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Abstract. In finite populations, pseudo-population bootstrap is the sole method preserving the spirit
of the original bootstrap performed from iid observations. In spatial and environmental sampling, the
issue of creating pseudo-populations able to mimic the characteristics of real populations is challeng-
ing because spatial trends, relationships, and similarities among neighboring locations are invariably
present. In this paper we propose the use of the nearest-neighbor interpolation of spatial populations
for constructing pseudo-populations that converge to real populations under mild conditions. The ef-
fectiveness of these proposals with respect to traditional pseudo-populations is empirically checked by
a simulation study.

Keywords. Spatial surveys, Horvitz-Thompson estimator, Spatially balanced sampling, Pseudo-
population bootstrap, Nearest-neighbour criterion.

1 Introduction

In finite population sampling, pseudo-population bootstrap (PPB) is the sole method preserving the spirit
of the original bootstrap, where samples are iid data from an unknown distribution and bootstrap sam-
ples, like the original ones, are iid data from the empirical distribution.

The effectiveness of any PPB technique rests on the pseudo-population (PP) from which the bootstrap
resampling is performed. Indeed, the crucial issue is the creation of PPs able to mimic the characteristics
of the real population from which the sample has been selected. This issue is even more challenging in
environmental and spatial surveys, where spatial trends, relationships, and similarities among neighbor-
ing locations are invariably present.

To solve this problem, we propose the use of PPs suitable to work in spatial and environmental surveys.
In particular, we propose the use of the nearest-neighbor interpolation (NNI) of spatial populations for
constructing PPs that were proven to converge to real populations under mild conditions. In this way,
for population and sample sizes sufficiently large, the resulting PPs are likely to be good pictures of the
actual spatial populations.

We empirically evaluated the effectiveness of the PPs based on the NNI with respect to other commonly
used PPs to approximate the distribution of the Horvitz-Thompson (HT) estimators of total in spatial



2 SPATIAL PSEUDO-POPULATIONS

sampling. Comparison is performed with respect to several spatial populations showing different spatial
patterns, different sizes and two spatially balanced sampling schemes: local pivotal method (LPM) and
doubly balanced spatial sampling (DBSS).

The paper is organized as follows: section 2 describes the problem of estimating totals and averages in
spatial surveys and introduces some criteria to construct PPs suitable to work with spatial populations,
including the NNI criterion. In section 3 the PPs considered in section 2 are compared by a simulation
study in terms of the performance of the bootstrap distributions to fit the actual distribution of the HT
estimators of total under two schemes usually adopted in spatial sampling, as well as in terms of the
coverage of bootstrap confidence intervals. Concluding remarks are provided in section 4.

2 Spatial pseudo-populations

Design-based inference has been widely adopted for estimating totals and averages of finite spatial pop-
ulations, especially in environmental studies, where the estimation is usually performed via the HT cri-
terion or its modifications able to exploit auxiliary information. In environmental and spatial studies,
spatially balanced schemes, such as the local pivotal method (LPM) by [6] and the doubly balanced spa-
tial sampling (DBSS) by [5], are widely used. These schemes not only ensure that the sampling locations
are spread out throughout the area but also ensure balance with respect to a set of auxiliary variables.
Using spatially balanced schemes, the selection of neighbouring units is avoided, which means that a
large portion of second-order inclusion probabilities is null. However, the exclusion of neighbouring
units in the samples precludes the use of a finite-population central limit theorem and, consequently,
traditional confidence intervals using the standard normal quantiles cannot be constructed. Therefore, in
spatial surveys the use of PPB may be a suitable solution for making inference on the distribution of the
HT estimator and for constructing confidence intervals.

As stated in the Introduction, the effectiveness of any PPB rests on the capacity of constructing PPs able
to well depict the real population from which the sample has been selected. However, some PPs com-
monly adopted in PPB are not suitable for mimic spatial populations, such as those that provide random
population sizes.

Consider a study region 4 which is supposed to be a connected and compact set of R?. As it is customary
in the finite population asymptotic framework (e.g. [7]), in spatial surveys we suppose ¥ = {p1,p2,...}
be an infinite sequence of locations onto 4 and y(‘V) = {y1,y2,... } be the corresponding sequence of
the interest variable ¥ values, where for brevity y; = y(p;). Moreover, let x(7) = {xj,x2,...} be the
corresponding sequence of a strictly positive size variable X, where for brevity x; = x(p;).

By a little abuse of notation, we shall denote locations by their labels. A sequence {U; } of spatial popula-
tions is considered, in such a way that {Uy } turns out to be a sequence of nested populations of increasing
sizes within 4. Finally suppose a sequence of spatial designs { P} to select spatially balanced samples
Sy from Uy of fixed and increasing size n; = pN; for a fixed sampling fraction O < p < 1. For each k and
for each location j € Uy, denote by T the first-order inclusion probability induced by the kth design
Py that is taken proportional to the size variable X. The key motivation for this choice is the efficiency
of the HT estimator of population totals and averages when there is a strong direct relationship between
X and Y. For each k and for each pair of locations j,h € Uy, denote by @; ;) the second-order inclusion
probability induced by the kth design.

In this paper, we considered three PPs: the multinomial PP, the hot-deck PP and the PP based on NNI.
The Multinomial PP (MPP) by [8] is one among the “traditional” PPs that can be applied also in spatial
sampling. For each location j € U, MPP independently assigns to j the values ; =y, and £;= x; with
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The resulting PP has obviously the same size N; of the real population. Even if virtually applicable
in spatial surveys, MPP takes into consideration only the information provided by the size variable X,
completely neglecting the spatial locations, while in most cases the Y values strictly depend on locations.
As such, MPP is likely to provide poor representations of real populations.
The hot-deck PP (HDPP) is another PP that can be applied in spatial surveys. HDPP has been proposed
by [1] based on the idea that the values of the size variable are good proxies for the Y values. Then, for
each location j € Uy, HDPP assigns to j the values £; = x; and

where Z; ; is the sample indicator variable that is equal to 1 if j € S; and it is equal to O otherwise and
nny (j) = argminy,cg, ‘x i xh| ,1.e., HDPP predicts the Y value at any unsampled location j by the Y value
of the sampled location that is nearest to j in the space of the X values. Practically speaking, prediction
(1) constitutes a NNI in the X space. Even if HDPPs do not directly consider the information provided
by locations, locations enter in the predictions by the fact that any x; = x(p;) is actually a function of its
location.

Alternatively, we here propose the use of NNI in which predictions are completely based on the spatial
coordinates. NNI exploits the well-known Tobler’s first law of geography, for which the Y values at
locations that are close in space tend to be more similar than those at locations that are far apart [10].
Therefore, for each location j € Uy, this criterion, henceforth referred to as nearest-neighbour pseudo
population (NNPP), assigns to j the values £; = x; and

)Gj:Zk’jyj—l- (I_Zk‘,j)y””g(i) @

where in this case nng (j) = argmin,,cg, | Pj— Px| , 1.e., we predict the Y value at any unsampled location
Jj by the Y value of the sampled location that is nearest to j in the geographical space. Practically speak-
ing, NNPP assigns the value of a sampled unit to each unsampled unit inside the Voronoi cell constructed
around the sampled unit.

[4] determines the consistency condition of NNI from a design-based point of view. In particular, con-
sistency holds if the adopted sampling scheme provides spatial balance. Owing to consistency, for pop-
ulation and sample sizes sufficiently large, NNPPs are likely to provide precise representation of the real
spatial population.

3 Simulation study

The purpose of this study is to empirically evaluate the performance of three described criteria for con-
structing PPs from which resampling is performed to approximate the distribution of the HT estimators
of total in spatial sampling. Comparison is performed with respect to several spatial populations show-
ing different spatial patterns, several spatially balanced sampling schemes and several population sizes
whose increase mimics the sequence of nested populations theoretically supposed throughout the paper.
To generate finite and nested spatial populations, an artificial surface on the unit square was considered,
where for any point p = [p, p»] the surface was defined by

y(p) = Csin(3p1)sin2(3p2) 3)
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where the constant C ensured a maximum Y value of 10. The surface (3) was chosen to represent the
major characteristics of spatial populations. It was continuous, in such a way that the ¥ values in neigh-
bouring locations tended to be similar, thus entailing a spatial autocorrelation in the resulting populations.
Moreover, it varied relevantly throughout the unit square showing an increasing trend toward the centre
of the square, thus entailing a spatial stratification with different values of the survey variable in different
parts of the square.
From (3), three nested populations of N = 250, 500,1000 points were located in the unit square in ac-
cordance with four spatial patterns referred to as regular, random, trended, and clustered patterns.
For any spatial population arising from the combination of spatial patterns and population sizes, R =
10000 samples of fixed size n = 0.1N were independently selected by means of LPM and DBSS. Then
for each sample §; selected at the i-th simulation run (i = 1,...,R), the HT estimate of the population
total 7}, was computed by means of

ooy Y
n jEs; X j
where T, was the total of size variable in the population. Moreover, from the sample S;, aPP (3, ;, £; ;, j =
1,...,N) was created in accordance with each of the three criteria considered in section 2, i.e. MPP,
HDPP, and NNPP. From each PP, B = 1000 bootstrap samples

£ £
i,l»-+92iB

were selected adopting the same sampling scheme adopted to select the original sample S;, and for each
bootstrap sample the HT estimate of the population total was computed by means of

where T, . was the total of the size variable in the i-th PP.

For each combination of spatial patterns and population sizes, the Monte Carlo distributions of the HT
estimators of total 71, ..., T were adopted to empirically determine the actual distribution of the estima-
tor and the relative standard error. At this point, the ability of PPB to mimic the actual distribution of
the HT estimator was determined for each of the three PP criteria by means of their worst fitting (WF)
performance quantified by the two-sample Kolmogorov-Smirnov statistic.

Moreover, the mimic ability of PPs was quantified by the capacity of the 95% bootstrap confidence in-
tervals to approach the nominal level of 95% that was determined by means of their empirical coverage
associated with their average length.

Finally, the capacity of the bootstrap distributions to reproduce the actual precision of the HT estimators
was determined comparing the empirical expectations of the bootstrap relative standard error estimators
to the actual relative standard errors. Because the actual relative standard error and their bootstrap esti-
mates were likely to approach 0 as population and sample sizes increased, their ratio (RAT) was adopted.

3.1 Simulation results

Table 1 reports the results of the simulation study for the random population under DBSS, but similar
results also apply for the other spatial patterns under both sampling schemes. As for the relative standard
errors (RSE), they quickly decrease as the population sizes increase, showing the presumable consistency
of the HT estimator of population totals under DBSS. These findings agree with [3] that theoretically
proved the consistency of the HT estimation in spatial populations under very simple schemes such as
simple random sampling without replacement (SRSWOR), but without proving the consistency under
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more complex spatially balanced schemes such as LPM and DBSS owing to the lack of analytical ex-
pressions of the second-order inclusion probabilities. However, stated the superiority of these schemes in
providing spatial balance with respect to SRSWOR, they concluded that “consistency presumably holds
also for these schemes”. The fitting index (FIT) was evaluated as the Monte Carlo distributions of the
root of average squared errors. The simulation results show that the FIT of the NNPPs quickly improve
as the population sizes increase, confirming the presumable consistency of the NNI under these spatial
schemes, whereas the FIT shows that consistency does not hold for the HDPPs and it is even worse for
MPPs. The RAT values achieved under NNPPs are always greater than 1, but invariably smaller than
those achieved under HDPPs and MPPs, and quickly approach 1 as the population sizes increase, show-
ing a tendency to be moderately conservative. On the other hand, RAT values achieved by HDPPs and
MPPs show a tendency to a large overestimation that unsuitability masks the actual precision of the two
spatial strategies and that does not decrease as the population sizes increase. The superiority of NNPPs
was also demonstrated by the performance of bootstrap confidence intervals that for all the PP criteria
show coverages similar to or greater than the nominal level, but with average lengths that in the case of
NNPPs are much smaller, in some cases even two-three times smaller, than those achieved by HDPPs
and MPPs. The same conclusion hold for maximum values of the two-sample Kolmogorov-Smirnov
statistic.

SP N RSE PP FIT RAT Cosp(Losg) WF
Random 250 5.19 MPP 396 216 94.61(362.74) 1.00
HDPP 2.64 233 96.93(366.47) 0.99

NNPP 140 2.01 94.29(300.56) 0.97

500 3.02 MPP 404 263 9533(514.21) 1.00

HDPP 2.65 274 97.86(523.63) 0.99

NNPP 095 1.68 97.92(316.92) 091

1000 1.7 MPP 398 3.42 96.68(747.25) 1.00

HDPP 2.67 3.46 98.39(748.44) 1.00

NNPP 0.66 1.66 99.70(338.19) 0.97

Table 1: Values of RSE of the HT estimator of totals, FIT, RAT, coverages of the 0.95 bootstrap confi-
dence intervals (Cosp) and expectations of their lengths (Losp, in parentheses) and WF. Reported values
refer to the results for the random spatial pattern under DBSS.

4 Final remarks

Spatial surveys, and especially environmental surveys, have been traditionally approached from a design-
based perspective, bypassing the complex task of modelling spatial phenomena, viewing these phenom-
ena as fixed and attributing uncertainty only to sampling (e.g., [9]). In the last years, even the mapping of
ecological resources, traditionally approached in the realm of the model-based geostatistical procedures
(e.g. [2]), has been approached in a design-based perspective by [4] that derive the design-based proper-
ties of the NNIL

Because in a design-based framework properties of any estimator are completely determined by the sam-
pling design, the design choice is then crucial in this context. Regarding the sampling schemes usually
adopted in spatial surveys, in this paper we have emphasized the importance of spatial balance, i.e. the
capacity of the sampling schemes to evenly spread locations over the study region in such a way that
no portion of the region is over- or under-represented. At the same time, we have also outlined the
drawbacks involved by the use of spatially balanced schemes, i.e. a) the impossibility of using finite
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population central limit theorems for confidence intervals and b) the presence of some second-order in-
clusion probabilities equal to O that precludes the unbiased estimation of variance.

Because the use of PPB seems to be a viable solution to overcome both the issues, the focus of the paper
has switched to the choice of PPs capable of providing good representations of the spatial populations
from which balanced samples are selected. At this step, the results by [4] have been crucial. The authors
proved the design-based consistency of the NNI under mild conditions regarding the spatial populations
and the sampling schemes. Conditions about populations simply require the smoothness of the ¥ val-
ues in neighbouring locations, that well approaches the theoretical condition of local continuity, while
conditions on the sampling scheme simply require an asymptotical spatial balance that is satisfied even
by SRSWOR. Therefore, when using spatial scheme explicitly tailored for achieving spatial balance, the
consistency of NNI should hold a fortiori. For these reasons, the NNI of real populations has been pro-
posed as a criterion for constructing PPs in spatial surveys, referred to as NNPPs. The obvious intuition
behind this proposal is that if the NNPPs converge to the true populations, bootstrap distributions arising
from these maps should converge to the actual distributions of the estimators.

Acknowledgments. The authors acknowledge the funding by PRIN 2020 (cod 2020E52THS) - Re-
search Projects of National Relevance funded by the Italian Ministry of University and Research en-
titled: "Multi-scale observations to predict Forest response to pollution and climate change" (MULTI-
FOR, project number 2020E52THS). The authors also acknowledge the support of NBFC to University
of Siena, funded by the Italian Ministry of University and Research PNRR, Missione 4 Componente 2,
"Dalla ricerca all’impresa”, Investimento 1.4, Project CN0O0000033.

References

[1] Conti, P.; Marella, D.; Mecatti, F.; Andreis, F. (2020). A unified principled framework for resampling based
on pseudo-populations: Asymptotic theory. Bernoulli 26, 1044—10609.

[2] Cressie, N.A.C. (1993). Statistics for Spatial Data, Revised Edition. Wiley. New York.

[3] Fattorini, L.; Marcheselli, M.; Pisani, C.; Pratelli, L. (2020). Design-based consistency of the Horvitz-
Thompson estimator under spatial sampling with applications to environmental surveys. Spat. Stat. 35,
100404.

[4] Fattorini, L.; Marcheselli, M.; Pisani, C.; Pratelli, L. (2021). Design-based properties of the nearest neighbour
spatial interpolator and its bootstrap mean squared error estimator. Biometrics 78, 1454—1463.

[5] Grafstrom, A.; Tillé, Y. (2013). Doubly balanced spatial sampling with spreading and restitution of auxiliary
totals. Environmetrics 24, 120-131.

[6] Grafstrom, A.; Lundstrom, N.L.P; Schelin, L. (2012). Spatially balanced sampling through the pivotal
method. Biometrics 68, 514-520.

[7] Isaki, C.T.; Fuller, W.A. (1982). Survey design under the regression superpopulation model. J. Am. Stat.
Assoc. 77, 89-96.

[8] Sverchkov, M.; Pfefferman, D. (2004). Prediction of finite population totals based on the sample distribution.
Surv. Methodol. 30, 79-92.

[9] Thompson, S.K. (2002) Sampling, 2nd Edition. Wiley. New York.

[10] Tobler, W.R. (1970). A Computer Movie Simulating Urban Growth in the Detroit Region. J. Econ. Geogr.
46, 234-240.

GRASPA 2023 Workshop 6



