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Abstract—Authors of this paper have recently formulated a 

maximum bound of super-directivity of self-resonant antennas for 
a given minimum Q (maximum frequency bandwidth). This paper 
complements the above work treating the influence of the losses. 
The problem is faced by assuming small losses in terms of surface 
resistance over the metalized surface of the minimum sphere 
circumscribing the antenna. The final closed form formula shows 
that the maximum gain is obtained by a summation that resembles 
the well-known Harrington’s sum for maximum directivity, except 
that the expansion coefficients are weighted by the radiation 
efficiency of each spherical harmonic. The formulation is next 
generalized to the case of self-resonant antenna, providing a 
tighter bound for any losses. For small antennas, we provide a 
simple interpretation of the field corresponding to the maximum 
gain in terms of dipolar and quadrupolar source contributions, 
weighted by the appropriate efficiency, offering a physical insight 
into the phenomenon. The formulation is then extended to also 
account for a Q-bound, deriving a final series expression as a 
function of the loss resistance and of the antenna electrical size. 
This expression seamlessly merges to the previously derived Q-
bounded maximum directivity as losses tends to zero and 
converges to Q-unbounded maximum Gain for Q that tends to 
very large values.  
 

Index Terms—Super-directivity, super-gain, antenna efficiency, 
antenna bandwidth, quality factor.  

I. INTRODUCTION 

 relationship between super-gain and super-directivity 
has been a highly debated issue in antenna theory, 

prompting extensive research and numerous publications. 
Many papers have been published since the Fifties [1]-[22] 
aiming to provide guidance to antenna designers on achieving 
the maximum directivity and gain compatible with a given 
space constraint. Assuming sources fitting inside a minimum 
sphere of radius rmin, the maximum directivity Dmax can be 
found as a function of rrmin as suggested by Harrington [5]. His 
method is based on the expansion of the radiated field in a finite 
number of spherical wave (SW) modes excited on the minimum 
sphere, and on the maximization of the directivity with respect 
to the coefficients of the expansion. This procedure leads to 

 where  is the 

maximum polar index of the SWs that contribute to the far field 
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for the given minimum sphere. However, there are antennas that 
exhibit directivities larger than the value suggested by 
Harrington. These antennas are occasionally referred to as 
super-directive antennas. However, achieving such a high 
directivity often comes at the expense of a narrow bandwidth 
and a low efficiency. The Harrington process does not explicitly 
impose any constraints on bandwidth and losses, and the bound 
of directivity is obtained just imposing a truncation of the series 
at the number of Degrees of Freedom (DoF) of the field. It is 
not possible, indeed, to establish a rigorous limit of super-
directivity without introducing a limit on bandwidth or on 
losses. Recently, a limit of super-directivity constrained by a 
maximum quality factor Q (inverse of relative bandwidth) has 
been provided by these authors [1]. 
However, [1] does not address the extent to which small losses 
can affect the performance of super-directive antennas. Indeed, 
it is widely acknowledged that super-directivity does not 
always translate into "super-gain", especially in cases involving 
high Q factors. The primary objective of this paper is to 
examine this specific aspect by assessing the impact of losses 
on the maximum super-gain.   

In [22], a fundamental bound on antenna gain is found by 
solving a problem of convex optimization of the current 
density. The optimal current distribution is found expressing the 
antenna gain and the product bandwidth-gain as a quadratic 
form of the corresponding matrix operators. This procedure 
leads to the definition of a convex optimization problem, which 
is finally solved via an eigenvalue problem. However, the 
results in [22] do not explicitly impose frequency bandwidth 
maximization in the limit of maximum gain.  

We articulate the presentation of this paper as follows. 
Section II briefly summarizes the results obtained in [1]. 
Section III presents a derivation of the maximum antenna gain 
without bandwidth limitations. A closed form formula is 
derived and compared with the numerical approach presented 
in [22]. Section IV focuses on small antennas, providing an 
interpretation in terms of dipolar and quadrupolar contributions 
and simple approximations valid for maximum gain smaller 
than 7. Section V formulates the gain maximization problem by 
introducing a limit on the total Q of the antenna and derives new 
exact analytical expressions. Section VI draws some 
conclusions. 
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II. MAXIMUM DIRECTIVITY WITH Q-BOUNDS 
Recently, a limit of super-directivity constrained by a 

minimum quality factor Q (inverse of relative bandwidth) has 
been provided by these authors [1] as 

                       (1) 

where  is the value that maximizes the series  in the 

interval and Qn are the quality factors of 

each individual harmonic according to the Fante’s definition for 
self-resonant antennas [18]. These correspond to 

, where   are defined in Appendix 
C, and will be introduced later. The analytical form (1) is 
obtained by applying the Lagrange multipliers method to a 
convex problem of directivity maximization bounded to a given 
constant, minimum quality factor Q. The value of x that 
minimizes the series has been approximated in [1], leading to 
simple closed form expressions for certain values of the antenna 
size, as given below.  

(2) 

The two terms  

correspond to the values at which the maximum directivity is 3 
(Chu Limit) and 7.5, respectively. 

III. MAXIMUM GAIN WITHOUT Q-BOUNDS 
We present here a formulation for the maximum gain without 

Q-bound. This formulation resorts to Spherical Wave (SW) 
Expansion (SWE), using the notation of Hansen [9], 
summarized in Appendix A, for the representation of the 
electric field.  According to this notation, the polar index n 
refers to the order of the Hankel functions, the index m refers to 
the azimuthal angular wave number, and the index s=1, and 2 
denotes the TE and TM polarization with respect to the radial 
direction r, respectively. Whenever convenient, we compact the 
notation, using the single index i which renumbers the tern of 
indexes s,m,n by the rule  . 

A. Equivalent Currents and SW Radiation Resistances 
The Love formulation of the equivalence theorem is first 

applied to the minimum spherical surface which includes all the 
sources (Fig.1(a)). The equivalent electric and magnetic 
currents radiate zero field inside the surface. The external field 
is the same as that provided by magnetic currents radiating on 
a perfectly conducting sphere of radius rmin, as predicted by the 
Schelkunoff formulation (see Fig.1(b)). In the latter case, the 
induced electric currents J over the conducting sphere are the 

same as the electric currents J in Fig.1(a).  
 

 
Fig. 1 Application of the equivalence principle to the minimum sphere surface. 
(a) Equivalent surface electric and magnetic currents radiating in free space 
with zero field inside (Love formulation); (b) magnetic current radiating over a 
perfectly electric conducting sphere; (c) Magnetic currents radiating over a 
metallic sphere with small losses.  

In Appendix A, the conventional SWE of the radiated field is 
presented. It is however convenient writing  the SWE of the 
field in a form which is related to the radiation resistance of the 
individual harmonics. Due to the orthonormality of the 
spherical waves one has  where  is 

the electric current of the i-th SW harmonics over the minimum 
sphere and the orthonormal functions  are defined in 

Appendix A.  represents the mean-square over the minimum 
sphere of the electric currents of the i-th SW harmonics. The 
radiated power can be expressed in terms of radiation resistance

, associated with the i-th harmonic, as 

This radiation resistance does not depend on the azimuthal 
index m, but only on the polar index n and on the polarization 
index s and it can be explicitly obtained through the spherical 
Hankel’s function of the second type ; i.e.,     

  (3) 

Note that these functions have a weak dependence on krmin for
and tend to z for n >> krmin. We also observe that even 

if involves only the electric current 

coefficients Ii   it represents the total power associated to both 
the equivalent electric and magnetic currents radiating together 
in free-space (Fig.1(a)) or, equivalently, the power radiated by 
the magnetic currents alone on top the perfectly electric surface 
(Fig.1(b)), on which it induces electric currents. This 
formulation brings to (3) as a definition of the radiation 
resistance and makes the radiated power congruent with a zero-
field (and zero total energy) inside the minimum sphere. 
Considering instead only the contribution of the electric 
currents radiating alone in free space leads to a different 
expression of radiation resistance as well as a non-zero value of 
field inside the surface. This aspect will be investigated further 
in section F.   

It is seen that for small values of , and  (TM) 

go to zero as  and , respectively, while  
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and (TE)  go to zero as  and , respectively.   

 
Fig. 2 Radiation resistance of individual harmonics for some values of n as a 
function of the normalized radius of the minimum sphere.  

B. Gain Representation as a Function of the Current 
Coefficients  

To estimate the gain, we assume that the magnetic currents 
of Fig.1(b) radiate in presence of a lossy conductor with 
resistivity for square-surface RW . This resistance, also known 
as sheet resistance, has a value that depends on  (for copper 

it is approximately ). We assume that 
the electric currents induced on the conductor by the forced 
magnetic currents will not change significantly wrt the currents 
on a PEC (Fig.1(b)). The total power Pr+PW (i.e., radiated plus 
dissipated power) is given by 

                    (4) 

The gain is obtained in Appendix A as 

                   (5) 

where  are the normalized far-field functions defined in 
Appendix A. In deriving (5) we have assumed that the modal 
currents on the surface are not perturbed by the presence of the 
small losses. Due to the symmetry of the problem, the gain can 
be maximized in an arbitrary observation direction and with an 
arbitrary polarization. It is therefore not restrictive to assume

 as well as a q-polarization.  Therefore,  in (5) 
can be substituted by its projection along q  evaluated at 

; this projection depends only on the polar index n 
and will be hereinafter denoted by Kn. This value is a complex 
number whose magnitude is . Applying the 
Swartz identity to the numerator of (5), yields  

               (6)  

where the equality symbol is valid when the phase of   is 

equal to the phase of .     
   

C. Maximum Gain for Antennas with External Tuning.     
Eq. (6) is well suited to make a maximization of the gain in 
absence of Q-bounds, but with an external tuning circuit for 
reaching the resonance. This is different from the case 
presented in [1], relevant to self-resonant antennas. In order to 
find the maximum value  for any possible set of 

amplitudes , we impose  for any q. This approach 
follows the method applied by Harrington in [3] to maximize 
the directivity, but without imposing a priori a truncation on the 
harmonic series, which was necessary in the Harrington’s 
process to get a finite result. In Appendix B, it is demonstarated 
that the solution for the maximum gain is 

                  (7)  

where  are the radiation efficiencies of any individual 

TE and TM SW harmonic and is defined in (3). It is noted 
that a similar formula, with a different efficiency definition, was 
derived in [19]. This maximum gain is obtained with the current 
coefficients over the minimum sphere given in Appendix B. 
These correspond to SWE electric field coefficients (with 
Hansen’s normalization)  

 

                           

(8) 
where 

              (9) 

and the superscript TE, TM stands for s=1 and s=2, 
respectively. In deriving (8) we have used the relationship 

. The constant is arbitrary, since it disappears 

in calculating Gmax. The radiation efficiency 
in condition of maximum gain is indeed given by  
 

  (10) 

      
 Fig. 3 shows the values of maximum gain obtained 
implementing (7) for various values of the surface resistance

 (continuous lines). It also shows the directivity (dashed 
lines) obtained dividing the maximum gain in (7) by the 
efficiency in (10).   
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Fig. 3. Continuous lines: maximum gain of non-resonant (externally tuned) 
antennas calculated for different values of RW as a function of 𝑘𝑟!"#. Dashed 
lines: corresponding directivity obtained by Gmax/h. 

The maximum gain and the corresponding directivity show 
inflection points at the maxima of the radiation efficiency. The 
lower frequency inflection point occurs at Gmax=1.5. For 
smaller electrical sizes the directivity saturates to 1.5. It is worth 
noting that this value corresponds to the directivity of an 
electric dipole and not to the directivity of a Huygens’ source. 
This behavior was already underlined in [22], and its meaning 
stems from the higher radiation resistance level exhibited by the 
first TM dipolar mode (electric dipole) for very small antennas. 
In contrast, the radiation resistance of the first TE mode is much 
lower, and therefore more affected by the losses.  It is also worth 
noting that the second inflection points of the maximum gain 
correspond to the fact that in the summation in (7) one more 
mode becomes significantly excited.    

D. Value of Q on the Maximum Gain Curve  
The Q-factor can be defined in two different ways depending 
on weather the antenna is self-resonant or it is matched by 
providing an external reactive energy from a lossless circuit. In 
the first case, one has  
where w is the angular frequency, Pr is the radiated power and 
WE and WH are the electric and magnetic energies stored in the 
external region, respectively. For non-resonant antennas, one 
has  for capacitive antennas and
for inductive antennas. This definition assumes that an external 
energy has been added to the system to get the resonance. In 
both cases, the Q-factor can be interpreted as the reciprocal of 
the fractional bandwidth  when it is larger than 10 
[16].  

The calculation of the stored energies WE,H of a general 
spherical wave expansion is an old topic [27],[17],[2]-[30]. 
Essentially, the most used approaches are the ones provided by 
Chu [25], Collin and Rothschild [16] and Fante [2], the latter 
generalized to the case of arbitrary field internal to the 
minimum sphere in [28]. In [16], the quality factor of each 
individually tuned spherical wave is defined, for a unit radiated 
power, as   

                (11) 

 
where are the electric and magnetic energy 

associated with the n-th mode. In [2], Fante introduced 
additional subdominant terms needed for the calculation of the 
Q-factor of a generic non-resonant antenna with unit power as  
 

                 (12) 

 
The exact expressions of  are reported in Appendix 
C. It is noted that they are independent from the azimuthal index 
m. A general expression of the Q of a non-resonant antenna is 
given by    

   (13) 

where  are the coefficients of the TM and TE modes, 
respectively. In the specific case we are dealing with, the 
antenna is not resonant due to the unbalancing provided by the 
different efficiency of TE and TM modes. This implies that till 
a certain dimension of the antenna, the reactive electric energy 
dominates, and therefore we should always apply the first of 
(13); therefore, using (8) leads to  
 

              

(14) 

 
The value of Q on the maximum Gain curve as a function of the 
antenna size is presented in Fig. 4 for various values of the loss 
resistances. It is seen that the bandwidth (the inverse of Qtot) 
becomes extremely small for small resistance, even if it 
corresponds to very high maximum gain limit. Furthermore, all 
the curves tend asymptotically for small electrical size to the 
value of Q that satisfies the Chu limit, namely  

 

          

(15) 

It is worth noting that for resonant antennas that maximize the 
directivity the convergence as  is like  
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.  This behavior is 

due to the lower efficiency of the TE modes in the quasi-static 
limit.    

 
Fig. 4. Quality factor Q of spherical wave expansion with coefficients 
associated to the maximum gain for various values of the loss resistance (values 
in Ohm). The two dashed dotted lines represent  
 

E. Maximum Gain for Self-Resonant Antennas  
The solution in (8) is not self-resonant; namely, there should be 
an additional external reactive tuning circuit to reach the 
maximum gain. For self-resonant antennas (which is also the 
case treated in [1]), the maximum gain is obtained by using a 
method similar to the one given in the Appendix B of  [1], based 
on the dual (Lagrange) problem. We don’t repeat here the 
process, showing only the result, that is 
 

(16) 

 
where x0 is the value that minimizes the series in the 
interval  

    (17) 

 
The gain in (16) is obtained with field coefficients  
 

                       (18) 

 
where di is defined in (9). The coefficients for the current 
expansion are obtained dividing by the square root of the 
individual TE and TM n-indexed radiation resistance. 
Comparison between (16) and (7) are given in Fig. 5.  The 
resonant antenna maximum gain is tighter than the one for 
externally tuned antenna, especially for small antennas and it 
drops rapidly to zero for gain approximately equal to 3. This 
aspect has been also underlined in [22].  

 
Fig. 5 Maximum antennas gain calculated for different values of RW as a 
function of 𝑘𝑟!"#. Dashed lines: externally tuned antennas. Continuous lines: 
self-resonant antennas.   

F. Comparison with Gustafsson-Capek results  
It is important to compare our result with the one obtained by 

Gustafsson and Capek in [22]. The formulation presented there 
is based on a Methods of Moments (MoM) applied to the 
surface of an arbitrary metallic body and by a convex 
optimization procedure. They found the maximum super-gain 
by imposing a maximization of the power intensity with 
constant radiated power for any coefficient of the MoM basis 
functions, assuming small losses on the metallic surface.  

This procedure is quite general and can be applied to 
arbitrary shapes. In Fig.1 of [22], the authors apply the 
procedure to a spherical shape, using spherical modes as basis 
functions. In the externally tuned case, the convex optimization 
is carried out without conditions on the reactance of the MoM 
matrix. In the self-resonant case, they impose also a vanishing 
reactive average power through the imaginary part of the MoM 
matrix. We have re-implemented the convex optimization 
procedure of Gustafson-Capek for both cases, and we have 
found results very close (but not equal) to the results provided 
by (7) and (15). Fig. 6 shows the discrepancy between our 
results and the ones in [22] for the externally tuned case (a 
similar situation is found for the self-resonant case). Although 
this has initially puzzled us, finally we have found the reason of 
it. We found indeed that the results from our procedure become 
identical to those obtained in [22] if one uses the radiation 
resistance produced by electric currents only. More 
specifically, we can reproduce exactly the results in [22], 
changing the SW radiation resistances in (7) with the following 
expression  

 

   (19) 

  
These radiation resistances are the ones corresponding to 
harmonics of electric currents only radiating in free-space. It 
should be noted that using the electric currents only, provides 

Qtot →Q1= 1
2 ′Q1  + ′′Q1  ( ) = 1

2 (krmin )
−3 + (krmin )

−1

′Q1  and ′Q2  .

Gmax (ξ0 )=
1
2ηn

TE 2n+1( )
1+ξ0ηn

TE ′Qn− ′′Qn( )⎡⎣ ⎤⎦
+

1
2ηn

TM 2n+1( )
1−ξ0ηn

TM ′Qn − ′′Qn( )⎡⎣ ⎤⎦

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟n

∑

Gmax (ξ )

ξ ∈ − 1
max
n

ηn
TE ′Qn − ′′Qn( ){ } ;   1

min
n

ηn
TM ′Qn − ′′Qn( ){ }

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Ci= δ i
ηn

(TE ,TM ) 2n+1
1+ ξ0ηn

(TE ,TM ) ′Qn− ′′Qn( )⎡⎣ ⎤⎦

Rrad ,J−only ,n
(s) =

ζ ∂
∂(kr)

krmin jn krmin( )( )⎡

⎣
⎢

⎤

⎦
⎥

2

for s=1 (TE)

ζ krmin jn krmin( )⎡⎣ ⎤⎦
2

            for s=2 (TM)

⎧

⎨
⎪
⎪

⎩
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⎪
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field (and energy) different from zero inside the minimum 
sphere, which leads to a slightly tighter value of the maximum 
gain.    
 

 
 
Fig. 6 Comparison between the maximum gain for the externally tuned case of 
our formulation (continuous lines) and the formulation in [20] (dashed lines), 
also obtained by using (19) in (7). 
 

G. Distribution of the Coefficients of the Currents  
Fig. 7 shows the histogram of the n-indexed current 

coefficients’ amplitude corresponding to the maximum gain for 
externally tuned case in (8). The coefficients are normalized in 
such a way to have unitary radiated power. Fig.7(a)-(b) 
correspond to different values of surface resistance 
(RW=1W and RW=0.1W, respectively). Both cases of externally 
tuned coefficients and self-resonant coefficients are reported. 
The calculation is carried out for krmin=2. It can be seen that the 
maximum coefficient amplitude is given at the index at which 
the ohmic losses resistance approaches the resistance of the 
harmonic, that is , namely, when the efficiency of 

the harmonic is 50%, i.e. .  
It is apparent that for smaller values of the loss-resistance the 

optimal current coefficients are concentrated on super-reactive 
harmonics, it means SWs with polar index larger than krmin=2.  
This makes it challenging to achieve their excitation on the 
minimum sphere. Consequently, the bound described in (7) is 
difficult to achieve. It is also apparent from Fig. 7 that the TE 
optimal coefficients for the resonant case are higher, aligning 
with their reduced efficiency for small antennas. Furthermore, 
lower losses correspond to larger optimal coefficient values, as 
noted by the disparity in the vertical scales between Fig.7(a) and 
7(b).  

IV. EXTERNALLY TUNED SMALL ANTENNAS  
For small antennas the interpretation of the previous 

formulas becomes interesting. We limit the analysis to the 
externally-tuned case, but similar considerations can be carried 
out for the self-resonant antennas. We first observe that the n-
th TE and TM spherical harmonics, with azimuthal index 

 have different coefficients, and this implies different 
impact on both bandwidth and gain.  

 
 

 

 
 

Fig. 7 Histograms of current coefficients for TE (inductive, right-hand side) and 
TM (capacitive, left-hand side) harmonics; both externally tuned case (blue 
bars) and self-resonant case (red bars) are reported. (a) 𝑅$ = 1	Ω; (b) 𝑅$ =
10%&Ω. The maximum gain is in this case approximately equal for self-resonant 
and tuned case. The amplitudes are normalized to have a unit radiated power 
(Pr=1Watt). The maximum coefficients are obtained for the n where the 
harmonics efficiency is about 50%. Note the difference of vertical scale for (a) 
and (b).     

This is in contrast with what happens for the maximum 
directivity, namely in absence of losses [1]. In the latter case 
and for n=1, the maximum directivity field can be interpreted 
as the one produced outside the minimum sphere by an 
elementary Huygens’ dipole (HD) located at the origin. By 
duality, the energy density of the HD is balanced outside the 
minimum sphere. In the same lossless case, the combination of 
the spherical wave harmonics for n=2 provides the field of a 
Huygens’ Quadrupole (HQ) combined with the one of a Dual 
Vertical Quadrupole (DVQ) [1]. In presence of losses, the 
maximum gain is obtained by unbalanced coefficients, that 
renders the antenna non resonant. This means that outside the 

RΩ ≈ Rrad ,2
(1,2)

η2
(TE ,TM ) ≈ 1

2

m = ±1
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minimum sphere electric and magnetic energies are not 
balanced, thus, requiring the use of (13). In particular, the 
coefficients associated to the electric and the magnetic dipoles 
and quadrupoles field are weighted by their efficiency, as 
prescribed by the general form (8). In the far zone this leads to 
the electric field proportional to  

 (20) 

where    
                         (21) 

                             (22)                      

              (23) 

               (24) 
 
In particular, are the electric far-field pattern of a x-
directed electric and y-directed magnetic dipoles, respectively, 
and  are electric and magnetic quadrupoles, 
respectively. The latter are obtained by in phase combination of  
x-directed and z-directed electric quadrupoles, and y-directed 
and z-directed magnetic quadrupoles, respectively. The 
situation is illustrated in Fig. 8.   

 
Fig. 8. Elementary sources associated with the far field pattern of dipolar  

(a),  (c) and quadrupolar  (b)  (d) contributions. Electric 
dipoles (TM) are denoted in blue with a single arrow and magnetic dipoles (TE) 
in red with a double-arrow. The vertical doublet is aligned along x for electrical 
dipoles and along y for magnetic dipoles.  
 
The maximum gain for this approximation is given by  
 

             (25) 

 
which is associated to a total quality factor  
 

(26) 

 
In (17) and (18) the explicit expressions of the SW efficiency 
posing x=krmin, are  
 

                           (27) 

                 (28) 

               (29)

     (30) 

 
where the first equality is derived directly by (3); the 
approximation at the last members are valid for any value of x 
from 0 to infinity and for   with maximum relative 
error emax limited  by the following values   

 for 
eqs. (27), (28), (29), (30), respectively. The exact values of the 
quality factors are given by 
  

               (31) 

 
It is interesting to compare the maximum gain obtained 
considering two source contributions in (25) and the full series 
in (7). Fig. 9 shows this comparison for values

.  It is seen that the two expressions coincide 
below Gmax =6 and agree till Gmax =7.   

 
Fig. 9 Maximum gain for calculated for different values of RW  as a function of 
𝑘𝑟!"#	using the full series in (7) (continuous line) and the two terms 
approximation in (25) (dotted line). Dash-dotted lines are the corresponding 
directivities obtained by Gmax/h by using the full series.  
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ŷx̂

h2
(TM )

x̂ ŷ
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Fig. 10 Maximum gain of self-resonant antennas calculated for different values 
of RW (in Ohm) as a function of 𝑘𝑟!"#	using the full series in (16) (continuous 
lines). Dotted lines: first two terms of the series in (16). Dash-dotted lines: 
directivities obtained by Gmax/h with the full series.   

The directivity is also reported in the same plot.  It is worth 
noting that the insertion in (25) of the approximation in the last 
expressions in (27)-(30) does not practically provide numerical 
differences. For completeness, Fig. 10 shows similar results as 
those of Fig. 9 for self-resonant antennas.  

V. MAXIMUM GAIN WITH MINIMUM-Q BOUND  
In [1], the exact formula for minimum-Q and maximum 
directivity has been derived through a convex optimization for 
the radiation density bounded to have a unit power and a 
minimum Q. Following the same approach, we can obtain the 
Q-bounded super-gain applying the Lagrange’s multiplier 
method shown in Appendix C of [1]. In obtaining the bounded 
maximum gain, we assume that the condition WE>WH is 
respected,  so as to impose as a bound the first expression in 
(13).  Since the procedure is like the one in [1], we omit the 
demonstration, and we present only the final expression, that is,   
 

  (32) 

 
where n0 is the values that minimize the series in the 

interval )]. In (32), Q is the maximum 

desired total quality factor of the antenna.  It is worth noting 
that the above expression changes when WE < WH; in such a 
case, in accordance with (13), it is sufficient to interchange the 

 In the implementation one should therefore switch 
formula at the resonance (WE=WH). The field coefficients for 
the Q-bounded maximum gain are given by  
 

                      (33) 

 
 

 
(a) 

 
(b) 
 

 
(c) 

Fig.  11 Q-bounded maximum gain Gmax as a function of the antenna size 
calculated for Q=10 (a), Q=100 (b), and Q=1000 (c) and different values of the 
ohmic losses resistance RW; the curves tend smoothly to the Q-bounded 
maximum directivity (black line) when the losses tend to zero. 
RW=0 corresponds to the maximum Q-bounded superdirectivity Dmax as in (1). 

 
The curves obtained with eq. (32) are compared with a 

numerical convex optimization obtained by expanding electric 
and magnetic currents in terms of small-domain basis functions 
(dotted lines); excellent agreement has been found. We should 
highlight that the intricate interplay between bandwidth and 
losses implies that, for a fixed antenna size, a larger required 
bandwidth may necessitate a slight increase in losses to 
minimize the disparity between maximum gain and maximum 
directivity. Eventually, the Q-bounded  parametric curves of 
maximum gain gradually tend to the Q-bounded maximum 
directivity in (1) for vanishing losses (dash-dotted lines in all 
Fig. 11(a)-(c)), with level of admissible losses depending on the 
required Q. More precisely, the discrepancy between maximum 
Directivity and maximum Gain vanishes for smaller losses 
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1
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⎣
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when Q is larger. This aspect is quantified in Fig. 12, where the 
percentage error  between the 
Q-bounded gain in (32) and the Q-bounded directivity in (1) has 
been calculated as a function of the antenna size for different 
value of RW . Fig. 12(a),(b),(c) correspond to Q=10, 100, 1000, 
respectively. A more exhaustive analysis revealed that e less 
than 7% (which corresponds to an overall radiation efficiency 
larger than 93%) is found for Q < 9/ RW 

0.8+3.  This means that 
in this range one can calculate the maximum gain with the 
simple formula in eq. (2) for maximum directivity. The 
situation is illustrated in with the help of a picture Fig. 13.  
Finally, we should also emphasize the fact that the direct use of 
(32) may provide inconsistencies in the region Q < 9/ RW 

0.8+3,  
since (32) is not valid when WE < WH, where one has to 
interchange  to get the rigth gain maximization.    

 

 
(a) 

 
(b) 

 
Fig. 12 Percentage difference between maximum Q-bounded directivity and 
maximum Q-bounded gain for different values of the loss resistence.  The green 
curves correspond to an efficiency larger than 93% in the overall range from 
the Chu limit. (a) Q=10; (b) Q=100; (c) Q=1000. The horizontal scale start form 
the Chu limit.       

 
Fig.  12 Region of validity of the formulas for Q-bounded maximum gain with 
losses (eq. 32) and without losses (eq. 2). For Q<9/ RW 

0.8+3 eq. (2) can be used 
with a maximum error less than 7% for all antenna sizes.   

VI.     CONCLUSIONS   
This paper has delineated various fundamental 

characteristics of the maximum gain exhibited by arbitrary 
antennas with specified electrical sizes. Analytical expressions 
for the maximum antenna gain, contingent upon losses and 
subject to Q bounds, have been presented for both resonant and 
non-resonant (externally tuned) cases. The exact solution is 
given in terms of a series that should be minimized wrt a single 
parameter. For smaller antennas, a concise closed form has been 
furnished, delivering accuracy up to a maximum gain of 7. 
Additionally, an intriguing interpretation in terms of magnetic 
and electric dipoles has been provided. The findings showcased 
in this study have also unveiled the range of losses and Q values 
wherein super-directivity corresponds to super-gain. 
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APPENDIX A: SPHERICAL WAVE EXPANSION  
The equivalent electric and magnetic currents of the Love 

formulation (Fig. 1a) are given in terms of SWE by 

 and , 

respectively, where  is the free space impedance, are the 

expansion coefficients of the electric field, are the 

spherical wave functions evaluated over the minimum sphere, 
as defined in the Hansen’s book [9], except for a different time 
dependency (which is here exp(jwt)). In this notation, the 
superscript “3” corresponds to the spherical Hankel second-
type r-dependent function. The polar index n refers to the order 
of the Hankel function and the index m refers to the azimuthal 
angular wave number. The subscript s=1,2 denotes TE and TM 
polarization with respect to the radial direction r, respectively.  

The proper normalization of the spherical wave functions of 
Hansen and their orthogonality imply that the radiated power is 
given by the summation of the squared amplitude of the 
coefficients,  The expansion of the 

ε = (Dmax −Gmax ) / Dmax = 1−η

′Qn  and ′′Qn

J= jk/ ζ Cs,m,nr̂ ×F3−s,m,n
(3)

s,m,n
∑ M=k ζ Cs,m,nFs,m,n

(3) × r̂
s,m,n
∑

ζ , ,s m nC

Fs,m,n
(3)

  
Pr =

1
2 | Cs,m,n |2

s,m,n∑ .
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currents can be rewritten through the -dependent 

functions  

where  are defined through the spherical Hankel 

functions [9]. To compact the notation, we have used, the index 
i which renumbers the tern of indexes s,m,n in a single index 

.  

The far field radiation density for unit solid angle can be 

written as , where

 . The same quantity can be expressed 

in terms of the electric current coefficients through 

where  is the radiation resistance of the 

individual harmonics given in (3). Using the above expression 
the antenna gain in direction is given by (5). 

APPENDIX B: MAXIMUM GAIN COEFFICIENTS 
The maximization of the function  in (6) with respect 

to the coefficients  is obtained by imposing the vanishment 

of the derivative wrt ; namely 

               (34) 

 
The above is equivalent to  

                (35) 

which is respected if and only if   
 

                        (36) 

 
for any  q.  When substituted in (6), (36) leads to (7), and 
together with the phase condition , yields the 
current coefficients  

      (37) 

The relation between current coefficients and electric fields 

coefficients leads (8). 

APPENDIX C: Q-FACTORS FOR SPHERICAL WAVES 
The analytical expression of the Fante’s dominant and 

subdominant Q-factors of n-indexed spherical waves is given 
by   

        (38) 

     (39) 

where and , ,   are the spherical Hankel of 
second kind, Bessel, and Neumann functions of order n, 
respectively.  For n=1 and 2 they assume the exact expressions 
in (31).  
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1
2 x
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⎡
⎣⎢

⎤
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