1.70 1.00
% coverage 1600 70.41 1.16 1.14 70.51 0.67 0.68 1.00
70.51 10,000 70.39 0.47 0.46 70.51 0.17 0.18 1.00

TSS 100 70.34 3.70 4.57 70.18 3.74 2.73 1.00
400 70.37 1.49 2.28 70.48 1.39 1.24 1.00

1600 70.38 0.56 1.14 70.50 0.47 0.49 1.00
10,000 70.39 0.14 0.46 70.51 0.13 0.15 1.00

SGS 100 70.38 3.18 4.58 70.03 2.86 0.82 1.00
400 70.40 1.11 2.28 70.46 1.12 0.23 1.00

1600 70.39 0.41 1.14 70.51 0.38 0.08 1.00
10,000 70.39 0.17 0.46 70.51 0.11 0.04 1.00

Cropland URS 100 25.88 4.33 4.37 26.02 4.18 3.62 1.01
400 25.89 2.20 2.19 25.86 1.76 1.62 1.00

% coverage 1600 25.85 1.11 1.09 25.79 0.64 0.65 1.00
25.79 10,000 25.87 0.45 0.44 25.79 0.16 0.17 1.00

TSS 100 25.94 3.56 4.39 26.05 3.59 2.64 1.00
400 25.90 1.39 2.19 25.81 1.29 1.18 1.00

1600 25.87 0.52 1.10 25.79 0.44 0.46 1.00
10,000 25.88 0.17 0.44 25.79 0.13 0.14 1.00

SGS 100 25.90 3.15 4.39 26.21 2.98 0.74 1.01
400 25.86 1.12 2.19 25.79 1.12 0.20 1.00

1600 25.88 0.34 1.10 25.79 0.31 0.08 1.00
10,000 25.88 0.14 0.44 25.79 0.10 0.04 1.00

Grassland URS 100 2.64 1.61 1.50 2.67 1.71 1.34 1.01
400 2.65 0.81 0.79 2.65 0.73 0.65 1.00

% coverage 1600 2.65 0.40 0.40 2.63 0.26 0.26 0.99
2.63 10,000 2.65 0.16 0.16 2.63 0.07 0.07 0.99

TSS 100 2.64 1.36 1.53 2.68 1.41 0.99 1.01
400 2.66 0.60 0.80 2.65 0.56 0.48 1.00

1600 2.66 0.21 0.40 2.63 0.18 0.19 0.99
10,000 2.65 0.06 0.16 2.63 0.05 0.06 0.99

SGS 100 2.65 1.89 1.42 2.67 1.91 0.18 1.01
400 2.66 0.37 0.80 2.68 0.39 0.07 1.01

1600 2.65 0.15 0.40 2.63 0.16 0.01 0.99
10,000 2.66 0.04 0.16 2.63 0.03 0.00 0.99

Wetland URS 100 0.42 0.65 0.38 0.44 0.72 0.34 1.04
400 0.42 0.33 0.28 0.42 0.31 0.25 0.99

% coverage 1600 0.42 0.16 0.16 0.42 0.12 0.12 0.99
0.42 10,000 0.42 0.07 0.06 0.42 0.03 0.03 0.99

TSS 100 0.42 0.61 0.39 0.43 0.63 0.26 1.02
400 0.42 0.27 0.29 0.42 0.26 0.19 0.99

1600 0.42 0.10 0.16 0.42 0.08 0.08 0.99
10,000 0.42 0.03 0.06 0.42 0.02 0.03 0.99

SGS 100 0.42 0.52 0.41 0.45 0.57 0.06 1.09
400 0.42 0.12 0.32 0.42 0.12 0.00 0.99

1600 0.42 0.05 0.16 0.42 0.05 0.00 0.99
10,000 0.42 0.01 0.06 0.42 0.01 0.00 0.99
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TABLE 2
(Continued)

CLASS SCHEME n ETR SETR ESEE EMAP RMSEMAP EBRMSEE RAT

Settlements URS 100 0.66 0.80 0.55 0.67 0.85 0.50 1.01
400 0.65 0.40 0.37 0.65 0.35 0.31 1.00

% coverage 1600 0.66 0.20 0.20 0.65 0.12 0.13 0.99
0.65 10,000 0.66 0.08 0.08 0.65 0.03 0.03 0.99

TSS 100 0.66 0.70 0.59 0.66 0.72 0.38 1.00
400 0.66 0.30 0.39 0.65 0.27 0.24 0.99

1600 0.66 0.11 0.20 0.65 0.09 0.09 0.99
10,000 0.66 0.03 0.08 0.65 0.03 0.03 0.99

SGS 100 0.65 0.60 0.62 0.65 0.59 0.01 0.99
400 0.66 0.19 0.40 0.65 0.18 0.00 0.99

1600 0.66 0.06 0.20 0.65 0.06 0.00 0.99
10,000 0.66 0.01 0.08 0.65 0.01 0.00 0.99

IUTI from the Italian acronym of “Inventario dell’Uso delle Terre d’Italia,” with the main
purpose of implementing the national greenhouse gas assessment under the Kyoto Protocol
framework. A spatially balanced sample of points was selected throughout the Italian terri-
tory by TSS. More precisely, the Italian territory was covered by a network of n = 1,217,032
quadrats of size 25 ha, and a point was randomly selected within each quadrat. The sam-
ple points were accurately photo-interpreted on the very high-resolution imagery available
for the years 1990 and 2008 and then assigned to land use classes in accordance with
a land use classification based on the greenhouse gas reporting system introduced by the
Good Practice Guidance for Land Use, Land Use Change, and Forestry (International Panel
on Climate Change (2003)). The coarsest classification adopted six land use classes: For-
est land (1), Cropland (2), Grassland (3), Wetland (4), Settlements (5), and Other lands
(6). The classification was performed and officially released for the years 1990 and 2008
(ISPRA (2014)), and it is currently available on the Geoportale Nazionale at the web site
http://www.pcn.minambiente.it/GN/accesso-ai-servizi/servizi-di-visualizzazione-wms.

The primary aim of the survey was the estimation of land use proportions at both years
and their changes over time together with the estimation of the corresponding standard errors
(Corona et al. (2012)), but no attempt was made to make inference on the land use maps.
Therefore, data from the year 2008 were here adopted for the first time to provide a map with
accompanying inference. To this purpose, based on the 1,217,032 sample locations, the NN
interpolator (2) was adopted to estimate y(p) for each location p in the network of 2,800,360
nodes within the Italian territory with a map resolution of 10.86 ha (see Figure 4a). From
the estimated map, B = 1000 bootstrap samples of size 1,217,032 were selected by the same
TSS scheme adopted to select the original sample, giving rise to as many bootstrapped maps
from which the bootstrap estimate Êrr∗

B(p) was derived by equation (7) for each location
in the network of nodes where estimation was performed (see Figures 4b and 4c). For a
clearer depiction of the results, we focused on a portion of the land use map and of the map
of the estimated precision and their cumulative frequencies for the region of the Gargano
Promontory in Southern Italy (see Figure D1 in Appendix D of the Supplementary Material,
Marcelli et al. (2022b)).

From Figures 4b and 4c, the precision of the strategy is apparent, due in most part to
the intensive sampling effort of one point every 25 ha. Estimated errors smaller than 10%
occur on about half of the Italian territory. Greater uncertainties arise along the boundaries
corresponding to land cover class changes with estimated errors greater than 25% occurring
on about 25% of the territory. Estimated errors smaller than 50% occur almost everywhere.

http://www.pcn.minambiente.it/GN/accesso-ai-servizi/servizi-di-visualizzazione-wms
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FIG. 4. (a) Italian map of the six land use classes estimated from the IUTI TSS sample of 1,217,032 points
classified at the year 2008; (b) Map of the estimates of the error probabilities achieved by B = 1000 bootstrap
samples; (c) Cumulative frequencies of the estimates of the error probabilities.

Precision is even better in the Gargano Promontory (Figures D1b and D1c in Appendix D
of the Supplementary Material, Marcelli et al. (2022b)) where estimated errors smaller than
10% occur on about 70% of the promontory. Finally, Table 3 shows the high precision of
the six area estimates achieved by the traditional estimator (12) with estimated standard er-
rors invariably smaller than 0.05%. Table 3 also shows the similarity between the traditional
estimates with those achieved from the map, with discrepancies always smaller than 0.25%.
The convergence of the two estimators for intensive sampling effort is consistent with the
simulation results of Section 5 (Table 2). Also consistent with the simulation results, the map
estimator had better precision than the traditional estimator (BRMSE < SE).

TABLE 3
Percent values of the traditional estimates (TR) of the areas of the six land use classes achieved from the IUTI
TSS sample of 1,217,032 points classified at the year 2008 with their standard error estimates (SEE), together

with the percent values of the estimates achieved from the estimated map (MAP) and their bootstrap estimates of
root mean squared error (BRMSE) based on B = 1000 bootstrap samples

Land-use class TR SEE MAP BRMSE

Forest Land 32.03 0.042 32.10 0.021
Cropland 44.17 0.045 44.32 0.024
Grassland 12.82 0.030 12.86 0.018
Wetland 1.72 0.012 1.49 0.006
Settlements 7.10 0.023 7.11 0.014
Other lands 2.17 0.013 2.14 0.006
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FIG. 5. U.S. map of the eight land cover classes at the year 2017, estimated from the LCMAP classification
algorithm of Landsat data.

6.2. The LCMAP survey. The LCMAP program of the U.S. Geological Survey, from
the acronym of Land Change Monitoring, Assessment, and Projection, has a main objec-
tive of mapping annual land cover in the U.S. with the time period starting in 1985 (Brown
et al. (2020)). The mapping is currently done by classifying satellite imagery (Landsat) us-
ing an LCMAP classification algorithm (see Figure 5). The population under study is the set
of Landsat pixels (30 m × 30 m) in the conterminous US (excluding Alaska and Hawaii),
an area of about eight million km2. A sample of n = 24,971 pixels was selected from the
population by simple random sampling without replacement (SRSWOR). For each sample
pixel, interpreters determined land cover annually from 1985 to 2017 following protocols de-
scribed in Pengra et al. (2020). These sample data represented the reference (true) conditions
and were used to assess map accuracy (Stehman et al. (2021)) as well as to estimate the area
of different land cover classes and area of change in land cover classes (Auch et al. (2022)).
There are eight land cover classes in LCMAP: Developed (1), Cropland (2), Grass/shrub (3),
Tree cover (4), Water (5), Wetland (6), Snow/ice (7), and Barren (8).

The 30 m × 30 m pixels were so small with respect to the area of the conterminous U.S.
that the pixels were considered as points on a continuum, while SRSWOR of pixels was
assimilated to URS of points. Therefore, with this approximation in mind, the sample data
for the year 2017 were adopted for the first time to provide a U.S. map of land cover to-
gether with the corresponding map of the estimated precision. To this purpose and based
on the 24,971 sample pixels, the NN interpolator (2) was implemented to estimate y(p) for
each location p in a network of 738,512 nodes (one each 3.28 km) within the conterminous
U.S. (see Figure 6a) with a map resolution of 10.76 km2. This resolution was by far less
accurate with respect to that of Figure 5 in which a point every 900 m2 was mapped. How-
ever, resolution was only a practical issue, and a much denser map could be produced just
by increasing the computational time. From the estimated map, B = 1000 bootstrap sam-
ples of size 24,971 were selected from the U.S. shapefile by URS, giving rise to as many
bootstrapped maps from which the bootstrap estimate Êrr∗B(p) was derived by equation (7)
for each location in the network of nodes where estimation was performed (see Figures 6b
and 6c).
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FIG. 6. (a) U.S. map of the eight land cover classes estimated from the LCMAP SRSWOR sample of 24,971
points classified at the year 2017 (see Figure 5 for correspondence between colours and land cover classes);
(b) Map of the estimates of the error probabilities achieved by B = 1000 bootstrap samples; (c) Cumulative
frequencies of the estimates of the error probabilities.

As it is apparent from Figure 6a, the U.S. eastern regions generally have greater hetero-
geneity of land cover, which gives rise to larger error values relative to the western regions. To
provide a comparison, we focused on portions of the land cover map in the states of Florida
(Figures D2a and D2b in Appendix D of the Supplementary Material, Marcelli et al. (2022b))
and Texas (Figures D3a and D3b in Appendix D of the Supplementary Material, Marcelli
et al. (2022b)). The design-based, objective evaluation of precision that accompanies the NN
interpolated map is not available from the LCMAP classification of land cover.

It is apparent that the precision of the LCMAP strategy (Figures 6b and 6c) is lower than
that achieved in the IUTI survey, and this low precision is due primarily to the less intensive
sampling effort and to the use of SRSWOR that does not ensure an even coverage of the
U.S. territory. Estimated errors smaller than 10% occur on about 30% of the U.S. territory,
compared to 50% in the IUTI case. Estimated errors greater than 25% occur for about half
of the U.S. territory vs. 25% in the IUTI case, and estimated errors smaller than 50% occur
on about 80% of the U.S. territory relative to about 100% in the IUTI surey region. Precision
is worse in Florida, owing to the great variability of land cover classes throughout the state
(Figure D2 in Appendix D of the Supplementary Material, Marcelli et al. (2022b)), where
estimated errors smaller than 10% occur only on 10% of the state. Conversely, precision is
better in Texas (Figure D3 in Appendix D of the Supplementary Material, Marcelli et al.
(2022b)) because of the low variability of land cover classes throughout the state, where
estimated errors smaller than 10% occur on more than 50% of the state.

Finally, Table 4 shows the good precision of the eight area estimates achieved by the tradi-
tional estimator (12) with most of the estimated standard errors smaller than 0.3%, notwith-
standing the moderate sampling effort and the straightforward use of SRSWOR. Interestingly,
Table 4 also shows the similarity between the traditional estimates with those achieved from
the map, with most of the discrepancies smaller than 1%, indicating that the two estimators
yield similar results also with moderate sample sizes.



NN LAND USE/LAND COVER MAPPING 3149

TABLE 4
Percent values of the traditional estimates (TR) of the area of the eight land cover classes achieved from the

LCMAP SRSWOR sample of 24,971 points classified at the year 2017 with their standard error estimates (SE),
together with the percent values of the estimates achieved from the estimated map (MAP) and their bootstrap

estimates of root mean squared error (BRMSE) based on B = 1000 bootstrap samples

Land-cover class TR SE MAP BRMSE

Developed 5.55 0.145 5.52 0.115
Cropland 17.44 0.240 17.50 0.173
Grass/shrub 38.12 0.307 38.65 0.209
Tree cover 27.83 0.284 28.32 0.205
Water 5.24 0.141 4.17 0.114
Wetland 4.95 0.137 4.95 0.112
Snow/ice 0.01 0.007 0.02 0.007
Barren 0.86 0.058 0.87 0.048

7. Final remarks. Design-based estimates of LULC maps are performed exploiting the
reference data selected by a probabilistic sampling scheme. Mapping is performed from
a design-based framework adopting the NN interpolator. Sampling schemes ensuring the
design-based consistency of maps are identified, and a bootstrap estimator of the design-based
precision, measured by the probability of assigning the true LULC class at any point of the
survey region, is proposed. This allows for the novel ability to construct a map of estimated
precision (within a design-based inference setting) to accompany the resulting LULC map.
The design-based nature of the approach is appealing because the properties of the LULC
maps stem from the sampling scheme implemented to select the reference sample rather than
from model assumptions. As emphasized by Särndal, Swensson and Wretman (1992), “The
probability distribution associated with the design is real, not modelled or assumed.”

Regarding computational requirements, the proposed methodology was parallelized.
Therefore, the computational effort depends on the system requirements of the machine on
which the code runs. Both the simulation study and the case studies were conducted us-
ing 10 cores out of the 20 available in our computer. The simulation study was conducted
for a relatively small area with an increasing number of selected locations and different sam-
pling schemes. Therefore, the computational times depended on the combination of sampling
scheme (with SGS being the slowest) and sample size. In particular, using 10,000 sample lo-
cations and SGS, the simulation time was more than 24 hours for a total of 10 days needed to
perform the complete simulation scenario. As for the case studies, mapping from the LCMAP
survey was faster than mapping from the IUTI survey because the former had a smaller num-
ber of nodes and sample locations. The U.S. maps were obtained in 16 hours, while the Italian
maps were obtained in five days. Obviously, the number of bootstrap samples heavily impacts
the computational effort. If only 100 bootstrap samples were used for the Italian maps, results
would be obtained in about 12 hours, while about 50 days would be necessary with 10,000
bootstrap samples.

Several drawbacks of the procedure indicate directions for future developments. First, the
mapping performed by NN interpolation exploits only information arising from space with-
out taking advantage of the knowledge of remote-sensing covariates (i.e., auxiliary variables)
often available for the whole survey region. Opsomer et al. (2007) point out that “tremen-
dous” improvement can be achieved by the exploitation of such auxiliary variables. Indeed,
incorporating other auxiliary variables is straightforward in design-based mapping of quanti-
tative variables in which the survey variable is predicted by a suitable function of the auxil-
iary variables and the design-based interpolation is performed on the residuals (Di Biase et al.
(2022)). However, this approach is less straightforward in LULC mapping because classes are
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categorical variables. An alternative way to exploit auxiliary information is to perform NN
interpolation in the space of auxiliary variables; that is, the interpolated class at a location
is the class observed at the sample location that is nearest in the auxiliary space rather than
in the coordinate space. This intriguing idea has been empirically investigated by Grafström,
Saarela and Ene (2014), achieving promising results that, however, necessitate further theo-
retical investigations to be fully confirmed, especially concerning the property of consistency.

A second concern, pointed out in Section 4 and also considered in the simulation and case
studies, is that the areas of LULC classes can be estimated by traditional methods and also
from the resulting design-based maps. Therefore, there may be a dilemma of which estimates
to report if the map estimates differ greatly from the traditional estimates. Once again, a
solution is possible when we map quantitative variables because the predictions at single
points can be rescaled in such a way that their totals match the estimates of totals achieved
by traditional estimators such as Horvitz-Thompson, ratio, or regression estimators (Marcelli
et al. (2022)). Obviously, a similar harmonization of the two estimates is not possible with
categorical maps because classes cannot be rescaled. However, this second concern is less
crucial than the first, because both estimators arising from the two procedures are design-
based consistent in such a way that the differences in the resulting estimates tend to disappear
asymptotically, and, as demonstrated in the simulation study, they tend to be negligible for
finite, moderate sample sizes.

Current “good practice” guidance for LULC change studies (Olofsson et al. (2014)) rec-
ommends use of a probability sample of reference class data for estimating area with accom-
panying standard errors produced in the context of design-based inference. The new capacity
introduced in this article for design-based mapping of LULC classes creates the opportunity
to produce maps and area estimates within a single inference framework. Current practice
mixes the type of inference invoked as uncertainty of the map classification, if addressed at
all, is derived within a model-based inference framework, whereas area estimation invokes
design-based inference. Although additional developments are needed to improve the practi-
cal utility of the design-based maps, this article establishes the conceptual basis for a unified
approach to inference for mapping and area estimation of land cover and land cover change.
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