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Design-based Consistent Strategies Exploiting
Auxiliary Information in Environmental

Mapping
Lorenzo Fattorini, Sara Franceschi , and Caterina Pisani

Mapping continuous populations and finite populations of areas is approached in a
design-based framework. The Tobler’s law is adopted as assisting model, suggesting the
use of inverse distance weighting (IDW) and k nearest neighbor (kNN) interpolators.
The two interpolators are also able to exploit information provided by the huge list of
inexpensive auxiliary data deriving from remote sensing sources. Conditions ensuring
design-based consistency of kNN and IDW interpolators exploiting auxiliary informa-
tion are derived under very simple tessellated schemes widely applied in environmental
surveys. Simulation studies performed on a real population fully confirm the theoretical
findings. Consistency results about kNN can be extended to random forest imputation
techniques, that in the last years have been increasingly applied in mapping forest and
environmental resources.
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1. INTRODUCTION

Mapping is essential to understand the spatial pattern of environmental phenomena and
resources, such as species composition and diversity measures in vegetation sciences and
zoology or density of contaminating pollutants in ecology (e.g., Su et al. 2021; Choi and
Chong 2022). Populations to be mapped can be of three types: continuous populations, i.e.,
the continuum of points constituting the survey region, finite collections of areas partitioning
the survey region (e.g., administrative districts or pixels) and finite collections of units (e.g.,
plants, shrubs, or trees). Populations of units will not be considered since, in most cases, the
list and locations of the units are not available and thus their mapping is precluded. Usually,
in continuous populations and finite populations of areas the survey variable is recorded
for a subset of locations/areas and an estimation criterion is adopted for obtaining maps
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depicting the spatial pattern of the variable throughout the whole survey region (Cressie
1993). Often the survey variable is measured not at a single location, but in a plot of
pre-fixed shape (e.g., Tomppo et al. 2010). In this case, the survey variable is generally
the overall amount, or the density, of an attribute (e.g. dead wood, biomass) within the
plot. As a plot can be centered at any point of the region, these centers constitute the
continuum of points forming the survey region and thus techniques for mapping continuous
populations can be adopted.Mapping is traditionally addressed in amodel-based framework:
locations/areaswhere the variable of interest is recorded are considered as fixed,while values
of the variable are assumed to be outcomes of a superpopulation probability model (Cressie
1993). As an alternative to model-based approaches, Fattorini et al. (2018a, b) introduce a
design-based approach to mapping in which the values of the variable are viewed as fixed
constants while uncertainty is entailed by the probabilistic sampling scheme adopted for
selecting locations/areas. The main attraction of a design-based approach is that inference is
objective, because the properties of the resulting maps stem from the characteristics of the
sampling scheme actually adopted in the field, without the need for the huge sequences of
assumptions usually introduced in model-based approaches (e.g., geostatistical mapping).
However, mapping in a design-based framework is challenging, because when estimating
the value at a single location/area, either the location/area is sampled and there is no need
for estimation, or it is unsampled so that we have no information for performing estimation.
Thus, the use of an assisting model to estimate at unsampled locations/areas seems to be the
sole way to fill the information vacancy. As to the assisting model to be used, Fattorini et al.
(2018a, b) suggest using the well-known Tobler’s first law of geography, i.e., locations/areas
close in space tend to be more similar than those that are far apart (Tobler 1970). Therefore,
based on this principle, estimation at unsampled locations/areas can be suitably performed
exploiting the sample values observed at locations/areas that are neighbor (in some sense)
to the location/area under estimation. The class of this kind of estimators is quite large and
contains the inverse distance weighting (IDW) interpolators, the k nearest neighbor (kNN)
interpolators and, subsequently, the random forest imputation (RFI) techniques, because,
as pointed out by Lin and Jeon (2006), they can be viewed as adaptively weighted kNN
methods. At the end of the past century, kNN techniques became increasingly popular
especially in forest studies (Tomppo 1990; Tomppo and Katila 1991), probably owing to
their simplicity and pliancy. Indeed, kNN interpolators are readily achieved by the linear
combination of the k sample observations that are “nearest”, by some distance criterion and
in some space, to the location where interpolation is performed. Moreover, the choice of
the number of neighbors k, which in turn determines map smoothness, and the choice of
different distance metrics allow the implementation of several interpolators. After the two
seminal papers by Tomppo, hundreds of applications of kNN stemmed from forest studies
(see Chirici et al. 2016, for a review).

Obviously, kNN, RFI and IDW interpolators and the subsequent maps are destined to
be design-biased and therefore the sole way to render statistically sound these design-
based model-assisted mapping methods is to determine the conditions ensuring some sort
of design-based consistency (Fattorini et al. 2018a, b). Indeed, consistency, though often
overlooked in environmental applications, is crucial because, when it holds, the sampling
distributions of the interpolators are expected to be tightly concentrated around the true
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values, provided that the sample size and the population size (in the case of finite populations
of areas) are sufficiently large (Särndal et al. 1992). Moreover, the increasing availability of
a huge list of inexpensive auxiliary data deriving from remote sensing sources constitutes a
“tremendous” opportunity to reduce costs and improve inference in environmental surveys
(Opsomer et al. 2007). Thus, effective mapping strategies should be able to take advantage
of this additional information. In this sense, the great appeal of kNN interpolators and related
RFI techniques is the easy exploitation of auxiliary information by determining the nearest
neighbors in the space of auxiliary variables, rather than in the geographic space. Among the
plethora of articles listed in Chirici et al. (2016), Landsat imagery, airborne laser scanning
metrics and digital aerial imagery are the most frequent source of auxiliary information
and there is no mention of kNN directly performed on the geographic space or in spaces
including spatial coordinates.

Recently, Di Biase et al. (2022) propose an alternative exploitation of auxiliary infor-
mation estimating population values as linear functions of the auxiliary variables and then
interpolating the regression errors in the geographical space by the IDW interpolator to be
added to the regression estimates. Grafström and Tillé (2013) exploit the auxiliary infor-
mation similarly, though not for the purpose of mapping but for sampling and estimating of
population totals.

There is a vast body of literature on the asymptotic properties of estimators and classifiers
based on kNN and random forests. Seminal works include those published by Stone (1977)
and Devroye et al. (1994), as well as more recent papers, such as those by Hall et al. (2008),
by Samworth (2012), by Gadat et al. (2016) and Györfi andWeiss (2021). However, in these
studies the properties are derived in a model-based framework assuming a superpopulation
probability model and auxiliary and sample data are considered as realizations of indepen-
dent and identically distributed randomvectors from thatmodel. Thus the use of these results
in a design-based framework is obviously precluded. The purpose of this paper is to derive
conditions ensuring the design-based consistency of kNN and IDW interpolators, based on
alternative exploitations of auxiliary information, and to evaluate their performance.

2. PRELIMINARIES AND NOTATION

Consider a study region A that is assumed to be a compact set of R2, denote by λ the
Lebesgue measure on R

2 and, for any p,q ∈ A, by dg(p,q) = ‖p − q‖ the Euclidean
distance on R

2, where the suffix g evidences that the distance is referred to the geographic
space. Moreover, denote by I (E) the indicator of the event E . Let Y be the variable of
interest and f be a measurable function defined on A, with values in [0, L] and related to
Y in such a way that, for any borelian set B ⊂ A,

∫
B f (p)λ(dp) gives the amount of Y in

B. We consider two types of spatial populations giving rise to the following scenarios.
Continuous populations: f is the density of Y on A. Thus, in principle, mapping neces-

sitates the knowledge of f (p) for each location p ∈ A.
Finite populations of areas: A is partitioned into N areas a1, . . . , aN , y j is the amount

of Y within a j and mapping requires knowledge of y j for each j = 1, . . . , N . Since the
area size λ(a j ) is usually known for each j = 1, . . . , N , mapping equivalently requires
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knowledge of the density of Y within areas, say f j = y j/λ(a j ) for each j = 1, . . . , N , that
is the knowledge of the piecewise constant function f (p) = ∑N

j=1 f j I (p ∈ a j ) for each
p ∈ A.

Let P1, . . . ,Pn be n random vectors with values in A that represent the n locations
selected onto A by means of a probabilistic fixed-size sampling scheme. In the case of
continuous populations, P1, . . . ,Pn denote n locations selected in the continuum A and
f (P1), . . . , f (Pn) are the densities recorded at those locations. In the case of finite pop-
ulations of areas, P1, . . . ,Pn denote the centroids identifying the n sampled areas and
f (P1), . . . , f (Pn) are the densities recorded within these areas. While this notation will
be exploited in a unifying perspective that includes both types of populations, for finite
populations of areas it is standard to denote by S the set of the n selected areas and to refer
to densities as f j , j = 1, . . . , N .

From a general point of view, ∀p ∈ A, an interpolator f̂ (p) of f (p) can be written as

f̂ (p) = I (Qp) f (p) + I (Qc
p)

n∑

i=1

wi (p) f (Pi ), p ∈ A (1)

where Qp = ∪n
i=1{Pi = p} is the event that p is a sampled location and wi (p)s are suitable

standardized weights summing to one, and thus depending, not only on the distance from
p to Pi , but also on the distances from p to all the other sampled locations/areas. In the
continuous case, Qp has probability 0, in such a way that (1) reduces almost surely to

f̂ (p) =
n∑

i=1

wi (p) f (Pi ), p ∈ A. (2)

In the case of finite populations of areas, f̂ (p) = f̂ j for each p ∈ a j , and, denoting by
c1, . . . , cN the centroids of a1, . . . , aN , from (1)

f̂ j = I ( j ∈ S) f j + (1 − I ( j ∈ S))
∑

i∈S
wi (c j ) fi , j = 1, . . . , N (3)

where wi (c j )s now depend on the distances from the centroids of the sampled areas to c j .
Since f ismeasurablewith values on [0, L], interpolators of type (1) are randomvariables

with values in [0, L]. Determining their finite-sample design-based properties is challenging
because their design-based expectation and variance cannot be analytically obtained, which
limits direct insights into their bias and precision. Consequently, it is necessary to derive
conditions under which design-based asymptotic unbiasedness and consistency hold. As
interpolators (1) are bounded, consistency also entails asymptotic unbiasedness. Thus, for
brevity we only refer to design consistency.

The asymptotic scenarios introduced by Fattorini et al. (2018a, b) are considered to define
design consistency of (1) (see section S5 of the Supplementary Materials for additional
details). In the case of continuous populations, for any natural number m, a fixed-size
design selecting a sample of nm locations Pm,1, . . . ,Pm,nm on A, with nm → ∞ as m
increases is supposed. Therefore, from (2), for each p ∈ A, f̂m(p) is the interpolator of
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f (p) under themth design. In the case of finite populations of areas, for any natural number
m, A is partitioned into an increasing number of Nm areas am,1, . . . , am,Nm with centroids
cm,1, . . . , cm,Nm , where Nm → ∞ and all the areas decrease in size as m increases in
such a way that sup j=1,...,Nm

diam(am, j ) → 0. Then a sequence of fixed-size designs is
considered to select samples Sm of nm < Nm areas with nm → ∞. Therefore, for each
p ∈ am, j and j = 1, . . . , Nm , f̂m(p) is the interpolator (3) of the piecewise constant function
fm(p) = ∑Nm

j=1 fm, j I (p ∈ am, j ) where fm, j is the density within am, j .
From these asymptotic scenarios, we can give a unique definition of design consistency,

i.e., interpolators of type (1) are pointwise design consistent at p ∈ A if for any arbitrary
real value ε > 0

lim
m→∞Pr{| f̂m(p) − fm(p)| > ε} = 0 (4)

where fm = f in the case of continuous populations.

3. DESIGN CONSISTENCY OF KNN INTERPOLATORS

For the first time, we here derive conditions for the design consistency of kNN, distin-
guishing the cases in which the k neighbors are determined in the geographic space, in the
space of the auxiliary variables, and in the composite space formed by the auxiliary variables
and the geographic coordinates. Owing to the analogy between kNN and RFI techniques,
the achieved results should also hold for these techniques.

3.1. kNN DESIGN CONSISTENCY IN THE GEOGRAPHIC SPACE

In a unifying perspective, for a fixed k (usually much smaller than the sample size n),
the kNN interpolator of f (p) can be written from (1) as

f̂g(p) = I (Qp) f (p) + I (Qc
p)

∑

i∈Hg,k (p)

wg,i (p) f (Pi ), p ∈ A (5)

where dg(1) < . . . < dg(k) denote the k smallest distances to p (in geographic space)
occurred in the sample, Hg(l)(p) = {Pi : dg(Pi ,p) = dg(l)} is the set of sample locations
with distances to p equal to the l-th ranked distance, henceforth referred to as the sample
neighbors to p of order l, so that Hg,k(p) = ∪k

l=1Hg(l)(p) is the sample neighbors to p of
order less than or equal to k, i.e. the set of sample locations involved in estimation, and
wg,i (p)s are the weights attached to the f values corresponding to these locations, with
∑

i∈Hg,k (p) wg,i (p) = 1. The class of kNN interpolators (5) is large and contains, among
others, the kNN interpolators with equal weights or weights proportional to the inverse of
the squared distances to p and, for k = 1, the well-known nearest neighbor interpolator
(Fattorini et al. 2022).

In the continuous case, card{Hg(l)(p)} = 1 for each l = 1, . . . , k almost surely, in such
a way that from (2)

f̂g(p) =
k∑

l=1

wg,l(p) f (Pg(l)) (6)
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where Pg(l) denotes the sample location having distance dg(l) to p. In the case of finite
populations of areas, from (3) it follows that

f̂g, j = I ( j ∈ S) f j + (1 − I ( j ∈ S))
∑

h∈Hg,k. j

wg, j,h fh, j = 1, . . . , N (7)

where Hg,k, j = {h : dg(ch, c j ) ≤ dg(k)} is the set of sampled areas whose centroids have
geographic distances to c j less than or equal dg(k), and wg, j,hs are the weights attached to
these centroids, with

∑
h∈Hg,k, j

wg, j,h = 1. In the case of populations constituted by grids of
regular polygons (e.g., pixels), sampled polygons having the same distance to the polygon
under estimation may be more than one.

For finite-sample size n, we derive an upper bound for the expected absolute error of (5)
that will be crucial in determining the asymptotic properties. For any arbitrary real value
δ > 0 and p ∈ A denote by Bg(δ,p) = {q : q ∈ A, dg(p,q) ≤ δ} the geographic δ-
neighborhood of p in A, and by �g(p, δ) = supq∈Bg(δ,p) | f (q) − f (p)| the largest jump
of f in Bg(δ,p). Moreover, denote by Qg,i (p, δ) = {dg(Pi ,p) > δ} the event that the
i-th sample location is outside the geographic δ-neighborhood of p, in such a way that
Qg(l)(p, δ) = ∩i∈Hg(l)(p)Qg,i (p, δ) is the event that the sample neighbors to p of order l
are outside the geographic δ-neighborhood of p (l = 1, . . . , k). For any finite n > k, the
following inequality holds

E[| f̂g(p) − f (p)|] ≤ �g(p, δ) + LPr{Qg(k)(p, δ)} (8)

where E denotes the design-based expectation, i.e., expectation with respect to the possi-
ble samples of size n that can be selected by the sampling design (see Section S1 of the
Supplementary Materials for the proof).

By (8), the expected errors are bounded by the sum of two terms, the first depending on
the roughness of f on the geographic space, the second on the sampling design by means
of the probability that the sample neighbors to p of order less than or equal to k, i.e., those
involved in the estimation, are outside the geographic δ-neighborhood of p (l = 1, . . . , k).
Therefore, a precise interpolation takes rise when both terms are small.

From the asymptotic scenarios described in section 2, the kNN interpolators (5) are
pointwise design consistent at p ∈ A if for any arbitrary real value ε > 0

lim
m→∞Pr{| f̂g,m(p) − fm(p)| > ε} = 0 (9)

where f̂g,m(p) is the kNN interpolator of type (6) or (7) achieved from the mth design.
Then, design consistency of (5) at any continuity point of fm straightforwardly follows
from inequality (8). Taking δm = tn−1/2

m , the first term in the right side of (8) approaches
0 with δm owing to the continuity of fm at p, i.e., for any arbitrary real value ε > 0 there
exist a real value t > 0 and an integer m0 such that

�g(p, δm) < ε, m > m0. (10)
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Therefore, consistency on the geographic space is achieved at any continuity point of fm if
the sequence of sampling designs also ensures that

Pr{Qg(k)(p, δm)} < ε, m > m0 (11)

i.e. the probability that the sample locations/areas involved in the estimation are outside the
geographic δm-neighborhood of p approaches 0 with δm .

In practice, consistency of kNN in the geographic space occurs at any continuity point
of fm when the sampling scheme ensures that the sample locations/areas involved in the
estimation approach p as m increases. This feature, joined with the continuity of fm at p,
ensures that the sample values involved in the estimation approach fm(p), so that the kNN
estimator, being a convex combination of these values, also approaches fm(p).

Obviously, if fm is discontinuous at p, condition (10) does not hold and consistency
in the geographic space is not ensured. Thus, when fm exhibits many discontinuities, the
precision of kNN estimators onA deteriorates. However, under suitable sampling schemes,
the precision of the whole map is preserved if these discontinuities occur on sets of measure
zero. Indeed, from (8) the mean integrated absolute error is bounded by

MI AE( f̂g,m) =
∫

A
E[| f̂g,m(p) − fm(p)|]λ(dp) ≤

∫

A
�g(p, δm)λ(dp)

+
∫

A
Pr{Qg(k)(p, δm)}λ(dp).

Therefore, if discontinuities occur on sets of measure 0, the first integral approaches 0 and
the precision of the whole map strictly depends on the second integral, that in turn will
be small if the sampling scheme is able to ensure an asymptotical spatial balance, i.e., to
evenly spread sample locations in such a way that for any location p ∈ A, the sample
locations involved in the estimation are near to p. The assumption of continuity except
sets of measure zero is reasonably valid in many natural scenarios where the density of
an attribute changes smoothly throughout space (continuity) and when it changes abruptly,
that occurs along borders delineating variations in the characteristics of the study region
(e.g., forest-meadows). Therefore, borders may be realistically approximated by curves well
approaching the theoretical condition of discontinuity over a region of measure zero.

Many schemes are available for selecting sample locations on the continuum of the geo-
graphic space ensuring spatial balance. If a regular tessellation ofA into n regular polygons
(e.g., quadrats, hexagons) can be performed, spatial balance can be simply achieved by
systematic grid sampling (SGS), which consists of randomly selecting a location in the first
polygon and systematically repeating it in the remaining ones. SGS is widely used in forest
surveys (e.g., Opsomer et al. 2007; Tomppo et al. 2010), even though, when spatial regulari-
ties occur, its performancemay be even worse than that of uniform random sampling (URS),
i.e., the most straightforward scheme achieved by selecting sample locations independently
and at random on the study region. More recently, tessellation stratified sampling (TSS)
has become increasingly popular as a spatially balanced scheme. TSS does not necessitate
partitions into regular polygons and does not suffer a loss of precision under spatial regu-
larities. TSS consists of partitioning the study region into regular or irregular polygons of
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equal area and then randomly and independently selecting a location in each polygon. URS,
SGS and TSS satisfy (11) (see Section S2 of the Supplementary Materials) and thus, design
consistency of kNN on the geographic space occurs at any continuity point of f .

Similarly, when sampling finite populations of areas, spatial balance can be ensured
using very simple schemes. If a stratification into n regular blocks of contiguous areas is
possible, systematic sampling (SYS) can be adopted, which consists of randomly selecting
an area in the first block and systematically repeating it in the remaining blocks. SYS
suffers from drawbacks similar to those of SGS, i.e., when spatial regularities occur, its
performance may be even worse than that of simple random sampling without replacements
(SRSWOR) (see e.g., Särndal et al. 1992). Alternatively, one-per-stratum stratified sampling
(OPSS) does not necessitate partitioning into regular blocks and does not suffer a loss of
precision under spatial regularities. OPSS consists of partitioning the population into blocks
of contiguous areas, neither necessarily regular nor of the same size, and then randomly and
independently selecting an area in each block. Both SYS and OPSS have long history in the
statistical literature (e.g., Breidt 1995) and are proven to satisfy condition (11) (see Section
S2 of the Supplementary Materials). Therefore, under these schemes, consistency of kNN
interpolators on the geographic space occurs at any continuity point of fm .

3.2. kNN DESIGN CONSISTENCY IN THE AUXILIARY VARIABLES SPACE

Even if we proved that, under suitable sampling schemes, the kNN interpolator per-
formed on the geographic space is design consistent at any continuity point, it does not
take advantage of the information provided by inexpensive auxiliary data. To exploit this
information, myriads of applications perform kNN interpolation in the space of auxiliary
variables (henceforth auxiliary space), i.e., for each unsampled location/area the values of
the sampled locations/areas having the k smallest distances in the auxiliary space are used
(see e.g., Chirici et al. 2016). In practice, it is presumed that locations/areas that are near in
the auxiliary space tend to have similar values of the interest variable.

Denote by x(p) a vector of G auxiliary variables freely or cheaply available for each p ∈
A. In the case of finite populations of areas, x is a piecewise constant function taking values
x1, . . . , xN within a1, . . . , aN , respectively. The geographic distances on A are replaced
by the Euclidean distances in the auxiliary space dx (p,q) = ||x(p) − x(q)||, p,q ∈ A.
Accordingly, the kNN interpolator of f (p) based on auxiliary data is

f̂x (p) = I (Qp) f (p) + I (Qc
p)

∑

i∈Hx,k (p)

wx,i (p) f (Pi ), p ∈ A (12)

where all the quantities involved in (12) are analogous to those involved in (5) with the
distances computed in the auxiliary space.

Despite its large use, the dx distance is not theoretically suitable for identifying the k
nearest neighbors to be used in kNN interpolation. First of all, dx is not a distance on A
because it may occur that dx (p,q) = 0 even when p �= q. In addition, if we denote by
Bx (δ,p) = {q : q ∈ A, dx (p,q) ≤ δ} the δ-neighborhood of x(p) in the auxiliary space,
and by �x (p, δ) = supq∈Bx (δ,p) | f (q)− f (p)| the largest jump of f in Bx (δ,p), we cannot
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claim that for any arbitrary real value ε > 0 there exists a real value t > 0 and an integer
m0 such that, taking δm = tn−1/2

m

�x (p, δm) < ε, m > m0. (13)

Indeed, even if δm approaches 0, i.e., the distances to x(p) become smaller and smaller,
nothing ensures that the same occurs for�x (p, δm). In practice, although a sampling scheme
ensuring (11) is adopted, i.e., a scheme able to select neighboring locations to p in the
geographic space, kNN interpolators of type (12) do not exploit these locations but those
locations that are nearest to x(p) in the auxiliary space. This inconsistency between the
scheme and the interpolators of type (12) precludes design consistency. In other words,
because (13) does not hold, (9) does not hold when f̂g,m(p) is replaced by f̂x,m(p).

However, this problem disappears as the number G of auxiliary variables increases since
f̂x (p) tends to coincide with f̂g(p). This feature can be heuristically explained by the fact
that f (p) can be naturally linked with the auxiliary variables x(p) by a linear function plus a
term e(p) that quantifies the error achieved by deterministically predicting f (p) as a linear
function of x(p). In practice, a very general scenario for f (p) can be

f (p) = btx(p) + e(p), p ∈ A. (14)

It is worth noting that (14) is not an assumption but just an identity. Therefore, under
the very general scenario depicted by (14), the computation of distances in the auxiliary
space neglects a geographic component of f that may be relevant and may deteriorate the
choice of nearest neighbors. Obviously, if G increases, the fitting of btx(p) improves, so
that the error terms e(p) tend to vanish. Therefore, in this case consistency is achieved as
f (p) tends to coincide with a linear function of x(p). Indeed, since x(p) is continuous on
A with respect to the pseudo-distance dx (it is a distance only if x is one-to-one), when δ

approaches 0 the f values tend to f (p) thanks to (14) and the negligibility of error terms.
A more rigorous explanation of the coincidence of kNN interpolators in the geographic

and auxiliary space when the number of auxiliary variable increases can be given. Indeed,
as G increases, it is more likely that x becomes one-to-one onto A (see Section S3 of
the Supplementary Materials), in such a way that dx becomes a distance. Then, if x is
differentiable (and then continuous) at p, the two distances dg and dx are equivalent under
appropriate conditions (see Section S4 of the Supplementary Materials).

3.3. kNN DESIGN CONSISTENCY IN THE COMPOSITE SPACE

A compromise solution to achieve consistency of kNN interpolators and, at the same
time, to exploit the information provided by auxiliary variables, is to consider, for each
p ∈ A, the (G + 2)-vector z(p) = [p, x(p)]T that joins the spatial coordinates with the
G auxiliary variables. Then, distances on A are measured by the Euclidean distances in
the z-space, henceforth referred to as the composite space, i.e. dz(p,q) = ||z(p) − z(q)||,
p,q ∈ A. Accordingly, the kNN interpolator of f (p) based on the composite space is given
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by
f̂z(p) = I (Qp) f (p) + I (Qc

p)
∑

i∈Hz,k (p)

wz,i (p) f (Pi ), p ∈ A (15)

where all the quantities involved in (15) are analogous to those involved in (5) with the
distances computed in the composite space. In practice, using dz the auxiliary information
is exploited in the sense that, if some locations are equidistant to p in the geographic space,
then the nearest locations are those that are nearest in the auxiliary space. In finite populations
of areas, this feature reduces the possibility that the cardinality of Hz,k(p) is greater than k.

The use of dz solves the issue of choosing an appropriate distance for kNN interpolators.
Indeed, dz is a distance on A because dz(p,q) = 0 if and only if p = q. In addition, if
both f and x are continuous at p with respect to dz then, if we denote by Bz(δ,p) = {q :
q ∈ A, dz(p,q) ≤ δ} the δ-neighborhood of p in the composite space, and by �z(p, δ) =
supq∈Bz(δ,p) | f (q) − f (p)| the largest jump of f in Bz(δ,p), �z(p, δ) tends to 0 when δ

approaches 0. Then, for δm = tn−1/2
m and for any arbitrary real value ε > 0 there exist a

real value t > 0 and an integer m0 such that

�z(p, δm) < ε, m > m0. (16)

In practice, when a sampling scheme ensuring condition (11) is adopted, i.e., the scheme
is able to select neighboring locations to p in the geographic space, the kNN interpolators of
type (15) not only exploit these locations but, among them, choose those that are nearest to
p in the auxiliary space. Therefore, condition (11) joined with (16) ensures the consistency
of the interpolator fz(p), i.e., (9) holds when f̂g,m(p) is replaced by f̂z,m(p).

4. DESIGN CONSISTENCY OF IDW INTERPOLATORS OF
REGRESSION ERRORS

Quoting from Di Biase et al. (2022), the set of auxiliary variables x(p) freely or cheaply
available for each p ∈ A can be used to construct a proxy for f (p) and Särndal et al. (1992)
suggest the use of linear functions of the auxiliary variables, even thought other options
can be considered (e.g., Breidt and Opsomer 2017 and references therein). Adopting the
assisting model in Särndal et al. (1992, section 6.4) to build a proxy for f (p), an effective
choice for the vector of the coefficients of the auxiliary variables is the least-square vector

b = A−1a =
(∫

A
x(p)xt (p)λ(dp)

)−1 ∫

A
f (p)x(p)λ(dp)

in such a way that f (p) can be expressed as in (14).
If the vector bwould be known, the residuals for each sampled location P1, . . . ,Pn were

known and residuals at non sampled locations could be interpolated by means of the IDW
technique, i.e., adopting a unifying notation

êα(p) = I (Qp)e(p) + I (Qc
p)

n∑

i=1

wi (α,p)e(Pi ), p ∈ A (17)
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where, for a selected real value α > 2, wi (α,p) = ||c(p) − Pi ||−α/
∑n

h=1 ||c(p) − Ph ||−α

and c is the identity function for continuous populations while c(p) is the nearest centroid to
p for finite populations of areas (Fattorini et al. 2018a, b). Accordingly, the IDW interpolator
of f (p) achieved exploiting auxiliary information would be given by

f̂α(p,b) = btx(p) + êα(p) (18)

which is a genuine interpolator, as f̂α(Pi ,b) = f (Pi ) for each i = 1, . . . , n.
Because btx(p) is constant with respect to sampling, the design-based uncertainty of

(18) would only depend on the uncertainty arising from the IDW interpolation of errors by
means of (17). Therefore, in this framework, the design consistency of (18) immediately
follows from the design consistency of the IDW interpolator under TSS, SGS and URS
for continuous populations (Fattorini et al. 2018a) and under OPSS and SYS for finite
populations of areas (Fattorini et al. 2018b) under the same asymptotic scenarios introduced
in section 2.Moreover, ifbtx(p) offers reliable predictions, it shouldmirror any irregularities
in f resulting in smoother residuals. This makes IDW interpolation of the residuals better
meet the requirement of continuity, thereby providing considerable gains in precision.

Because the least-square vector b is unknown, involving the knowledge of f (p) for each
p ∈ A, Di Biase et al. (2022) propose to estimate b as function of the sample estimators of
a and A, i.e. b̂ = Â−1â, where Â and â are achieved by the continuous extensions of the
Horvitz-Thompson (HT) estimator (Cordy 1993) or by theMonte Carlo estimator (Barabesi
and Marcheselli 2005) in the continuous case and by the HT estimator in the case of finite
populations of areas (Brus 2000). Therefore, the definitive interpolator turns out to be

f̂α(p, b̂) = b̂tx(p) + êα(p, b̂), p ∈ A. (19)

Fattorini et al. (2020) prove the design consistency of the Monte Carlo estimator under
URS, TSS andSGS and of theHT estimator underOPSS andSYSunder the same asymptotic
scenarios adopted in this paper. Then, based on these results, b̂ converges to b, in such a
way that f̂α(p, b̂) converges to f̂α(p,b). That proves the design consistency of (19).

Regarding the choice of α, that impacts interpolation as a smoothing parameter, Di Biase
et al. (2022) suggest a leave-one out procedure. Because consistency of (19) holds for each
real value α > 2, it should also hold for the leave-one-out choice (Fattorini et al. 2023).
At to the choice of the auxiliary variables to be used, usually there is a large set available
and Di Biase et al. (2022) adopt the rule by Burman and Nolan (1995) that select the linear
model with the best predictive capability for new independent observations, ensuring the
model always includes an intercept by incorporating a constant variable equal to 1.

5. SIMULATION STUDY

For both types of spatial populations, a simulation study is performed to empirically
investigate the design consistency of kNN, RFI and IDW interpolators.
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5.1. POPULATIONS AND SAMPLING

TheHarvardForest is a 35ha rectangular region located at Petersham (NewEngland). This
region has been completely censused for the first time from 2010 to 2014. More precisely,
all the living trees were enumerated, and, among several features, their spatial coordinates
and above ground biomass were recorded. Data are available for download from the Harvard
Forest Data Archive (2014).

In order to construct the continuous population and the finite populations of areas for
implementing the simulation study, we consider a portion of 27ha of the Harvard forest
where both Landasat spectral bands values and above ground biomass are available.

In particular, spectral information of Landsat8 l2sp (Level 2 Science Products) bands
(called here Band 1-Band 7) are freely downloadable from USGS LandsatLook for year
2014 (data acquired in august 2023) for pixels of side 30m. For each pixel, the density of
above ground biomass per ha (AGB) is derived and correlation coefficients between AGB
and Landsat spectral bands are reported in Table 1 of the Supplementary Materials.

As to the continuous population, the AGB values to be mapped and the 7 spectral bands
values, subsequently adopted as auxiliary information, are artificially achieved by means
of ordinary kriging prediction performed on AGB, Band 1, Band 2, Band 3, Band 4, Band
5, Band 6, Band 7, respectively, in correspondence of the pixels centroids. Spectral bands
values are rescaled between 0 and 1, while geographical coordinates are rescaled in such a
way that horizontal coordinates range between 0 and 1 (see Figure 6 of the Supplementary
Materials). As to the sampling scheme, TSS is considered, owing to its frequent imple-
mentation in natural resources surveys and its comparable performances with respect to
more sophisticated sampling schemes (Di Biase et al. 2024). Sampling is performed select-
ing n = 100, 200, 300, 400, 500 locations by means of TSS partitioning the study area in
into 10 × 10, 10 × 20, 12 × 25, 16 × 25, 20 × 25 grids of equal-sized rectangles and by
independently selecting a location in each rectangle.

Regardingfinite populations of areas, six populations of N = 432, 972, 1728, 2700, 3888
areas are constructed by partitioning the study region into grids of quadrats. AGB values
for each quadrat are obtained by suitably integrating the AGB values of the continuous
population. The same procedure is adopted to obtain the auxiliary variables values from
the seven Landsat spectral bands. Figure 7 of the Supplementary Materials depicts AGB
and spectral bands values for the finite population of 432 areas. Sampling is performed by
selecting n ≈ 0.08N quadrats by means of OPSS by partitioning the grids into blocks of
3 × 4 quadrats and selecting one quadrat per block.

5.2. SIMULATION

For each combination of population and sample size, sampling is replicated 10, 000 times.
At each simulation run, kNN, RFI and IDW interpolators are performed. For the continuous
population, interpolations are achieved on a regular grid of 7500 locations in the study
area. The Euclidean norm is used to define the set of neighbors, and, to reduce computation
burden, the tuning parameters required for interpolations have been set, even though in real
applications they are commonly selected by means of data-driven procedures. In particular
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for kNN interpolation, k = 4 neighbors are considered, and constant weights are adopted.
As to the RFI technique, the default parameters of the function randomForest of the R-
package randomForest (R Core Team 2021) are considered, while when performing
IDW interpolation, the smoothing parameter is fixed to α = 3.

Distances necessary for performing kNN interpolation and to implement RFI are calcu-
lated in the auxiliary space first considering the auxiliary variable with the largest correlation
coefficientwith the interest variable, then adding the auxiliary variablewith the largest corre-
lation coefficient among the remaining ones and so on. Similarly, as to the composite space,
distances for performing kNN and implementing RFI technique are calculated considering
the spatial coordinates plus the auxiliary variable with the largest correlation coefficient with
the interest variable, then adding the auxiliary variablewith the largest correlation coefficient
among the remaining ones and so on. Also in the case of the IDW technique, the auxiliary
variables are sequentially included in the interpolator following the same criterion. For each
location/area where interpolation is performed, the root mean squared error of kNN, RFI
and IDW interpolators is computed from the Monte Carlo distribution of the corresponding
estimates. Finally, as a measure of global precision of the estimated maps, the averages of
the root mean squared errors (ARMSE) are derived.

5.3. RESULTS

Simulation results fully confirm the theoretical findings. ARMSEs values for the con-
tinuous population and for the populations of areas are reported in Tables 2 and 3 of the
Supplementary Materials and depicted in Fig. 1 and 2.

Specifically, as to the performances of the kNNandRFI interpolators, for both continuous
and finite populations, ARMSEs remarkably decrease when the sample size increases and
the geographic space is considered, while, in the case of the auxiliary space, slight decreases
occur only when at least the three more correlated auxiliary variables are jointly considered.
When distances are computed in the composite space, the performance of the kNN and
RFI interpolators improves abruptly in comparison to the performance achieved in the
corresponding auxiliary space, for any sample size. Additionally, as to the IDW interpolator
performance, simulation results fully confirm the theoretical findings on design consistency
as, for both continuous population and finite populations of areas, sharp decreases in the
ARMSE values occur as the sample size increases.

Finally, simulation results show noticeable increases in the precision of the IDW inter-
polator compared to the kNN and RFI interpolators, even if all those tuning procedures
commonly adopted in real case studies (e.g. for setting the number of neighbors in kNN
interpolation, the parameters involved in RFI and the smoothing parameter for IDW interpo-
lation) have not been considered since the primary focus of this work is not on comparing the
performance of these interpolators but rather on determining their consistency conditions.

6. CONCLUDING REMARKS

When mapping environmental resources from a design-based perspective, the design-
based finite-sample properties of the most widely applied mapping techniques (IDW, kNN,
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Figure 1. Values of ARMSE of the kNN, RFI and IDW interpolators for the continuous population for n =
100, 200, 300, 400, 500 (horizontal axis) considering the geographic space (thick black line), the auxiliary space
composed by the first (thin red lines), the two (thin green lines), the three (thin blue lines), the four (thin sky blue
lines), the five (thin purple lines), the six (thin yellow lines) auxiliary variables more correlated with AGB and all
the seven auxiliary variables (thin gray lines). Averages obtained under the corresponding composite spaces are,
respectively, depicted by red, green, blue, sky blue, purple, yellow and gray thick lines (Color figure online) .

RFI) are not clearly delineated. Little is known about the design-based bias and variances of
the mapped values and how bias and variances are related to the sampling effort. However,
if design consistency holds and the sample size and the population size (in the case of finite
populations of areas) are large, then the estimated maps can be considered good pictures
of the true ones, i.e. the sampling distributions of the estimators of the population values at
any point of the study region are tightly concentrated around the true values. On the other
hand, little can be said about the resulting maps in absence of design consistency. That is
the main reason for which we have considered the design consistency of the most common
mapping strategies, showing the crucial role of the sampling schemes adopted to select
locations/areas. In particular, we have proven that the tessellated schemes which are widely
applied in environmental and forest surveys and straighforwardly achieve spatial balance,
i.e., TSS and SGS for continuous populations and OPSS and SYS for finite populations of
areas, ensure design consistency and asymptotic unbiasedness of kNN interpolators based
on composite spaces as well as of IDW interpolators of regression errors. Neverthless, while
computing distances using auxiliary space is a common practice (see e.g. Tomppo 1990;
Tomppo andKatila 1991), we have proven that the resulting kNN interpolators may still lack
asymptotic unbiasedness and consistency, thus highlighting the necessity of incorporating
geographic coordinates into the distance calculations.

Interestingly, as confirmed by the simulation study, results about kNN can be extended
to RFI techniques, that in the last years have been widely applied as alternatives to kNN
(e.g., Chirici et al. 2020; Sun et al. 2020).
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Figure 2. Values of ARMSE of the kNN, RFI and IDW interpolators for populations of areas for n = 36, 81, 144,
225, 324 (horizontal axis) considering the geographic space (thick black line), the auxiliary space composed by the
first (thin red lines), the two (thin green lines), the three (thin blue lines), the four (thin sky blue lines), the five (thin
purple lines), the six (thin yellow lines) auxiliary variables more correlated with AGB and all the seven auxiliary
variables (thin gray lines). Averages obtained under the corresponding composite spaces are, respectively, depicted
by red, green, blue, sky blue, purple, yellow and gray thick lines (Color figure online) .

Finally, we have to point out that spatial balance can be obtained not only by the very
simple tessellated schemes, but also by a plethora of more complex, explicitly tailored
schemes (e.g. Stevens and Olsen 2004; Grafström et al. 2012; Grafström 2012; Grafström
and Tillé 2013). Owing to their capacity in providing spatial balance, design consistency
can be probably achieved under these schemes. Notwithstanding this, in this paper we have
deliberately neglected them because, owing to their greater complexity with respect to the
very simple tessellated schemes, they are not well understood by naturalists and rarely
implemented in real surveys.
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