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The Calorimetric Electron Telescope (CALET), launched to the International Space Station in
August 2015 and continuously operating since, measures cosmic-ray (CR) electrons, nuclei and
gamma-rays. CALET utilizes its main calorimeter charge detector to measure CR nuclei from 1H
to 40Zr. In order to maximize the acceptance of the rare ultra-heavy (UH) CR above 30Zn, a special
high duty cycle (∼90%) UH trigger is used that does not require passage through the 27 radiation
length deep Total Absorption Calorimeter (TASC). This provides a 6× increase in geometry factor
allowing CALET to collect in 5 years a UHCR dataset with statistics comparable to those from
the first flight of the balloon-borne SuperTIGER instrument but without the need for atmospheric
corrections. Previous CALET UHCR analyses using time and position corrections based on 26Fe
and a geomagnetic vertical cutoff rigidity selection have shown abundances of even nuclei in
agreement with SuperTIGER. To further improve resolution and maximize statistics, a trajectory
dependent geomagnetic rigidity selection has been employed here with further work being done to
implement aCash-KarpRunge-Kutta ray tracingmethod for an improved determination of effective
cutoff rigidities. Additional work has also been done to analyze events from the smaller dataset
of events that pass through the TASC, which provides energy information and a better charge
assignment that will provide higher resolution UH measurements, albeit with lower statistics.
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1. Introduction

The CALorimetric Electron Telescope (CALET) on the International Space Station (ISS) is
a Japanese led astroparticle observatory that was launched on August 19, 2015 and has been
collecting scientific data since October 13, 2015 [1]. As its name suggests, the main science
objective of CALET is to directly measure the total cosmic-ray electron flux (e−+e+) to the highest
energies (1 GeV to 20 TeV) [2–6] with the main calorimeter (CAL), shown in the CALET instrument
package in Fig. 1a. The calorimeter is also capable of measuring gamma rays (10 GeV to 10 TeV)
[7–9] and cosmic-ray nuclei (up to 1,000 TeV) [10–14]. In addition, there is the CALETGamma-ray
Burst Monitor (CGBM) [9], which can make simultaneous observations with the calorimeter.

The main calorimeter instrument is comprised of three detector systems, shown in more detail
in a side view in Fig. 1b. At the top is the charge detector (CHD), comprised of an x and a y layer,
each having 14 scintillator paddles. The paddles all are 32 mm wide by 10 mm thick by 450 mm
long. Below the CHD is the imaging calorimeter (IMC), which is 156.5 mm tall, and made of 8
layers of both x and y scintillating fibers that are 1 mm wide squares and 448 mm long. In between
the fiber layers of the IMC are a combined 3.0 radiation lengths (X0) of tungsten arranged such that
the first 5 layers are 0.2X0 thick and the bottom two are each 1.0X0 thick. At the bottom of the
instrument stack is the total absorption calorimeter (TASC). This is made of 6 x and y layers of 16
lead tungstate (PWO) scintillator logs. Each of these logs are 19 mm wide, 20 mm tall, and 326
mm long. Combined these logs give the TASC a depth of 27X0.

The CHD, along with the IMC, provides the primary particle charge identification. All three
detectors are utilized for track reconstruction, but that is primarily based on the IMC, while the
particle energy is determined from the calorimeters, with most of the determination based on TASC
measurements.

2. Ultra-Heavy Cosmic Rays

The measurement of ultra-heavy cosmic rays (UHCR), 30Zn and higher charge elements,
provides insight into the origins of cosmic rays. In Fig. 2, the relative abundances of elements (1 ≤

Figure 1(a): CALET instrument package detailing
locations of the various CALET subsystems.

Figure 1(b): CALET side-view showing CHD, IMC, and TASC
detector placement with the maximum acceptance angles for
detection. For the UH trigger analysis this is 75° and in the
TASC analysis this is 45°.
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Figure 2: Solar System (SS) [19] and Galactic cosmic-ray (GCR) relative abundances at 2 GeV/nuc. GCR
data is sourced for 1 ≤ Z ≤ 2 from [20], Z = 3 from [21], 4 ≤ Z ≤ 28 from [22], Z = 29 from [15], and 28 ≤
Z ≤ 40 from [16] and normalized to 14Si.

Z ≤ 40) for cosmic rays with energies of 2 GeV/nucleon are compared with the Solar System (SS)
abundances normalized to 14Si. These two samples of galactic matter are nominally consistent,
with most of the differences accounted for through both cosmic ray spallation between source and
detection and by acceleration efficiencies. In the cosmic rays we see that 26Fe is∼5×103 times
less abundant than 1H, and that the UHCR with charges 30≤Z≤40 are ∼105 times less abundant
than 26Fe. Single-element resolution UHCR measurements have so far only been made up to
40Zr by the TIGER [15] and made up to 56Ba by SuperTIGER [17] balloon-borne instruments at
GeV/nuc energies, and up to 40Zr by the ACE-CRIS [18] space based instrument at hundreds of
MeV/nuc. The UHCR composition shows enhancement in material produced in massive stars, both
from stellar outflows during the stars’ lives and in the ejecta from supernova. This suggests that
a significant fraction of the cosmic rays originate in OB associations, which is where the majority
of supernovae that are believed to accelerate the galactic cosmic rays occur. The fact that the
cosmic-ray source appears to be enhanced in massive star material compared to SS would suggest
that UHCR observations can help constrain the relative contributions of supernovae and binary
neutron star mergers to the heavy r-process elements.

CALET observations will contribute to the statistics of the UHCR data set and complement
other existing measurements. The ultra-heavy (UH) event trigger on CALET, which requires events
only pass through the CHD and top half of the IMC, after 5 years collected UHCR statistics similar
to those achieved in the first flight of the balloon-borne SuperTIGER instrument. CALET also
observes a similar energy range to TIGER and SuperTIGER, but requires corrections for different
systematic effects. The balloon based observations must be corrected for energy losses and nuclear
interactions that occur in the atmosphere, while ISS based measurements are subject to screening
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by Earth’s geomagnetic field. Comparatively, UHCR observations made by ACE-CRIS occur
outside the geomagnetic field in a complementary lower energy range. So while ACE-CRIS and
SuperTIGER instruments only measure down to 5B and 10Ne, respectively, CALET has measured
cosmic-ray abundances in the 1 ≤ Z ≤ 40 charge range providing complementary measurements,
and a check of the cross calibrations of other instruments.

3. Analysis

3.1 Previous Results

Figure 3(a): 2019 ICRC results of the UH trigger anal-
ysis, bin size in 0.1 units of charge.

Figure 3(b): Comparison of CALET to SuperTIGER and
ACE-CRIS.

Preliminary CALET UHCR results for the even elements reported at the previous ICRC were
consistent with those published for SuperTIGER [17] (Fig. 3b). That analysis was based on ∼34
months of data collected by CALET’s ultra-heavy trigger, which provides an increased acceptance
by requiring an event trajectory only passes through the CHD and the top half of the IMC (Fig. 1b).
This has an acceptance angle of 75°, which gives a geometry factor of 0.44 m2sr. The UH-trigger
analysis then used a \ ≤ 45° incidence angle cut selection with a minimum signal threshold from
the top four layers of the IMC and a minimum geomagnetic vertical cutoff rigidity of 4 GV (Fig.
3a).

In addition, there are time response corrections for CALET based on the signal response from
26Fe events. For each CHD paddle the 26Fe peak is fit in time intervals selected such that there is a
minimum of ∼500 events in each peak. Paddle correction factors are derived by dividing the mean
26Fe peak position of all paddles in the data set by the time dependent paddle means. The position
corrections look at both the 14Si and 26Fe mean fits. In this position correction each CHD paddle
is divided along their length into 42 segments that are ∼1/3 the width of the paddles, with each
segment normalized by linearly scaling 14Si and 26Fe mean fits.

3.2 Rigidity Methods

Since that ICRC, a model for the geomagnetic field has been implemented that provides the
field strength as a function of time, latitude, longitude, and altitude, and then takes in the angle of
detection in the frame of the Earth’s magnetosphere to provide an angle-dependent minimum
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Figure 4(a): Vertical cutoff rigidity (GV) based
on current IGRF-13 values at the ISS altitude of
400 km overlaid the region of ISS transit.

Figure 4(b): UH events as seen by CALET
with a time-dependent calculated angle depen-
dent rigidity value ≥ 4 GV.

Figure 4(c): UH events as seen by CALET
with a time-dependent calculated angle depen-
dent rigidity value ≥ 12 GV.

rigidity for all CALET UH events. This angle dependant
minimum rigidity is based on the Störmer approximation
(Equation 1). This method allows for a more refined
selection than with just the vertical cutoff rigidity.

% ≥ 1
A2�(

(
1 −

√
1 − cos W cos3 _

cos W cos_

)2

(1)

Where _ is the magnetic latitude, A is the distance from
Earth’s center, W is the east-west inclination, and �( is
the Störmer constant which is derived from the magnetic
dipole moment. The vertical case, where W is 90°, is
shown in Fig.4a. By comparison, Fig.4b and Fig.4c show
actual event locations for different minimum rigidities. In
Fig. 4b, which shows all UH-trigger events with rigidity
greater than 4 GV, one sees that event region does not
differ much from vertical, but at higher rigidities (Fig.
4c: ≥ 12 GV) the effect of East-West angle becomes more
apparent. These calculated rigidity values are then used
in the overall UH-trigger analysis (Fig. 5a). Also along
these lines, there has been development on determining
the effective cutoff rigidity by tracing each UH-trigger
event trajectory in a complete geomagnetic field model
that includes solar effects to more precisely determine its
geomagnetic threshold.

Simultaneous to the work shown in this section, a
complementary analysis based on determining rigidity via L-shells rather than the Störmer approx-
imation, together with a new ray-tracing algorithm, can be found in ref [24]. The effects these
methods have on the UH abundances are shown in the histograms in Figs. 5a and 5b.

Figure 5(a): Variation in Z due to different min-
imum cutoff rigidity, bin size in 0.1 units of
charge. Minimum cutoff rigidity ranges from
2-4 GV with 2.5 GV in red, 3 GV in blue, and
3.5 GV in purple.

Figure 5(b): Charge histogram produced through L-Shell deter-
mination of rigidity. Minimum rigidity threshold of 4 GV bin size
in 0.1 units of charge.
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3.3 TASC analysis

Figure 6: A charge histogram showing what each successive cut
on the TASC data-set does step-by-step from a charge consistency
cut that requires both x and y layers to be within 2.00%, cuts on
multiple layers of the TASC and IMC, as well as a minimum
TASC energy.

Since the last ICRC, work has
been done to construct a comple-
mentary analysis with the data set of
events that pass through the TASC
with the 45° acceptance angle shown
in Fig.1b, which provides each event
with an energy. In this analysis cuts
are done for a minimum energy on
the top layer and in the middle of the
TASC. There is a further requirement
on minimum total energy deposited
based on the assigned charge. Ad-
ditionally, there is a charge consis-
tency cut requiring that the calculated
CHD charge for both x and y layers is
within 2.00%. The successive effects
of these cuts are shown in Fig. 6.

A Tarle model charge assign-
ment [25] is done and the abundances

are then determined by a multiple-Gaussian fit with integer charge means shown in Fig. 7a. By
comparison with the histograms in Figs. 5a and 5b, you can see that there is an improved resolution
of higher charge peaks without much of a loss in statistics, and in Fig.7b the odd-even pairs (27Co
& 28Ni, 29Cu & 30Zn, etc.) of relative abundances are compared to both ACE-CRIS’s preliminary
top-of-instrument [18] and SuperTIGER’s top-of-atmosphere abundances [26]. Future work on
this will incorporate time and position corrections similar to the those done for the CHD in the
UH-trigger analysis and do a charge assignment by bins of deposited energy in the TASC.

Figure 7(a): UHCRTASCanalysis histogramwithmultiple gaussian
fitting, bin size in 0.1 units of charge.

Figure 7(b): Comparison of the relative abun-
dances of the summed odd-even pairs with
SuperTIGER[26] and ACE-CRIS[18] for Z be-
tween 27≤Z≤40. Errors bars are statistical only.
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4. Conclusions

Preliminary abundances from CALET UH-trigger and TASC UHCR analyses continue to
agree with previous CALET results and other instrument measurements. CALET continues to
output excellent data from the International Space Station, and it is expected to continue operating
for several more years. This further data-collection will allow improved statistics for CALET to
contribute to the total UHCR data set, and complement the measurements made by other balloon
and space-borne instruments.
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