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A B S T R A C T

The importance of kidney biopsy, a medical procedure in which a small tissue sample is extracted from
the kidney for examination, is increasing due to the rising incidence of kidney disorders. This procedure
helps diagnosing several kidney diseases which are cause of kidney function changes, as well as guiding
treatment decisions, and evaluating the suitability of potential donor kidneys for transplantation. In this work,
a deep learning system for the automatic segmentation of glomeruli in biopsy kidney images is presented.
A novel cross-species transfer learning approach, in which a semantic segmentation network is trained on
mouse kidney tissue images and then fine-tuned on human data, is proposed to boost the segmentation
performance. The experiments conducted using two deep semantic segmentation networks, MobileNet and
SegNeXt, demonstrated the effectiveness of the cross-species pre-training approach leading to an increased
generalization ability of both models.
1. Introduction

Kidney biopsy is an essential diagnostic tool for several kidney
diseases and its importance is increasing due to the rising incidence
of renal disorders [1].

This is a procedure frequently performed by doctors, which in-
volves extracting a small sample of tissue from a potential donor
kidney for microscopic investigation [2]. The biopsy is an essential
procedure, as it can provide valuable information about correct kid-
ney functioning and help diagnose various kidney disorders [3–5]
(e.g. Nephritis,2 Nephrotic Syndrome,3 kidney tumors, and other spe-
cific cancer pathologies related to kidneys). In addition, the histopatho-
logical analysis conducted on the tissue samples obtained through
biopsy can also help in determining the cause of unexplained kidney
function changes and guides treatment decisions, such as the choice
of medications or the need for dialysis. Moreover, more related to
our work, analyzing kidney biopsies is a crucial step in evaluating
kidneys for transplantation [6]. Indeed, the biopsy allows to analyze
glomeruli, which serve as functional units of the kidney’s filtration
process. The glomeruli, situated within each nephron of the kidney,
are intricate clusters of tiny blood vessels. These specialized structures
serve as the key filtering units responsible for removing waste materials
and excessive fluids from the bloodstream. The presence of damaged
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1 Equal contribution.
2 Kidney’s inflammation which could be chronic or temporary.
3 Nephrotic syndrome is a broad term used to describe a collection of clinical symptoms that signify impaired kidney function. These symptoms may include

excessive protein in the urine (proteinuria) and swelling in various body parts, known as edema.

or malfunctioning glomeruli can lead to kidney disease [7] and need
to be considered in the evaluation of potential transplant candidates.
In this context, the analysis of glomerular structure can provide im-
portant information about the health and working capabilities of the
kidney [6]. Indeed, its structure is particularly critical for distinguishing
between sclerotized and non-sclerotized glomeruli. The percentage of
these types of glomeruli observed in a kidney tissue sample is used to
calculate the Karpinski index [8], which is a fundamental indicator
for assessing renal function and has significant value in evaluating
potential kidney donors. In fact, analyzing glomeruli from the biopsy
can provide insights concerning the cause of kidney disease and guide
the selection of the best treatment options for the transplant recipient.
The results of glomeruli evaluation can help ensure the success of
transplantation by reducing the risk of post-transplant complications
and improving the long-term outcome for the recipient patients [9,
10]. As an example, in presence of conditions like focal segmental
glomerulosclerosis, a disease related to drugs abuse, a biopsy is crucial
to evaluate the proper kidneys functionality [11–13].

Usually, glomeruli identification and counting, a repetitive and
time-consuming procedure, is carried out visually by an experienced
clinician. Timely completion of this task is essential to assess the quality
of the donor’s kidney and increase the probability of a successful trans-
plantation [14]. These observations motivate the interest in developing
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effective automated tools to support clinicians in this challenging task.
For this reason, in this work, we propose a deep learning system for the
automatic segmentation of glomeruli in kidney biopsy images.

Deep Learning (DL) has achieved tremendous success across var-
ious fields, including computer vision [15–17], biomedicine [18,19],
and natural language processing [20,21]. In the medical field Con-
volutional Neural Networks (CNNs) became very popular and were
used to develop many medical applications, from the segmentation of
retinal fundus images [22] and skin lesions [23] to the analysis of
radiological, magnetic resonance or computerized axial tomography
images [24–26]. In particular, the use of these models offers a valu-
able contribution to clinical practice, reducing costs, and increasing
repeatability, and accuracy. Nonetheless, the success of deep neural
networks is usually strictly related to the availability of large sets
of supervised training data. This limitation is particularly significant
for the development of semantic segmentation networks where the
need for pixel-level supervision, makes the collection of annotated data
particularly time-consuming and costly.

The primary purpose of this study is to demonstrate the potential
of cross-species transfer learning in overcoming the scarcity of pixel-
level labeled images for glomeruli segmentation in histopathological
images of human kidneys. Indeed, in this context, the proposed ap-
proach can be significantly valuable since most of the existing deep
learning glomeruli segmentation models that can be found in literature,
rely on in-house proprietary datasets that are not publicly available.
In this paper, extending our seminal work [27], we have used two
public datasets: the mouse kidney glomeruli datasets [28] and the
HuBMAP dataset released for the Kaggle ‘‘Hacking the Kidney’’ chal-
lenge.4 In particular, we propose a new segmentation approach based
on cross-species transfer learning: a semantic segmentation network
is first trained on a dataset of mice kidney tissue images and then
fine-tuned on human data. The rationale behind this approach is that
despite the difference between the two species (humans and mice), the
morphological aspects of tissues share some similarities [29].

Indeed, human and mice glomeruli exhibit striking similarities in
their anatomical features and functions [30]. Their structure is com-
parable in both species, characterized by a tuft of capillaries lined
with endothelial cells and surrounded by podocytes. Moreover, they
share a common purpose of blood filtration, playing a crucial role
in upholding fluid and electrolyte equilibrium and regulating blood
pressure. Several studies, carried out during the past years, highlight
similarities between mice and human kidney tissue. For instance, [31]
proposed a study on diabetic kidneys, evaluating both mice and human
samples highlighting the presence of significant similarities between
the two cases. Similarly, other studies related to diabetic pathologies
have identified commonalities between the two species [32,33]. Inter-
estingly, common features between mice and human tissues have been
also found analyzing kidney tumors when local lesions and inflamed
tissues in tertiary lymphoid-affected kidneys are present [34–36]. Mo-
tivated by these results, we hypothesize that a neural network could
leverage the acquired knowledge on the mice images when applied
on the human dataset, thereby enhancing its overall generalization
capabilities. Indeed, our experiments confirm that by employing the
proposed cross-species approach it is possible to obtain a significant
performance boost, confirming the initial intuition. The experiments
were carried out with two deep semantic segmentation networks, the
MobileNet [37] and the SegNeXt [38]. The SegNext model is a state-
of-the-art segmentation network that achieved top performances on a
variety of common benchmarks [38], which motivated its choice in
this study. Other models like the UNet [39] and the DeepLab [40],
which was used in our seminal work [27], were discharged since they
provided significantly lower performance compared to the SegNext in

4 https://www.kaggle.com/competitions/hubmap-kidney-segmentation/
ata.
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our preliminary experiments conducted on mice glomeruli segmen-
tation. Additionally, with the purpose of exploring the feasibility of
implementing a glomeruli segmentation model that can efficiently run
on low-end hardware setups, we chose to utilize the MobileNet as an
additional model. In fact, the SegNeXt and MobileNet may represent
an interesting case study, since they have a significantly different
number of trainable parameters that may influence their generalization
capabilities and their effectiveness in the proposed cross-species pre-
training approach. Indeed, MobileNet V3 has only 3.3M parameters,
while SegNeXt, in the implementation used in this work, comprises
13.9M parameters. The structure of the paper is as follows: Section 2
presents a review of relevant literature. Section 3 provides an overview
of the datasets used in this study, while Section 4 introduces the two
segmentation network architectures that were employed. The experi-
mental setup is described in Section 5, and finally, the conclusions and
future developments are discussed in Section 6.

2. Related works

Recently, Deep Learning (DL) has sparked a genuine revolution in
computer science. Numerous fields have benefited from the use of DL
algorithms, including bioinformatics, natural language processing, and
object detection. Among the many successful fields of applications of
DL one of the most prominent is semantic segmentation where in just
a few years the performance impressively improved [41–43]. Image
semantic segmentation aims at making dense predictions classifying
each pixel in an image into a predefined set of categories. DL algorithms
can be used to perform this task producing as output a segmented image
where each pixel is assigned to a class label. Thus this can provide a
deeper understanding of the structure and content of the image itself.
Several works have employed deep semantic segmentation models in
histopathology (for a more comprehensive overview, refer to [44]).
In the subsequent sections, a review of various studies on glomeruli
segmentation will be provided. Specifically, Sections 2.1 and 2.2 revise
some works focused on the segmentation of human and mice glomeruli,
respectively.

2.1. Human kidney Glomeruli segmentation

Several DL applications have been recently proposed to automati-
cally evaluate kidney tissues for transplant. For instance, a deep learn-
ing model to identify and segment glomerular structures in human
kidney biopsies has been presented in [13]. In this study, a set of
275 images from patients with renal diseases were analyzed using a
multi-class CNN to segment sclerotized and non-sclerotized glomeruli.
Moreover, in [12] the authors presented a segmentation approach
for human glomeruli in a new dataset; the use of different staining
procedures (Masson and CD10) was explored to enhance the glomerular
structures in the images, showing promising results. In [45], the authors
applied two common CNN networks, the UNet and SegNet, for the
segmentation of glomeruli in human kidney histopathological images.
Similarly, in [46] an instance segmentation network, the Mask R-
CNN [47], was employed for glomeruli segmentation and classification.
The experiments were performed on a dataset, composed of 26 kid-
ney biopsies collected from 19 donors, provided by the Department
of Emergency and organ Transplantations of the University of Bari.
Furthermore, in [48] the authors compared different Deep Learning
approaches for the semantic segmentation of glomerular structures
obtaining good performance employing a UNet based architecture. Fi-
nally, more related to this work, several previous studies have used the
HuBMap dataset for various purposes. For example, in [49] the authors
used the dataset to classify sclerotic and non-sclerotic glomeruli. How-
ever, the dataset is more commonly used for glomeruli segmentation,
and a number of different approaches have been proposed for this
purpose in recent years. Unfortunately, a fair comparison between these
approaches is not possible due to the difference in the experimental

https://www.kaggle.com/competitions/hubmap-kidney-segmentation/data
https://www.kaggle.com/competitions/hubmap-kidney-segmentation/data


Neurocomputing 563 (2024) 126947P. Andreini et al.
Fig. 1. Some examples of image tiles taken from the training set of the mice glomeruli dataset.
setup and in the evaluation protocols. For example, in [50] the authors
used a UNet-based architecture for glomeruli segmentation on the
HuBMap dataset. However, instead of using the official test set, they
evaluated the model on a subset of the training set without specifying
what are the images employed for the evaluation. Similarly, in [51], the
HuBMap dataset was used to train a segmentation network but the offi-
cial test set was not employed for testing. In [52] the authors achieved
excellent performance using an ensemble of different models. However,
the results are reported on the HuBMap private test set, making the
comparison with other models infeasible if they are evaluated on the
public test set.

2.2. Mice kidney Glomeruli segmentation

Only few works focus on the semantic segmentation of glomeruli
in mice kidney tissue images. For instance, in [53] the mice glomeruli
segmentation is performed using a standard image processing approach
based on Gabor filters. Instead, a DL architecture is exploited in [54]
where a semantic segmentation network with an AlexNet backbone is
employed. Similarly, in [28] a CNN is used to segment mice kidney
images, the model performs both detection and segmentation and it
is evaluated separately for different staining procedures. The authors
released the trained model and the dataset along with the Orbit Image
analysis tool. Finally, more related to this work, in [27] the dataset
released by [28] was employed to compare different deep architectures.
The work presented in this paper extends [27], demonstrating that
it is possible to exploit the pre-training on mice data to increase the
performance of human glomeruli segmentation.

3. Datasets

In the following section, we will briefly describe the characteristics
of the two datasets used in our experiments.

3.1. Mice Glomeruli dataset

The mouse glomeruli dataset used in this study was released to-
gether with the Orbit Image Analysis tool [28], an open-source software
developed for the analysis of histopathological images. The
dataset is publicly available5 and comprises 88 Whole Slide Images
(WSIs) with an average resolution of 10,000 × 8,000 pixels. More specif-
ically, WSIs are images represented in a pyramidal structure composed
of several sub-images at different resolutions. The histopathological
images come from two different species (mice and rats) and were
processed using various staining techniques including Hematoxylin (H),
Eosin (E), Diaminobenzidine (DAB), Immune Chromogenic Reagent
(FastRed), Periodic Acid-Schiff (PAS), and three variations of H and E.
The dataset contains the supervision, consisting of manually annotated
masks where the position of each glomerulus is defined at pixel-level,
for about 21 000 glomeruli. The annotations are released in the SQLite
database format and can be opened and exported using the Orbit

5 https://datadryad.org/stash/dataset/doi:10.5061/dryad.fqz612jpc.
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software. In this study, we adopted the official dataset split, where
the test set consisted of 32 images, the validation set comprised of 8
images, and the remaining images were used for training. Some image
tiles selected from the training set are shown in Fig. 1.

3.2. Human Glomeruli dataset

The human kidney dataset used in this paper was released for
the HubMap Kidney Challenge on Kaggle whose goal was to develop
new tools for the identification of glomeruli in PAS-stained images.
The dataset, which can be freely downloaded from the Kaggle web-
site,6 is composed of 11 fresh frozen and 9 formalin fixed paraffin
embedded PAS kidney images. Each image is in tiff format with an
average resolution of 36,000 × 29,000 pixels. Whereas the pixel-level
annotations are released in a JSON file. In particular, each glomerulus
is identified by the vertices of a polygon that encompasses it. The
test set is composed of 5 images whose annotations are not publicly
available: a quantitative evaluation of the results on the test images
can be obtained by submitting the predictions on the challenge server.
Because an official validation set has not been released, in this work
three random images have been removed from the training set and used
as validation. Some image tiles selected from the training set are shown
in Fig. 2.

Additionally, each image of this dataset is associated with some
anamnestic data of the patient. Statistics about the data distribution of
the dataset are presented in Fig. 3. Specifically, we report the gender,
the Body Mass Index (BMI), the age of the study participants, and the
laterality (right or left kidney) associated with the samples. As we can
observe from the figure, the dataset exhibits a significant balance in
terms of sex and laterality, indeed it contains an equal distribution of
males and females, as well as an equal representation of left and right
kidneys. Moreover, we could also observe that most of the patients are
between 50 and 60 years old.

4. Segmentation networks

In the following section, the deep segmentation network models
employed in this work are briefly described.

4.1. MobileNet

MobileNets are a family of efficient neural network models specifi-
cally designed to have a reduced hardware footprint, so that they can be
easily integrated into mobile and embedded devices. A common feature
of these architectures is the use of depth-wise separable convolutions
that allows to build lightweight deep neural networks. In particular,
the MobileNet [55] architecture is designed to offer a trade-off be-
tween latency and accuracy. While the original MobileNet model was
proposed for image classification, the architecture has been adopted
also to perform other tasks like semantic segmentation. In particular,

6 https://www.kaggle.com/competitions/hubmap-kidney-segmentation/
data.
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Fig. 2. Some examples of image tiles taken from the training set of the HubMap kidney glomeruli dataset.
Fig. 3. Distribution of anamnestic data of the Human Glomeruli Dataset.
in this work, a MobileNet V3 [37] is employed for the glomeruli
semantic segmentation. The network is designed by using a combi-
nation of hardware-aware network architecture search complemented
by the NetAdapt algorithm. For the task of semantic segmentation
an efficient segmentation decoder called lite reduced atrous spatial
pyramid pooling is added to the MobileNet backbone.

4.2. SegNeXt

The SegNeXt [38] model is an innovative approach to semantic seg-
mentation that incorporates an effective encoder–decoder architecture.
Unlike traditional CNN models, the SegNeXt uses multi-scale convolu-
tional layers instead of standard convolutional blocks, providing spatial
attention at each stage of the encoder with a simple element-wise
multiplication. This approach to provide spatial attention has been
shown to be more efficient than traditional convolutions and self-
attention. The SegNeXt network consists of a convolutional encoder
and a decoder that incorporates the decomposition-based Hamburger
module, which is used to extract some global context information. In
particular, in the decoder, features from different layers are combined
and processed through the Hamburger module to provide multiscale
context information. As a result, SegNeXt proved to be more accurate
than other previous segmentation approaches, including those based on
transformers. In this work the small version of the SegNeXt model was
employed to reduce the computational burden.

5. Experiments and results

The results of the experiments carried out to validate our glomeruli
segmentation approach are described in this section. Specifically, in
4

Section 5.1 the experimental setup is defined, while Section 5.2 de-
scribes the metrics used to evaluate the model outputs, and Section 5.3
presents and discuss the obtained results.

5.1. Experimental setup

All experiments were conducted using two segmentation networks,
the MobileNet [37] and the SegNeXt [38], pre-trained on the
CityScapes dataset [56], on a Linux environment with a single NVIDIA
Titan X with 24 GB of memory. Both network architectures were
trained using the implementation made available in the MMSegmen-
tation library [57].

Before training the models, image preprocessing was conducted
to standardize the size of the glomeruli in the two datasets. Because
the images in the datasets were acquired at different resolutions and
despite the structural similarities between mouse and human glomeruli,
their sizes vary significantly. To optimize the effectiveness of transfer
learning, we took a simple approach: we scaled the images in the
highest resolution dataset, which is the human dataset, to align the
size of the glomeruli with those in the mouse dataset. This adjustment
allows for approximate matching of glomeruli size between the two
datasets. To be more specific, the average size of a bounding box
surrounding a glomerulus in human images is about 385 by 385 pixels,
while in mice it is about 154 by 154 pixels. As a result, we applied
a scaling factor of 0.4 to the images in the human dataset so that the
glomeruli size becomes similar to the mice images.

After the resizing step, all the images were divided into overlapping
tiles (50% overlap) having the same size (512 × 512). A total of 58,818
tiles were extracted from the human dataset and 27,061 from the mice
dataset.
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The following experimental setup was employed throughout the
training of both models. Random flip,7 random rotation,8 and pho-
tometric distortion9 were employed to augment the training dataset.
The AdamW [58] optimizer, with learning rates of 1 × 10−4 and
6 × 10−5, was used for training the MobileNet and SegNeXt, respec-
tively. Moreover, a warm-up strategy is employed, starting with a low
learning rate (1 × 10−6) and progressively increasing it for the first
1500 iterations. Cross-entropy loss and a batch size of 18 images were
used in all experiments. Additionally, an early stopping approach based
on the Intersection over Union (IoU) on the validation set was used to
select the best model during training. In the test phase, the images were
divided into tiles using the same approach employed in training. The
network predictions obtained for all of the tiles are then recombined,
and resized to the original image size, to create the final segmentation
output. The use of the predictions in the outermost part of the tiles
is avoided: in the recombination step, we averaged only the network
output probabilities corresponding to the center of each tile. In fact, the
network predictions made on the border of the tile may be inaccurate,
since if a glomerulus is not fully visible it could be much more difficult
to be recognized.

Finally, to demonstrate the effectiveness of cross-species transfer
learning, the following experimental setup was devised and tested with
both network architectures. First, the network was trained on the mice
dataset and on the human dataset, independently. Then, the model
trained on the mice data was fine-tuned using the human training set.
Fine-tuning is a common practice in machine learning that involves
adapting a pre-trained model to a specific task or dataset to enhance its
performance. In the context of transfer learning, fine-tuning has been
proven to be effective in various computer vision applications [59].
With fine-tuning, the weights learned by the model on one domain
(in our case, the mice dataset) are adjusted to capture task-specific
patterns in the target domain (the human dataset). This process allows
the model to specialize and improve its performance on the target task.
Depending on the availability of data, it is possible to fine-tune all
the model’s weights or only a subset of them. In our application, we
choose to apply the cross-species transfer learning with two approaches:
by fine-tuning all the weights of the segmentation network and by
fine-tuning only the decoder. This approach enables the model to
leverage the knowledge gained from the mice dataset and adapt it to
the human dataset, leading to improved segmentation performance. To
demonstrate the effectiveness of the proposed approach, we compare
the results obtained with and without the application of the fine-tuning
procedure. To evaluate the stability and repeatability of the results
obtained through the fine-tuning approach, we conducted a four-folds
cross-validation procedure. Specifically, we randomly selected three
images from the human dataset four times, each time designating them
as the validation set. This process allowed us to retrain the network
with different training–validation splits and, for each iteration, we eval-
uated the model’s performance on the public test set. To statistically
evaluate whether the results obtained with networks trained exclusively
on human data are not in line with the distribution derived from the
four cross-validation results, we used a one-sample t-test.

5.2. Evaluation metrics

To assess segmentation performance, we utilized two widely used
metrics: Jaccard, also referred to as IoU [60], and the Dice index [61].
Given two generic sets 𝐴 and 𝐵, the Jaccard and Dice indices are
defined in Eqs. (1) and (2):

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 (𝐼𝑜𝑈 ) =
|𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵|

(1)

7 Horizontal and vertical.
8 90◦, 180◦ and 270◦ degrees.
9 Delta brightness equal to 32, contrast range from 0.5 to 1.5, saturation

ange from 0.5 to 1.5 and delta hue of 18.
5

Table 1
Results on the validation set and on the test set of the mice dataset obtained by the
two segmentation models.

Models Validation set Test set

MIoU Dice MIoU Dice

MobileNet 83.96% 90.27% 83.03% 89.46%
SegNeXt 86.27% 92.01% 85.15% 91.12%

𝐷𝑖𝑐𝑒 =
2|𝐴 ∩ 𝐵|
|𝐴| + |𝐵|

(2)

Both metrics are commonly used to evaluate the output of a seman-
ic segmentation model, and for this reason, we have decided to use
oth in our study. When used for semantic segmentation performances
ssessments, the two sets A and B are respectively the set of the pixels
n the ground truth mask and of the pixels in the segmentation mask
roduced by the deep neural network.

Furthermore, because our goal is to accurately count the glomeruli,
e employ a straightforward metric that assesses the difference be-

ween the number of glomeruli annotated in the ground truth and those
dentified by the network. To determine the glomeruli count from a
egmentation mask, we leverage the concept of connected components,
ounting the distinct regions within the mask. The 𝛥𝐺𝑙𝑜𝑚. metric, which

is defined as the absolute difference between the number of glomeruli
present in the target mask (𝐺𝑇 ) and the number predicted by the
network (𝑃𝑟𝑒𝑑), was then defined to evaluate the performance of the
models (see Eq. (3)).

𝛥𝐺𝑙𝑜𝑚. = |𝑛𝑢𝑚_𝑔𝑙𝑜𝑚𝑒𝑟𝑢𝑙𝑖(𝐺𝑇 ) − 𝑛𝑢𝑚_𝑔𝑙𝑜𝑚𝑒𝑟𝑢𝑙𝑖(𝑃𝑟𝑒𝑑)| (3)

5.3. Results

In the following subsections we present the results obtained fol-
lowing the proposed experimental setup. In Section 5.3.1 the results
of the glomeruli segmentation process for mice are discussed. Mean-
while, in Section 5.3.2, we compare the segmentation results on human
glomeruli with and without the use of the cross-species pre-training.

5.3.1. Mice glomeruli segmentation
Following the experimental setup described in the previous sec-

tion, we first trained the two network architectures to segment mice
glomeruli. In Table 1 the results of the models on the validation set and
on the test set of the mice dataset are reported. Moreover, a qualitative
evaluation of the segmentation outputs obtained on the test set is shown
in Fig. 4.

As we can observe from these results both models are able to
segment mice glomeruli quite accurately.

5.3.2. Human glomeruli segmentation
The main goal of this study is to investigate whether the features

learned on mice glomeruli can be used to enhance the generalization
of a model on human images. Therefore we trained and compared the
results obtained by the two segmentation networks with and without
the pre-training on mice glomeruli.

Evaluation on validation and test set.
In Table 2 the performances on the validation set of the HuBMAP

glomeruli dataset are reported.
As it can be observed, employing the cross-species transfer learning

approach allows to obtain significant improvements in the performance
on the validation set for both the MobileNet and SegNeXt models.
Moreover, it is noteworthy that, by employing fine-tuning, there is a re-
duction in the average difference between the actual and the predicted
number of glomeruli (Avg. 𝛥𝐺𝑙𝑜𝑚.) for both MobileNet and SegNeXt.
Specifically, the MobileNet and SegNeXt models exhibit an average

improvement in the 𝛥𝐺𝑙𝑜𝑚. of approximately 10 and 25 glomeruli per
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Fig. 4. Segmentation results on the test set of the mice dataset. In (a) the original image crops, in (b) and (c) the segmentations obtained with the MobileNet and the SegNeXt,
respectively, and in (d) the ground truth annotations.
Table 2
Segmentation results on the validation set of the HuBMAP dataset with the MobileNet
and the SegNeXt.

Training MobileNet SegNeXt

MIoU Dice Avg 𝛥𝐺𝑙𝑜𝑚. MIoU Dice Avg 𝛥𝐺𝑙𝑜𝑚.

Human 90.04% 94.49% 24.66 91.44% 95.33% 30.33
Mice+Human 91.83% 95.56% 13.0 92.97% 96.23% 5.33

image, respectively. Interestingly, despite SegNeXt being a considerably
more powerful model than MobileNet, MobileNet outperforms SegNeXt
in terms of Avg. 𝛥𝐺𝑙𝑜𝑚. when fine-tuning is not employed. This suggests
that although the SegNeXt model yields higher values for MIoU and
Dice, the segmentation maps it produces may be less precise in terms
of connected components (f.i. fusing or splitting glomeruli). This ob-
servation might be attributed to the fact that a network with fewer
parameters possesses better generalization capabilities when trained
with limited data. Indeed, when cross-species transfer learning is ap-
plied, and the mice images are employed to enlarge the training images,
the results for the SegNeXt model show a substantial improvement.

The models were also evaluated on the test set of the HuBMAP
dataset. In particular, to compute the score on this set of data, the
model output segmentation masks were submitted on the official eval-
uation server of the contest10 and the results are presented in Table 3.

Additionally, Figs. 5 and 6 show a qualitative evaluation of the
segmentation obtained by the models on randomly selected crops from
the validation set and from the test set, respectively.

The results show that the pre-training on mice data allows to
increase the performance with both network architectures. In fact,
both models achieve about a 3% improvement in the Dice index when
pre-trained on mice data.

10 https://www.kaggle.com/competitions/hubmap-kidney-segmentation/
submissions.
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Table 3
Segmentation results on the test set of the HuBMAP dataset with the MobileNet and
the SegNeXt.

Training MobileNet Dice SegNeXt Dice

Human 82.67% 86.85%
Mice+Human 85.61% 90.43%

Hence, our approach is useful not only for models with a very
large number of parameters like the SegNeXt (13.9M parameters) but
also for lighter models like the MobileNet V3 (3.3M parameters). As
expected the SegNeXt, which has a larger number of parameters than
the MobileNet, produces the best results with a Dice score of 90.43%
on the public test set.

Moreover, qualitatively, Figs. 5 and 6 provide an illustrative exam-
ple of the segmentation results obtained on the validation set and on
the test set, respectively. In Fig. 5, the second row shows an image with
a glomerulus with atypical shapes and colors, which poses a challenge
for both networks when trained only on the human dataset. Similarly,
in Fig. 6, it can be observed that the glomerulus in the third row, with
an unusual shape, is correctly recognized only by the SegNeXt model
after fine-tuning. Indeed, if the cross-species pre-training is employed
the results are significantly improved for both networks.
Furthermore, it is interesting to be observed that the SegNext is able
to overcome the MobileNet when the pre-training is employed. This
suggests that the use of data from different species can be an effective
type of data augmentation allowing to improve the generalization of
more complex models. Overall, these observations confirm the potential
of cross-species pre-training to provide more accurate results and better
generalization.

Evaluation of the fine-tuning procedure freezing the initial network
layers.

We conducted further experiments aimed at evaluating the potential
benefits of specializing the final layers by freezing earlier ones. Specifi-
cally, for both network architectures pre-trained on mice data, we froze

https://www.kaggle.com/competitions/hubmap-kidney-segmentation/submissions
https://www.kaggle.com/competitions/hubmap-kidney-segmentation/submissions
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Fig. 5. Segmentation results from the two models, MobileNet (top) and SegNeXt (bottom), on the validation set of the HuBMAP dataset. In (a and e) the original images, in (b
and f) the segmentation results from the model trained solely on human data, in (c and g) the segmentation results obtained through cross-species transfer learning, and in (d and
h) the ground truths.
the encoder layers and trained the decoder exclusively. However, the
results obtained on both the validation and test sets were worse to those
obtained without freezing the initial network layers. On the validation
set, we recorded a Dice Score of 92.83% and a mIoU of 87.42%
7

with SegNeXt, while the MobileNet produced a Dice Score of 86.22%
and a mIoU of 78.72%. This difference persisted when evaluating
the models on the test set, where SegNeXt produced a Dice Score of
81.72% and MobileNet produced a Dice Score of 75.19%. This might
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Fig. 6. Segmentation results from the two models, MobileNet (top) and SegNeXt
(bottom), on the test set of the HuBMAP dataset. In (a and d) the original images, in
(b and e) the segmentation results from the model trained solely on human data, and
in (c and f) the segmentation results obtained through cross-species transfer learning.

confirm that the features learned from mouse data are indeed valuable,
allowing us to achieve satisfactory segmentation results on human data.
However, although there are shared features between mice and humans
glomeruli, the images show strongly different characteristics.
For this reason, it is not surprising that fine-tuning the encoder also
helps refine the feature extractor specific to human glomeruli, improv-
ing the overall segmentation performance.
8

Table 4
Results of the four-fold cross-validation.

Models MIoU Dice

Mean Std 𝑝𝑣𝑎𝑙𝑢𝑒 Mean Std 𝑝𝑣𝑎𝑙𝑢𝑒

MobileNet 91.86% 0.46 0.004 95.57% 0.28 0.004
SegNeXt 92.98% 0.51 0.009 96.22% 0.31 0.010

Table 5
Results on the test set of the model trained in the four-folds.

Models Dice

Mean Std 𝑝𝑣𝑎𝑙𝑢𝑒 MIoU

MobileNet 85.46% 0.48 0.001
SegNeXt 89.17 1.18 0.029

Repeatability evaluation.
To assess the repeatability of the results obtained through cross-

species pre-training, we conducted a four-folds cross-validation. Table 4
presents the mean and standard deviation of both mIoU and Dice
scores across the four folds. Additionally, we include the results of one-
sample t-tests comparing the Dice and mIoU scores obtained in the four
runs with the same values achieved training the model without the
cross-species pre-training.

As we can observe, the results show statistical consistency with
those detailed in the previous paragraph, where we used a single
training–validation split. Indeed, both SegNeXt and MobileNet show
low standard deviation. Furthermore, the p-value consistently falls
below 0.05, indicating that the mean obtained in the absence of cross-
species transfer learning is not in line with the distribution generated
from the means obtained with the four-fold cross-validation. This fur-
ther highlights that the cross-species transfer learning approach outper-
forms the direct training on human data. Given that the t-test assumes
that the analyzed samples follow a Gaussian distribution, we conducted
a Shapiro–Wilk test to assess this assumption. The resulting p-values
consistently exceeded 0.05, suggesting that the data could indeed be
Gaussian. Furthermore, we evaluated the models trained with the four
training–validation splits on the public test set. In Table 5, we reported
the mean and standard deviation of the Dice scores, along with their
respective p-values, obtained with the four runs.

The results are similar also for the test set, where the p-values, con-
sistently below 0.05, provide further confirmation of the effectiveness
of the proposed cross-species transfer learning approach.

6. Conclusion

In this study, we applied two DL architectures, SegNeXt and Mo-
bileNet, to the segmentation of glomeruli in human kidneys. The core
idea of the proposed method is the use of a cross-species transfer
learning approach, which consists in pre-training the models on mice
glomeruli images and in fine-tuning it on human data. The results were
promising, with the pre-training allowing for improved segmentation
performance for both SegNeXt and MobileNet. Moreover, the cross-
species pre-training proved to be effective in overcoming the shortage
of annotated human glomeruli images and increasing the generalization
capabilities of the models. Indeed, without the pre-training, the net-
works were often unable to correctly recognize glomeruli with unusual
color or shape. This work can be the base for more accurate and
efficient analysis, reducing the possibility of human error and saving
time. Furthermore, the successful results obtained using MobileNet hold
great potential for developing a DL-based glomeruli segmentation tool
that could be used in mobile or embedded environments (i.e. electron
microscopes). As a future research direction, it would be interesting to
explore the extension of the segmentation models to different staining
procedures. Additionally, distinguishing between sclerotized and non-
sclerotized glomeruli could be important for the diagnosis of certain
kidney diseases.
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