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Abstract
We define a class of pure exchange Edgeworth trading processes that under minimal
assumptions converge to a stable set in the space of allocations, and characterise the
Pareto set of these processes. Choosing a specific process belonging to this class,
that we define fair trading, we analyse the trade dynamics between agents located on
a weighted network. We determine the conditions under which there always exists a
one-to-onemap between the set of networks and the set of limit points of the dynamics,
and derive an analog of the Second Welfare Theorem for networks. This result is used
to explore what is the effect of the network topology on the trade dynamics and on the
final allocation.

1 Introduction

This paper contributes to the literature on the dynamics of trade, providing a model of
pure exchange trade (without production nor consumption)where agents are located on
an exogenously fixed network of trading opportunities. We demonstrate the existence
of a bijective relationship, given initial endowments, between the network structure
and the system’s convergence points of the dynamics, which are market equilibria and
where the corresponding final allocations of goods belong to a subset of the Pareto
set.
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Within this framework, focusing on a Fair Trade mechanism based on the egali-
tarian bargaining solution (Kalai 1977), we establish a version of the Second Welfare
Theorem for networks, which contributes to the analysis of how the network structure
impacts final allocations and the distribution of welfare. The dynamical system that
describes the path of exchanges is not analytically solvable even in the simplest case
of two individuals and two goods, so we analyse the impact of trading networks on
welfare via simulations. What emerges is a complex relation between the network, the
initial endowments and welfare in equilibrium.

There are multiple compelling reasons to take into account the network structure
of trading opportunities. One fundamental reason is that real-world transactions are
shaped and influenced by the underlying relationships between agents. Due to fac-
tors such as geography, social ties, and technological compatibility, not all individuals
interact with each other directly. The study of trade on networks has garnered signif-
icant attention in the field of economics, and for a comprehensive review, we refer
readers to the work by Manea (2016). It is important to note that the key distinction
between the contributions examined in Manea’s review and our own research lies
in the modelling approach. Unlike the explicit incorporation of strategic interactions
among agents in the reviewed literature, our focus is primarily on characterising the
dynamics of trade within a fixed network, utilizing a tractable convergent dynamical
systems framework.

In theWalrasian competitive equilibrium, decentralized exchange occurs at the final
equilibrium prices. However, in real market transactions, agents discover equilibrium
prices by engaging in mutually beneficial trades even at disequilibrium prices (Foley
2010): to overcome the challenge posed by the absence of a real price dynamics, the
concept of an “auctioneer" was introduced. In tâtonnement models, agents constantly
engage in recontracting instead of immediate trading. As a result, prices change when
themarket is not in equilibrium,while quantities remainfixed (Fisher 2003). This paper
takes a different approach and situates itself within the literature on out-of-equilibrium
dynamics that emerged in the early 1960s (see Petri and Hahn 2003 for a review).
These models are known as non-tâtonnement processes or trading processes. Uzawa
(1962) and Hahn (1962) introduced the “Edegworth process", where both prices and
quantities adjust throughout the path. In these processes, that rely on the fundamental
assumption that trade occurs only if it results in increased utility, equilibrium is path-
dependent, and dynamics outside of equilibrium alter the set of equilibria. This is
in contrast to the Walrasian case, where equilibrium is solely determined by initial
holdings and is independent of the path taken. Both Uzawa (1962) and Hahn (1962)
demonstrate that, under standard assumptions about preferences and the space of goods
in the economy, these processes converge in the limit to a Pareto optimum.

In this paper, we employ a variant of the Edgeworth barter process to model dynam-
ics outside of equilibrium, incorporating adjustments in both quantities and prices. We
introduce a class of trading processes that, under a set of limited assumptions, con-
verge to equilibrium. In this context, prices represent the instantaneous exchange rate
between goods and have the flexibility to change at any point during the process. It
is important to note that there is no inherent tendency for prices to gravitate towards
equilibrium, as equilibria are path–dependent. Our research is connected to thef liter-
ature on planning procedures (Dreze and de la Valle Poussin 1983; Malinvaud 1972),
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specifically drawing on the work of Cornet (1983) regarding the neutrality of planning
procedures. In Sect. 5, we delve into a more detailed discussion of this connection and
its implications.

The main novelty with respect to the literature on out-of-equilibrium dynamics is
the fact that only connected agents can trade: we introduce a static, weighted network
determining who can trade with whom. Among the works on dynamical networks, our
paper relates with Cowan and Jonard (2004) and König and Rogers (2023) who model
knowledge diffusion as a barter process: agents meet their neighbours repeatedly and
in case they have a differential in two dimensions of knowledge they trade, each
receiving a constant share of the knowledge differential. Other related works include
Flåm (2019) who study the emergence of price taking behaviour modelling trade as
a sequence of bilateral exchanges where agents only trade if each exchange increases
both agents’ utility. Contrary to our case the network structure of agents matching
is not explored but the author shows that equilibria can be path-dependent and are
affected by the matching order.

Our model does not consider strategic interactions: we do not have any market
game and agents do not tradewith all others simultaneously but only engage in bilateral
exchanges with their network contacts, which differentiates our approach fromGhosal
andMorelli (2004).Moreover,wedonot allow for trade frictions as for exampleFleiner
et al. (2019). Our model in principle can be applied to large numbers of players, even if
in the current work we provide examples of small networks only. Axtell (2005) proves
that decentralized exchange processes of the same class of our model have polynomial
computational complexity, performing much better than Walrasian models which can
be exponential in the worst case.

The paper is structured as follows: in Sect. 2we define our family of bilateral trading
processes, and we provide a characterisation of the Pareto set to which these processes
converge. In Sect. 3 we expose the trading rule of choice, namely the egalitarian rule,
proving that the trade so defined belongs to the family of trades of our interest. In
Sect. 4 we extend trading to more agents, and we introduce the network structure as a
weighted network. In Sect. 5 we prove an analog of the Second Welfare Theorem for
networks, and relate our result to the literature on decentralized planning procedures.

2 Themodel

2.1 Pure exchange

There are n ≥ 2 agents, we will generally refer to an agent i ∈ {1, . . . , n} ≡ N , and
m ≥ 2 goods, and to a good k ∈ {1, . . . , m} ≡ M . Agents can only have non-negative
quantities of each good, and we are considering a pure exchange economy with no
production, so that total resources in the economy are fixed and given by the sum of
the agents’ endowments. The endowment of agent i is a point in the positive orthant
of Rm , call this space Rm+, where the k−th coordinate represents the quantity of good
k. Assume time t is continuous, with t ∈ (0,∞) and goods are infinitely divisible,
and let xik,t be the endowment of agent i at time t for good k. In this way xi,t ∈ R

m is
the m–dimensional vector of agent i’s endowment at time t , while xk,t ∈ R

n is the n–
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dimensional vector of all agents’ endowments of good k at time t . Aswe assumed there
is no production, nor can the goods be disposed of, the sumof the elements of each such
vector xk,t is constant in time. The initial allocation of the economy is then represented
by the n vectors of agents’ endowment at time zero, call it x0 = {x1,0, . . . , xn,0}. All
agents’ allocations at a given point in time can then be represented by an (m × n)

matrix with all non-negative entries, call it Xt . In the following we may not express
the time variable t , when it does not create ambiguity. Following Smale (1975), an
unrestricted state of the economy at any time t is a point in the positive orthant of an
R

m×n space, given by the Cartesian product (Rm)n . As we assumed that resources are
fixed in the economy at a pointw ∈ R

m (where the k-th coordinate is the total quantity
of good k in the economy), the state space of our interest is a subset of Rm×n+ , call it
E = {x ∈ R

m×n+ : ∑
i∈N xik = wk ∀k ∈ M}, which is an open subset of an affine

subspace with compact closure in R
m×n (Smale 1975).

Assumption 1 Any agent i is characterised by a twice continuously differentiable,
strictly increasing utility function Ui from R

m+ to R.

Given xt ∈ E , a point in the space of the economy at some point in time t , call U (xt )

its corresponding n–dimensional vector of utilities. Define μik,t ≡ ∂Ui (xi,t )/∂xik,t

the marginal utility of agent i , with endowment xi,t , with respect to good k, and μi,t

the gradient of the utility function for agent i at time t , that is the vector of all her
marginal utilities. All individual gradients are represented by an m × n matrix of all
the marginal utilities at a given point in time, call itMt . The vector of strictly positive
marginal utilities μi,t , is proportional to any vector of marginal rates of substitutions
with respect to any good � ∈ {1, . . . , m}. It is important to stress that for the rest of
the paper we use a cardinal notion of utility, because this is the structure on which we
build on our out–of–equilibrium dynamical process.
In the pure exchange economy defined above, the contract curve is given by the set of
all those allocation where all marginal utilities are proportional.

Definition 1 The Pareto set W of the pure exchange economy is defined as:

W = {
X : ∀ i, j ∈ N , ∃ki j ∈ R, k �= 0, s.t . μi (xi ) = ki jμ j (x j )

}
. (1)

Proposition 1 (Smale 1975) If the utility function is monotonic and indifference curves
are convex, then the set of Pareto Optima is homoeomorphic to a closed (n−1) simplex.

For a proof of Proposition 1 see Smale (1975). The assumptions in Proposition 1 are
standard in economics. Furthermore if we assume concavity of the utility function
and convexity of the commodity space we have that the set of Pareto Optima is dif-
feomorphic to a closed (n − 1) simplex. It has been shown that if preferences are C2

and convex it is possible to find utility representations that admit a convex space, for
an exhaustive discussion and proofs see Mas-Colell (1990). Note that in our case the
assumptions of Proposition 1 are satisfied: the state space of interest is an open subset
of an affine subspace with compact closure in R

m×n (Smale 1975). The convexity
assumption makes the problem much easier to deal with, but in case this assumption
is relaxed we can still characterise the Pareto set, that will be an (n − 1) stratified set,
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that is a manifold with borders and corners, see Wan (1978) and de Melo (1976). Note
finally that adding an error term to equation (1) we get a diffusion process similar to
the one analyzed by Anderson et al. (2004), generalized to networks by Bervoets et al.
(2020) and, outside economics, by Robert and Touboul (2016).

2.2 Trading

Define trading between agents in N as a continuous dynamic over the endowments,
which is based on marginal utilities. Formally it will be a set of differential equations
of the form:

dxi,t

dt
= fi (Mt ) , (2)

where function fi from R
n×m+ to R

m , satisfies the following 3 assumptions, for any
setMt = (

μ1,t , μ2,t , . . . μn,t
)
of feasible marginal utilities:

• Zero sum: the sum
∑n

i=1 fi is equal to the null vector 0.
• Trade: if there are at least two vectors of marginal utilities, μi,t and μ j,t , which
are linearly independent, then at least one between fi and f j is different from 0.

• Positive gradient: for any agent i it will always be the case that μi,t · fi ≥ 0, with
strictly positive sign if there is trade.

The assumption of zero sum trade guarantees that we are in a pure exchange economy
without consumption nor production of new goods, as the amount of all the goods
remain unchanged at any step of the process. The assumption of trade guarantees
that there is actually exchange, unless we are in a Pareto optimal allocation, where the
marginal rate of substitution between any two goods would be the same for any couple
of agents. Finally, the assumption of positive gradient guarantees that any marginal
exchange represents a Pareto improvement. That is because

dUi

dt
=

m∑

k=1

∂Ui

∂xik

dxik

dt

= μi,t · fi (Mt ) ≥ 0

(3)

An allocation X∗ (the (n × m) matrix representing quantities of each of the m goods
for each of the n agents) is an equilibrium of the system in Eq. (2) if fi (X∗) = 0 for
all i = 1, . . . , n and a solution is a function x̂(t,X0) : R×R

n×m+ → R
n×m+ where X0

is the initial condition at time 0.

Definition 2 The solution x̂(t,X∗
0) is stable if for every ε > 0 there exists a δ > 0

such that:

|X0 − X∗
0| ≤ δ �⇒ |x̂(t,X0) − x̂(t,X∗

0)| ≤ ε , ∀t ≥ 0 . (4)

Generalizing (Hahn 1982), it is easy to show that all and only the fixed points of the
dynamical system defined in Eq. (2), are Pareto optimal allocations. That is because
the function
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Ū (Xt ) ≡
n∑

i=1

Ui (xi,t )

can be seen as a potential. It is bounded in its dominion of all possible allocations, it
strictly increases as long as there is trade (i.e. out of equilibrium), and it is stable when
there are no two agents who could both profitably exchange goods between them. At
the limit Ū will converge for sure to a value, say Ū∗, corresponding to an allocation
X∗. As preferences are strictly convex, there will be no trade in X∗.
The fixed points of the above dynamical system, which are market equilibria, are
reached by a sequence of utility increasing, infinitesimally small trades from an initial
state, hence the set of the solutions of any such trade mechanism is an open subset of
the Pareto set W defined in Eq. (1) (Smale 1975).
Note that at this stage there are no assumptions restricting endowments not to become
negative, that is to say we are not requiring a condition like dxik

dt > 0 as xik → 0. This
will depend on the initial endowment X0 of the agents and on their utility functions.

Assumption 2 Asanymarginal exchange represents aPareto improvement,we assume
that any Pareto improvement starting from the initial conditions will lie in the convex
set of the initial endowments, that lies in the non-negative orthant.

Examples that satisfy these properties are the classicalWalrasian tâtonnement process,
as well as non-tâtonnement processes, as can be found in Hahn (1982) and Hurwicz
et al. (1975a, b).

3 Fair trading between two agents

Let us start by considering n = 2. There is an entire family of trading mechanisms
satisfying the very general assumptions of zero sum, trade and positive gradient. Aswe
choose a tradingmechanismwe are implicitlymaking assumptions on somebargaining
rule that has been fixed by the agents participating in the trade. This is a restriction
to some extent, still we can choose different trading mechanisms corresponding to
different bargaining solutions that satisfy the assumptions. We define a mechanism
that we call fair trading, that is based on the egalitarian solution by Kalai (1977):
whenever there is room for a Pareto improvement, agents trade if and only if they
equally split the gains in utility from the trade.

As in Kalai (1977) we consider utility as cardinal, in other words it does not only
represent an ordering among alternatives, it also attaches a precise value to alternatives
on the same indifference curve. Moreover, we are allowing for interpersonal compar-
isons andwe are assuming that agents have full knowledge of each others’ preferences.
This imply first of all that our results are not invariant under monotone transformation
of the utility function: unless the utilities of all agents are rescaled by the same factor,
the trade path changes and consequently the equilibria change. In this respect we also
do not explicitly consider strategic misrepresentation of preferences, in other words
we are assuming that agents are always revealing their true utility function. It is worth
remembering that Shapley (1969) showed that there is no strongly individually ratio-
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nal ordinal solution to bilateral bargaining problems, and here we are considering a
trade mechanism based on a bilateral bargaining solution, as in Kalai (1977).
Trading is bilateral, N = {1, 2}, and m ≥ 2 goods. By the zero sum property we have
that f1 = − f2. We are restricting our attention to the case where marginal utility from
trading is equally split among the two agents. The Pareto improvement from trading
is defined in Eq. (3), so we are requiring that:

μ1,t · f1
(
μ1,t , μ2,t

) = μ2,t · f2
(
μ1,t , μ2,t

)
.

By the zero sum property this is satisfied if

(
μ1,t + μ2,t

) · f1
(
μ1,t , μ2,t

) = 0

which simply means that marginal trade has to be orthogonal to the sum of marginal
utilities.
There is a full sub-space of dimension m − 1 that is orthogonal to the sum of the
two marginal utilities. Here we consider a single element that lies in the sub-plane
generated byμ1,t andμ2,t . We assume that trade for agent 1, f1, is the orthogonal part
of μ1,t with respect to μ1,t + μ2,t (or the vector rejection of μ1,t from μ1,t + μ2,t ).
In formulas it is

f1
(
μ1,t , μ2,t

) = μ1,t − μ1,t · (
μ1,t + μ2,t

)

|μ1,t + μ2,t |2
(
μ1,t + μ2,t

)
, (5)

where | · | is the Euclidean norm in R
m . Generalizing Eq. (5) we call fi (μi,t , μ j,t )

fair trading between agent i and j .

Proposition 2 The fair trading mechanism between two agents defined in Equation
(5) satisfies zero sum, trade and positive gradient.

Proof Fair trading specified in (5) satisfies zero-sum, as the instantaneous trade of one
agent is equal to the additive inverse of the instantaneous trade of the other agent:

f2
(
μ1,t , μ2,t

) = μ2,t − μ2,t · (
μ1,t + μ2,t

)

|μ1,t + μ2,t |2
(
μ1,t + μ2,t

) = − f1
(
μ1,t , μ2,t

)

because

f1
(
μ1,t , μ2,t

) + f2
(
μ1,t , μ2,t

) = (
μ1,t + μ2,t

) − |μ1,t + μ2,t |2
|μ1,t + μ2,t |2

(
μ1,t + μ2,t

) = 0.

To check that the trade condition is satisfied note that f1
(
μ1,t , μ2,t

) = 0 only if
μ1,t = kμ2,t for some k ∈ R, that is when μ1,t and μ2,t are linearly dependent.
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Positive gradient requires that:

μ1,t ·
(

μ1,t − μ1,t · (
μ1,t + μ2,t

)

|μ1,t + μ2,t |2
(
μ1,t + μ2,t

)
)

≥ 0.

For the above inequality to be satisfied it suffices that |μ1,t · (
μ1,t + μ2,t

) | ≤
|μ1,t ||μ1,t +μ2,t |. The latter always holds as it is the Cauchy–Schwarz inequality. As
long asμ1,t andμ2,t are linearly independent |μ1,t ·

(
μ1,t + μ2,t

) | < |μ1,t ||μ1,t+μ2,t |
and soμ1,t f1

(
μ1,t , μ2,t

)
> 0 as long as there is trade.Whenμ1,t andμ2,t are linearly

dependent |μ1,t ·
(
μ1,t + μ2,t

) | = |μ1,t ||μ1,t +μ2,t |, soμ1,t f1
(
μ1,t , μ2,t

) = 0 when
there is no trade. ��
Note that zero-sum, trade and positive gradient would be satisfied for any α f1

(
μ1,t ,

μ2,t
)
, with α > 0, where the parameter α represents the speed at which the dynamical

system is moving, so there will be no loss in generality in assuming it equal to 1.
So, the fair trading mechanism is a bilateral pure exchange mechanism satisfying the
required three assumptions. The two agents trade over m ≥ 2 goods, starting from
some initial allocation X0 ∈ R

m×2 and evolving according to the following system of
differential equations in matrix form, based on Eqs. (2) and (5):

dXt

dt
=

(

μ1,t − μ1,t · (
μ1,t + μ2,t

)

|μ1,t + μ2,t |2
(
μ1,t + μ2,t

)
, μ2,t

−μ2,t · (
μ1,t + μ2,t

)

|μ1,t + μ2,t |2
(
μ1,t + μ2,t

)
)

. (6)

This dynamical system is well defined, as μ1,t and μ2,t are defined in Xt , and are
based on the utilities U1 and U2. However, this system is not linear in Mt .

To have a graphical intuition for our approach, consider Fig. 1,wherewehavem = 2
(adapted from Smith and Foley 2008). In the left panel we represent allocations of
the two goods, while in the right panel we represent utilities of the two agents. The
red and the blue lines (in both panels) are the boundaries of the Pareto improving
allocations. The yellow curve is the Walrasian map from initial endowments to the
Walrasian equilibrium allocation: it is a straight line in the Edgeworth box (left), but
not necessarily in the space of utilities (right). The green line is the path obtained
with fair trading: it is a straight line with 45◦ inclination in the right panel. The above
example is just illustrative, and we are not claiming that a the limit points of the Fair
Trade dynamics cannot coincide with theWalrasian allocation, even if this is generally
not true.

4 The network environment

What happens if m ≤ n +1, if for instance there are only 2 goods and many agents? In
this case we consider a market mechanism based on a weighted, undirected network G
that allows for distinct couples to match and trade according to the unique fair trading
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Fig. 1 Example of the difference between a Walrasian equilibrium and a fair equilibrium in the Edgeworth
box and in the space of utilities

mechanism defined in Sect. 3.1 The trade network G is identified by the symmetric
adjacency matrixW = (wi j ), where wi i = 0 and wi j ∈ [0, 1] and we assume that the
sum of all edge weights in G is equal to 1,

∑
i> j wi j = 1. The importance of a node

i in terms of the total weight of their connections is given by the strength, defined as
si = ∑

j wi j (Barrat et al. 2004). Note that, given our assumption on the sum of edge
weights

∑
i si = 2. The weight of each connection represents the fraction of trade

opportunities between two agents.
Bilateral trade between agents i and j is given by fi (μi,t , μ j,t ) as in Equation (5), and
trade for agent i on the network G is defined as f G

i = ∑
j∈N\{i} wi j fi (μi,t , μ j,t ),

namely the weighted sum of i’s bilateral trades with all the agents connected with i .
The resulting dynamical system is2

dXt

dt
= f G(X(t),W) =

⎡

⎣
∑

j

wi j fi (μi,t , μ j,t )

⎤

⎦

i

. (7)

As for the case of Eq. (6), this system is not linear. We stress that the tradingmechanism
in Eq. (7) has the property of anonimity: it only requires agents to know the utility
gradient of each of their connections, no other information is necessary for trading.
We assume that agents truthfully reveal their utility gradients, without focusing on
strategic behaviour whereby agents could misrepresent their preferences to improve
their situation.

Proposition 3 The fair trading mechanism on a network satisfies zero sum, trade and
positive gradient properties.

1 In Appendix A we show that, instead of assuming a network, we could increase the number of goods, if
we want to extend the definition of fair trading.
2 Here we consistently define that fi

(
μi,t , μi,t

) = 0.
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Fig. 2 Example of weighted networks with three agents. Box A: agent 1 trades a fraction w12 of her time
with agent 2 and the remaining 1−w12 with agent 3. Box B: agent 2 trades a fraction w12 of her time with
agent 1 and the remaining 1−w12 with agent 3. Box C: agent 3 trades a fractionw13 of her time with agent
1 and the remaining 1 − w13 with agent 2. Box D: agent 1 trades a fraction w12 of her time with agent 2
and the remaining 1 − w12 with agent 3

Proof Zero sum holds as for every couple i and j , which is matched with weight wi j ,
fi = − f j by construction, as discussed in Sect. 3.
Trade property also holds: for every couple i and j such that μi and μ j are linearly
independent, consider trader k such that wik > 0 and w jk > 0 so that both i and j
trade with k. Ifμi andμ j are linearly independent, then at least one of them is linearly
independent with μk , suppose it is μ j . From fair trading between two agents, as
discussed in Sect. 3, we have that the marginal utility of trader j from that matching is
strictly increasing. Then, as no other trading can generate negative marginal utilities,
it means that the overall marginal utility of trader j from all matchings is strictly
increasing. And this can happen only if there is trade, i.e.

f G
j =

∑

i∈N

wi j f j
(
μ j,t , μi,t

) �= 0.

123



Decentralized pure exchange processes on networks

Finally, positive gradient comes from the fact that f G
i is a linear combination of fi s,

so that
μi,t · f G

i =
∑

j∈N

wi jμi,t · fi
(
μi,t , μ j,t

)

which is strictly positive as long as there is trading. ��

5 An analogue of the second welfare theorem for networks

In this section we prove that, given initial allocations of goods, there is a one to one
mapping between the network conditions and the state of the system at any point in
time, including in the limit points of the dynamics,where the corresponding allocations
are in a subset of the Pareto set. Also, we will prove that this map has no holes (is
simply connected). Furthermore, we relate our results to the literature on decentralized
planning procedures, in particular to the work of Cornet (1983). At the end of the
section we present an illustrative example and discuss the computational complexity
of our mechanism.We start by providing some definitions and recalling some classical
results.

Recall that resources are fixed in the economy at a point w ∈ R
m , where the kth

coordinate is the total quantity of good k in the economy. Given the initial resources,
each possible initial allocation X0 is in the set E = {x ∈ R

m×n+ : ∑
i∈N xik =

wk ∀k ∈ M}.

Definition 3 A function f : Rn → R
m is locally Lipschitz continuous on R

n if for
every R > 0 there exists a constant L such that:

| f (x) − f (y)| ≤ L|x − y| ∀x, y ∈ R
n such that |x |, |y| ≤ R. (8)

Lemma 4 If a function is C1 then it is locally Lipschitz

Theorem 1 If f is continuously differentiable, then there exists a unique solution of
the dynamical system dx

dt = f (x) satisfying the initial condition x(0) = x0.

Proof See for example Hirsch and Smale (1974). ��
In what follows we refer to f G

i : Rn×m+ → R
m as the function defining the dynamics

of trade for agent i in Eq. (7), that is, for each agent i = 1, . . . , n, f G
i is a vector of

m components, and each component, for k = 1, . . . , m is:

f G
ik =

∑

i �= j

wi j

(
μik −

∑m
k=1 μik(μik + μ jk)

∑m
k=1(μik + μ jk)2

(μik + μ jk)
)
. (9)

Where μik = ∂Ui
∂xk

(x1, . . . , xk). For the sake of readability we drop time dependency

and we refer to the matrix of good quantities for each agent simply as X ∈ R
n×m+ and

to the adjacency matrix that identifies the network asW ∈ A ⊂ R
n×n , whereA is the
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set of n × n symmetric matrices such that each entry is a number between 0 and 1, all
the diagonal entries are equal to 0 and the sum of all entries of the matrix is equal to
2.

Definition 4 Define as WG(X0) the set of limit points of the fair trade dynamics on
networks, that is the set of limit points of (7) for a given initial condition X0 ∈ E .

FromSect. 2.2 we know thatWG(X0) is a subset of the Pareto setW defined in Eq. (1).
Wenowshow that keeping the initial allocation of goodsfixed, for eachPareto optimum
of the fair trade dynamics there exists a network configuration that implements it.

Theorem 2 Consider the fair trade mechanism of pure exchange on networks where
agents have continuously differentiable utility functions. For each initial allocationX0
constant, any X∗ in the set of the limit points of the fair trade dynamics WG(X0) ⊂ W
can be reached through a path of trades for some weighted network G. Moreover, each
connected weighted network G leads to a different limit point.

Proof The fact that any point X∗ in the set of limit points of the fair trade dynamics
can be reached for some weighted network G follows from the definition ofWG(X0).
To prove that each weighted network G leads to a different limit point in WG(X0),
we prove that the map between the initial conditions (both endowments and network
configuration) and the limit points of the trade dynamics is a homeomorphism, that
is one-to-one and onto, continuous and with continuous inverse. In order to do that
we first transform the parameter W into initial conditions, and then we show that the
trade dynamics is Lipschitz continuous with respect to both X and W.

Let us start by noting that the dynamical system identified by Eq. (7) has a unique
solution given the initial allocation X0, for a fixed network W. This is because each
f G
i : Rn×m+ → R

m is continuously differentiable, as we assumed the utility function
to be twice continuously differentiable. This can be easily verified checking each of
the k components of f G

i as per Eq. (9). It follows that f G(X,W) is at least C1 and
by Theorem 1 the dynamical system has unique solution.

Call the solution map φ(t,X0,W), unique for each initial conditionX0 ∈ E ⊂ R
n×m+ .

This map is a homeomorphism, that is continuous, one-to-one and with continuous
inverse (Hirsch and Smale 1974). We can transform the parameter W into initial
conditions by introducing a new variable S ∈ A ⊂ R

n×n and imposing that it does not
change in time, so that S(t) = W for all t . The system has now variable X̂t = [Xt ,W]
and the initial condition is X̂0 = [X0,W] We now show that the function f̂ G(X̂)

is Lipschitz in X̂, so it has a unique solution given initial condition X̂0. As f G is
Lipschitz in X, f̂ G is Lipschitz in X, so we just need to show that it is Lipschitz inW
as well. This is straightforward as f̂ G is linear inW.
So f̂ G is Lipschitz continuous both in X and inW, which implies that for each initial
condition X̂(t0) = [X0,W] there is a unique solution, and given our ODE system is
autonomous, distinct solutions never cross. Call φ̂(t,X0,W) the solution map of f̂ G ,
for standard arguments this map is a homeomorphism (Hirsch and Smale 1974). This
implies that, given X0, changing the weighted network G we reach a different point
inWG(X0), which concludes our proof. ��
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Theorem 3 If f is Lipschitz continuous in X,W then the solution φ(t,X0,W) is
Lipschitz continuous.

Proof This is a classic result on the continuous dependence of solutions on parameters
and initial conditions. See for example Hirsch and Smale (1974). ��
Note that both if we change the network G and keep the initial endowments X0 fixed,
and if we keep the network G fixed and we redistribute initial endowments, the limit
points of the dynamic will converge to a point that is in the Pareto set. Obviously,
given that the solutions are unique, changing the network or the initial allocations (or
both), we will reach distinct points in the Pareto set. In our model we can redistribute
initial allocations, or redistribute network connections, or both: in every case the limit
allocation is Pareto efficient.

In the decentralized planning literature, a procedure with n agents is defined as a
dynamical system over the space of admissible allocations, governed by a parameter
δ that lies in the simplex of Rn , where at each point in time agents truthfully reveal
their marginal rates of substitutions, and the planner uses this information to revise
allocations according to the equations of the dynamical system (Cornet 1983). These
procedures are said to be neutral (Champsaur 1976) when any element of the Pareto set
can be reached by an appropriate choice of the parameter δ, which can be interpreted
as the weight of each agent.

Ourmodel shares several characteristicswithCornet (1983): first, the dynamics depend
only on the marginal utilities of individuals and on the network, which is an element of
the simplex ofRn , as each edge is non-negative and the sum of all edges is equal to one.
The decentralized trading mechanism of equation (7) satisfies all the assumptions of
Cornet’s neutrality theorem (Theorem 2.1 in Cornet 1983): (i) the system is governed
by a continuous function which codomain is a non-empty, compact subset of Rn ; (ii)
utility functions are continuous and the set of allocations such that utility is larger than
or equal to the the initial allocation is compact; for every network and at any point in
time: (iii) every solution lies in E (the space of feasible allocations) and (iv) utility is
non-decreasing for all agents and for all solutions; (v) for each network the limit points
of the dynamics are in the Pareto set and (vi) if an agent is not connected to anybody
else (which corresponds to having zero weight in Cornet’s setting) then her utility is
equal to her initial endowment’s utility. Hence, by Cornet’s neutrality theorem, we can
claim that any point in the Pareto set W can be reached by the appropriate choice of
the network G. Theorem 2 and the neutrality theorem imply that for any point XP in
the Pareto setW , given the initial allocation X0, there is one and only one network G
such that the limit point of the trading mechanism in (7) isXP . This result can be seen
as an analog of the Second Welfare Theorem for networks, and draws a connection
between the Accessibility of Pareto Optima in the decentralized planning literature
(Bottazzi 1994; Schecter 1977) and the economics of networks.

Proposition 5 (Second welfare theorem for exchange on networks) Any Pareto
Optimal allocation can be achieved through the fair trading mechanism with the
appropriate choice of the trading network.

Lemma 6 The set of the limit point of the dynamics WG(X0) is simply connected.
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Proof Consider the solution map φ(t,X0,W) : E × A → WG(X0) × W. E × A is
a convex subset of Rn×m+n×n as a product of two convex subset of Rn×m+ and R

n×n

respectively, so E ×A is simply connected. E ×A andWG(X0)×W are homoeomor-
phic, so the fact that E ×A is simply connected is a necessary and sufficient condition
forWG(X0) × W to be simply connected, and soWG(X0) is simply connected ��
We can characterise the set of limit points of the fair trading dynamics for anyX0 ∈ E :

Proposition 7 The set of the limit points of a fair trading dynamics on networks,
WG(X0), for any X0 ∈ E, is a subset of the Pareto set W which is homeomorphic to
a closed (n − 1) simplex.

Proof WG(X0) is a strict subset ofW as the stable point of the trading dynamics are
Pareto Optima and all those allocations in W where agents are worse off than their
initial allocation in the dynamics are not in WG(X0). Recall that the solution map
φ(t,X0,W) is continuous in both X0 and W. Given that the set W is homeomor-
phic to a (n − 1) simplex and that WG(X0) is simply connected, WG(X0) is also
homeomorphic to a (n − 1) simplex. ��
It isworth considering an alternative proof of the homeomorphism result in Proposition
7, which provides a more intuitive understanding. Suppose that we have at least three
agents, i , j and k, and that we start from three different star networks: one with i , one
with j , and one with k in the core. Unless we start from an allocation that is already
Pareto optimal, the three points that we would reach adopting these three networks,
and starting from the same initial allocation, cannot coincide. That is because in a star
network, since agents use the fair trading rule, in the limiting point in WG(X0) the
central agent will obtain a marginal utility that is equal to the sum of the marginal
utilities of all the other agents. So, it is impossible that we reach a unique allocation
in which half of the overall marginal utilities is given at the same time to each one of
the three agents i , j and k. Figure3 provides a graphical intuition of this argument in
the projection of the space of marginal utilities with respect to the initial allocation.
The main implication of our result is that we can evaluate the impact of the net-
work structure on the final allocation, as there exists a one-to-one map between each
weighted, connected network and the solutions of (7) once we keep initial allocations
fixed.

For each agent, given initial allocations, each network will then correspond to a
potentially different utility level in equilibrium. So an agent will prefer the network
for which her utility is maximised in equilibrium. We can show that for any possible
initial allocation each agent has a preferred network, which is the star where said agent
is in the core.

Proposition 8 For any initial allocation of goods any agents strictly prefers the star
network with themselves in the core to any other network.

Proof Consider that agent i final utility as a function of the network can be written as:

Ui (W) = Ui (xi (0)) +
∫ ∞

0

∑

j �=i

wi j μi (φi (t,X0,W)) · fi, j (φi (t,X0,W), φ j (t,X0,W))dt (10)
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Fig. 3 Graphical intuition for
Proposition 7, representing the
projection for three agents of the
space of marginal utilities with
respect to the initial allocation.
The light-blue curve represents
the Pareto optimal points in W ,
the red region is the set WG of
those points that can be reached
with our trading mechanism. If
we start with the three distinct
stars that have one of those three
agents as centers, we will end up
in distinct points of W , and
henceWG has the same
dimension of W

where φi (t,X0,W) is agent i’s solution path as a function of the network. Given that
μi (φi (t,X0,W)) · fi, j (φi (t,X0,W), φ j (t,X0,W)) ≥ 0 for any i and j along the
solution path and that si = ∑

j wi j = 1 − ∑
k �=i

∑
j �=i wk j agent i will maximise

Ui (W) when si = 1, this completes the proof.

An alternative proof is the following.
Write hi j (t,X0,W) = μi (φi (t,X0,W)) · fi, j (φi (t,X0,W), φ j (t,X0,W)) and con-
sider that

dUi (W)

dsi
=

∫ ∞

0

∑

j �=i

hi j (t,X0,W)dt =
∫ ∞

0

∑

j �=i

hi j (t,X0,W)dt ≥ 0 (11)

with the above being strictly positive unless we are already in a Pareto optimal
allocation. In other words for any initial allocation each agent will prefer to have
maximum strength, that is si = 1. Given that the sum of all edge weights is equal to 1,
when the strength of agent i is 1 then the network is a star and agent i is in the core.

��
While Proposition 5 establishes that a social planner can redistribute network con-

nections to achieve the desired point in the Pareto set, because the fair trade dynamics
is not analytically solvable even in the simplest case, we cannot establish a general
relationship between the agents’ weights in the social planner’s welfare function and
the network. In Appendix B we explore via simulations the relationship between net-
work’s characteristics and the equilibria of the fair trade dynamics, stressing how this
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Fig. 4 Iso-utilities for agent 1 in the space of centrality and endowment of good 1 for agent 1. Centrality
corresponds to w12 = w13. The interpolation is done on the data produced by 5,010 experiments

is determined by a complex interaction between the network structure and the endow-
ments. For example, while inequality in network connections is in general positively
associated with inequality in the final allocation (for given endowments), it can be
negatively associated if the most disadvantaged individuals in terms of endowments
are those in central position in the network (see Remarks 2, 3).

As an illustration, consider a simple example with three agents and two goods.
Assume each agent i ∈ {1, 2, 3} has preferences defined by the Cobb–Douglas utility
function U (xi1, xi2) = x0.5i1 x0.5i2 . In order to highlight the trade-off between network
centrality and initial endowments, in all experiments we consider only networks in
which 1 trades an equal fraction of time with 2 and 3, that is w12 = w13, and we keep
all the allocations fixed across experiments, except for the allocation of x11. The initial
allocations for agents 2 and 3 is x21 = 0.05, x22 = 0.02, x31 = 0.01, x32 = 0.3, while
for agent 1 we fix the quantity of good 2 at x12 = 0.02 and let x11 vary between 0.001
and 0.01. The value on each of w12 and w13 can vary from zero, when agent 1 does
not trade with anyone, to 0.5, when agent 1 trades half the time with agent 2 and half
the time with agent 3, who do not trade with each other. Figure 4 shows the trade-off
between centrality for agent 1, measured as w12 = w13 and the initial endowment of
good 1: utility levels increase by increasing both the centrality and the endowment of
good 1. In this case, the network position and initial endowments are complements,
meaning that centrality matters the most when the initial allocations are high, so that
better opportunities of trade can be exploited with more goods to trade. Moreover, we
note that a policy based exclusively on redistribution of network weights appears to
be less effective than a policy exclusively based on redistribution of endowments.

Given the initial allocations and the network, the limit points of the dynamics in (7)
can be computed via numerical integration. It is a legit question to ask how the compu-
tation time is affected by scaling up the number of agents and goods in the economy.
Here we provide some results on the computational complexity of our mechanism.
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Fig. 5 Number of interactions required for convergence as a function of the number of agents, termination
when ε = 0.00001

Axtell (2005) proves that for decentralized exchange processes where groups of agents
trade, provided that trade is individually rational so that the sum of utilities increases
monotonically as long as there is trade, computational complexity is P (the number
of interactions is bounded above by a polynomial of the number of agents and com-
modities). Moreover, analyzing the case of individually rational bilateral exchanges
where couples of agents with Cobb–Douglas preferences are randomly matched to
trade, Axtell (2005) finds that the number of interactions required to reach conver-
gence to the equilibrium is linear in the number of agents, and increasing the number
of commodities just increases the number of interactions needed without changing the
linear dependency with the number of agents. Our model can be seen as an instance
of this type of bilateral exchange, where instead of a random pairing of agents we
have a probability distribution on the couples, represented by a weighted network
with sum of weights equal to 1. On the basis of this result, if we consider our model
of decentralized exchange with Cobb–Douglas utility, we expect a linear relationship
between the number of agents and the number of interactions required for conver-
gence. In order to illustrate this we computed the convergence times for our process
with 2 goods and homogeneous Cobb–Douglas utility functions, letting the number of
agents vary from 3 to 100. For each experiment initial allocations of endowments were
randomly chosen, and the network considered is a star network with a random agent
in the core. Each process is stopped at step T if the difference between the amount of
goods that each agent has at T and T − 1 is less than ε = 0.00001. As Fig. 5 shows,
the relation between the number of agents and the number of interactions needed for
convergence appears to be linear. Notice that this linear relationship is independent
of the network, as it holds for any probability distribution over couples of agents, so
for any weighted network where the sum of weights is one. To conclude, based on
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(Axtell 2005) we can affirm that the complexity of our exchange process is P, and that
in the case of Cobb–Douglas preferences the number of interactions is linear in the
number of agents. While not computing convergence times for other specifications of
preferences, Axtell (2005) affirms that the linear relationship holds for CES utilities
as well, and we would expect this to hold for our model as well.

6 Conclusions

This paper studies an Edgeworth process on weighted graphs, where agents can con-
tinuously exchange their endowments with their neighbours, driven by their utility
functions. Considering cardinal utilities, we define a family of trade dynamics which
fixed points coincide with the Pareto set, and choose a specific mechanism in this fam-
ily, according to which individuals equally split the utility gain of every trade. This
choice is without loss of generality as the results obtained hold for all trade mecha-
nisms that satisfy zero sum, trade and positive gradient. Under usual assumptions on
the structure of preferences we prove a version of the Second Welfare Theorem on
networks: for any weighted network, there exists a path of Pareto improving trades
which ends in the Pareto set. Assuming Cobb–Douglas preferences, we build numer-
ical examples of the mapping between the network topology and the final allocation
in the Pareto set, and provide a brief analysis of the impact of the topology on the
final allocation (in Appendices B and C). We believe that the relationship between
the network and inequality should be further analysed, to understand the link between
deprivation in endowments and deprivation in opportunities determined by the position
in the network.

Data availability Thecodes for the numerical simulations are available at https://github.com/danielecassese/
TradeonNetworks/tree/master.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: More agents

Here we build on the definition of fair trading in Sect. 3, to show that, if there are more
agents, and if every agent can trade with anyone else, we need to increase the number
of goods if we want to extend the definition.

Suppose now that there are more than two agents, so that n ≥ 3. Trade is always
bilateral, and fair trading implies that for every trade the marginal utility from trading
has to be equally split among the parts:
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(
μi,t + μ j,t

) · fi
(
μi,t , μ j,t

) = 0 ∀i, j ∈ N , i �= j . (12)

This must hold for all of the n − 1 possible couples where trader i is involved, so that
individual i’s instantaneous trade fi lies in a sub-space of dimension m − n + 1, if
it exists. This clearly imposes a first constraint on the minimal possible amount m of
goods.

Moreover, by the zero sum property, we need that the sum of all the instantaneous
trades cancels out,

∑
fi = 0. This is an additional constraint, that will be satisfied

only if the dimension of the sub-space where fi lies is more than one. So the minimum
number of goods that guarantees the existence of fair trading is such thatm−n+1 ≥ 2,
or that m ≥ n + 1.

Proposition A If n ≥ 3 then fair trading mechanism exists if and only if m ≥ n + 1

Example A (3 traders) Suppose that for a certain allocation all the three vectors of
marginal utilities of the traders are linearly independent. Say μ1 = (2, 1, 1), μ2 =
(1, 2, 1) and μ3 = (1, 1, 2). f1 has to be orthogonal to both μ1 + μ2 = (3, 3, 2) and
μ1 +μ3 = (3, 2, 3), so that it will be of the form f1 = k(5,−3,−3), for some k ∈ R.
Similarly we will have f2 = h(−3, 5,−3), for some h ∈ R, and f3 = �(−3,−3, 5),
for some � ∈ R.
To balance trading we need also that f1 + f2 + f3 = (0, 0, 0), but as they are linearly
independent vectors, this is possible only for k = h = � = 0, which means no trading,
even if marginal utilities are not proportional. �

Remark 1 If the fair trading is between two traders (n = 2) then two goods (m ≥ 2)
are sufficient to guarantee the existence of trade

The above can be easily verified, with two traders each trade f1 and f2 by construction
is orthogonal to the same vector f1+ f2, so that theywill never be linearly independent.
The previous example shows that if m ≤ n, and m ≥ 3, then fair trading is not
possible. If the number of goods where instead m = n + 1, then every candidate fi

would lie on a plane, and there would always exist a non–trivial solution for the zero
sum property because we would have a homogeneous system of linear equations with
n linear equations in n + 1 variables. If m is even greater, then existence would result
a fortiori.

Appendix B: Effect of network with Cobb–Douglas preferences

In this section we investigate via numerical simulations how the network structure
affects the limit points of the dynamics. We consider Cobb–Douglas preferences over
two goods, and we study networks up to 7 nodes. By constructing the contract curve
numerically, we provide a graphical example for the 3 nodes network, showing that
the stable points of the fair tradingmechanism are homeomorphic to a (n−1) simplex.
Moreover, we illustrate the relationship between inequality in network connections
and inequality in equilibrium after trade. As we stressed previously in this paper, we
are assuming cardinal utilities, and this is what allows to compute out-of-equilibrium
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Fig. 6 Mapping between simplex of representing the space of network configurations and the corresponding
equilibria. Only the three vertices are shown, map is according to colours

dynamics and to analyse the effect of network metrics on the utility image of the
limit points of the dynamics. In interpreting the results of this section, it is important
to keep in mind that these are not invariant under monotonic transformations of the
utility functions, which is of course a limitation, as ideally we would like to learn how
the network structures affect trade independently of the specific utility function.

As we proved in Theorem 2, each network, given an initial point in the commodity
space, can be mapped into a solution which, in the limit, converges to a point on the
contract curve. Here we provide a graphical illustration of this result.
Suppose that agents have a Cobb–Douglas utility function with constant return to
scale: Ui (x) = xαi

i,1x1−αi
i,2 . This implies that the functions are concave, and that the

Pareto set is a curved (n − 1) simplex (Lovison and Pecci 2014).
The leftmost simplex in Fig. 6 represents the space of network configurations, each
point in that space represents a weighted graph over three nodes: the barycentric
coordinates of a point in the simplex correspond to the weight of the networkf’s
edges. Each network is thenmapped to the corresponding equilibriumof the dynamical
system defined by the fair trading mechanism, represented in the space of utilities on
the right-hand side of the figure. Themap between the two spaces is visualised through
colours, a point on the simplex on the left (network) reaches the equilibrium level of
utility represented by a point of the same color in the space of utilities. The figure
on the right, that is the set of utilities in equilibrium, is a curved 2-simplex, with the
vertices of the simplex of networks that are mapped to the vertices of the set of utilities
each agent maximises her utility when is the core of a star, as we showed in Proposition
(8).

In the case represented in Fig. 6 utility functions are determined by α1 = 0.5,
α2 = 0.4, α3 = 0.6, while the initial allocations are such that agent three has the
highest endowment of both goods, agent two has the lowest endowment of good
1 and endowment of good 2 higher than agent 1 that is x3,1 > x1,1 > x2,1 and
x3,2 > x2,2 > x1,2.
The numerical examples provide illustration of our theoretical results: themapbetween
the networks and the set of equilibria is continuous, and there is a homeomomorphism

123



Decentralized pure exchange processes on networks

Table 1 Simple connected non-isomorphic graphs

# of nodes # of SCnI graphs # of SnCnI graphs # of networks in the experiment

3 2 0 6

4 6 1 70

5 21 2 345

6 112 10 5002

7 853 35 55,944

Total 994 48 61,367

between the simplex of topologies and the set of equilibria: each initial network is
continuously mapped through our dynamical process described in Eq. (7) into a point
of the curved simplex representing the set of limit points of the dynamics.

In order to investigate how the network structure affects the equilibriumwe compute
the trading dynamics for 61,367 networks, letting the number of nodes vary from 3
to 7, and we explore the impact of standard network metrics on the utility gain in
equilibrium. Of the 2n(n−1)/2 possible graphs on n nodes we consider simple non-
isomorphic ones, both connected and not connected. We include in our computations
all simple connected non isomorphic (SCnI) graphs and the subset of simple non-
connected isomorphic graphs (SnCnI) such that there are no isolated nodes. For each
network we assume equal edge weights, setting the weight to 1 divided the number
of edges. We assume that all players have the same preferences over two goods x1,
x2, represented by a Cobb–Douglas function U (x1, x2) = x0.51 x0.52 and that initial
endowment can be either e1 = (1, 2) or e2 = (2, 1). Consider that, because of the
assumption of homogeneous preferences, if all agents have the same endowments no
trade will happen, so we exclude this scenario in our experiments. For each network
on n nodes we let the number of agents who have endowment e1 vary from 1 to n/2
if n even and n/2− 1 if odd, and we compute the trade dynamics for all permutations
of endowments. This assumption implies that in all networks with an odd number of
nodes there is one good that is relatively scarcer in the economy, in the sense that the
sum of all agents’ endowment of that good is less then the sum of all endowments
of the remaining good. In what follows we refer to this as the scarce good. Table 1
reports the number of simple connected non-isomorphic graphs when the number of
nodes varies from 3 to 7 and the total number of networks after permuting for initial
endowments.

To explore the role of the network structure on the trade dynamics we consider
standard network and node metrics, that we define here. As a measure of the number
of connections in the network we use density, which is defined as the number of edges
m over the total number of possible edges between n nodes,

d = m

n(n − 1)
(13)

To measure transitivity in a network a common metric is the clustering coefficient
(Watts and Strogatz 2002), which measures the fraction of triangles over the total
number of triads in the network. We adopt a slightly different definition of clustering
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coefficient, namely the fraction of triangles where one node has a different endowment
than the other two over the total number of triads in the network.

Given there are two types of endowments, a connection can be either between nodes
with the same endowment or between nodes with different endowments. We measure
the similarity of connections with respect to initial endowments using assortativity
(Newman 2002), defined as:

r = Tr(M) − ||M2||
1 − ||M2|| , (14)

where M is the mixing matrix of endowments and ||M2|| is the sum of all elements
in the matrix M2. Assortativity ranges from −1 (all connections between dissimilar
nodes) to 1 (all connections between similar nodes).

Under the assumption of homogeneous preferences the number of initial endow-
ments of different type e1 and e2 affects the trading opportunities, so as a control
variable we define an endowments similarity index equal to the number of the most
scarce endowment type divided the number of the less scarce one. It ranges from 1
(same number of both types of endowment) to 1/6 (highest dissimilarity in the case of
7 agents).

We consider two standard node centrality measures: node strength and between-
ness centrality. Node strength is defined as the total weight of node’s connections
si = ∑

j wi j (Barrat et al. 2004), wherewi j ∈ [0, 1] is theweight of edge i j . Between-
ness (Newman 2001) of node i is defined as the number of shortest paths between pairs
of nodes that pass through node i and measures the importance of nodes in connecting
different parts of the network. In addition we construct two further indices: neighbour-
hood disassortativity measures the fraction of neighbours of a node which start with
a different endowment than the one of the node, and the scarcity index is computed as
the fraction of the number of endowments of the same type of node’s endowment and
the total number of endowments. The lower the value of the index, the less common
the endowment of that agent is and so the more trade opportunity there are for that
agent.

The position in the network determines the trade opportunities each agent has, and
as a consequence affects the distribution of the gains from trade in equilibrium. Under
the assumption of the fair trade rule, at each instantaneous trade individuals equally
split the gain in utility: the star is the most unequal network as the core takes half of
the total gain in utility given initial allocations, while nodes in the peripheries only get
1/2(n − 1) of the total gain in utility, where n is the number of agents. On the other
hand the most equal network is the complete network, where each node trades with
each other an equal fraction of time, and where each agent gets 1/n of the total gain
in utility.

We can measure network inequality as the Gini coefficient of the strength (or
weighted degree) distribution, using:

Gs =
∑n

i (2i − n − 1)si

n
∑n

i si
, (15)
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Table 2 Effect of network
metrics on utility gain

Aggregate utility gain

Intercept −0.5030***

(0.006)

Clustering (dissimilar triangles only) 0.0231***

(0.001)

Assortativity −0.0300***

(0.001)

Number of nodes 0.1030***

(0.001)

Connected 0.0925∗∗∗
(0.002)

Endowments dissimilarity 0.3635***

(0.001)

Observations 61,367

R-squared 0.818

Joint significance (p value F statistics) 0.00

Standard error in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

where si is the strength, n is the number of nodes and i is the rank of the strength in
ascending order. The strength distribution of the most unequal network, the star over
n nodes, is such that the node in the core (call it c) has strength sc = 1 and the nodes
in the periphery all have strengths strictly less than 1 and such that

∑
s j �=c = 1.

Note that higher positional inequality does not necessarily imply higher inequality in
utilities after trade. For example in a network with three agents, ranked according to
their initial endowments, it could be that the inequality of the equilibrium distribution
of utilities is minimised when we have the poorest agent in the core of a star: if the
initial distribution of endowments is highly unequal, stars may promote redistribution,
as we will show in the numerical example.
We measure inequality in final utility levels as the Gini coefficient of the individuals’
utilities in equilibrium, U∗

i :

Gu =
∑n

i (2i − n − 1)U∗
i

n
∑n

i U∗
i

. (16)

We can use these inequality measures to investigate the relation between positional
inequality, endowments inequality and redistribution of welfare, keeping in mind that
Gu is not independent of the specific utility function chosen. In principle, because of
Theorem2, given initial endowmentswe can find the inequality level in equilibrium for
each network configuration, hence a social planner interested in minimising inequality
could either redistribute endowments or change the interaction network. Clearly the
dependency between the network and inequality in equilibrium is not trivial, as we
will show in the numerical exercise.

We investigate the effect of network metrics on the aggregate gain in utility for
the network, that is the sum for all nodes of their gain in utility after trade (utility of
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Table 3 Effect of network
metrics on utility gain

Aggregate utility gain

Intercept −0.5038***

(0.007)

Density 0.0055∗∗∗
(0.001)

Assortativity −0.0309***

(0.001)

Number of nodes 0.1028***

(0.001)

Connected 0.0932∗∗∗
(0.002)

Endowments dissimilarity 0.3654***

(0.001)

Observations 61,367

R-squared 0.817

Joint significance (p value F-statistics) 0.00

standard error in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Fig. 7 Highly assortative
networks generating high utility
gain

equilibrium endowments—utility of initial endowments ). Tables 2 and 3 report the
results of the OLS regressions. In both cases we control for the number of nodes, the
dissimilarity in initial endowments and wether the network is connected or not. As
density and clustering are highly correlated (Pearson’s correlation coefficient 0.83)
in order to avoid multicollinearity we drop one of the two alternatively. Comparing
Tables 2 and 3 we can see that while both density and clustering have a significative
positive impact on utility gain, clustering shows a stronger correlation than density.
Both regressions show that a more disassortative network brings higher utility gains,
even if the magnitude of the coefficient is less than we expected.

A possible explanation is illustrated in the example in Fig. 7, showing a highly
assortative network which generates a high aggregate utility gain: the two groups with
different endowments manage to profitably trade thanks to the two agents bridging
them,who are going to extract the highest utility gain from trade. Sowhile assortativity
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Table 4 Effect of network
assortativity on inequality

Gini of post-trade utility

Intercept 0.0150***

(0.001)

Assortativity 0.0185***

(0.001)

Gini scarcity index 0.0283***

(0.007)

Observations 41

R-squared 0.828

Joint significance (p value F-statistics) 0.00

standard error in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

has little impact on aggregate utility gain, it has a stronger effect on the distribution of
this gain. To see this consider a simple exercise: we take all possible permutations of
initial endowments of the network in Fig. 7, and we check the relationship between
the Gini coefficient of utility after trading and the assortativity index, controlling for
endowments similarity. Table 4 shows that the more assortative the network the higher
the inequality post-trade, and we can check that most of the variance in inequality is
explained by assortativity. This is not necessarily true if the network is more densly
connected and there are no nodes which have a clear advantage because of their
position.

The relation between the networks and inequality has been explored in Borondo
et al. (2014), who find a relation between the network structure and meritocracy: when
the network is sparse then individuals’ compensations depend on the position in the
network instead of their ability to produce value. In a different setting (Bowles et al.
2011) study the impact of networks on inequality where agent play a coalitional game.
They find a connection between network sparseness and inequality by studying how
the extremal Lorenz distribution changes under different networks. We investigate
the impact of the network on the distribution of welfare at equilibrium estimating the
dependence of inequality in post-trade utility on positional inequality, measured as the
Gini coefficient of strength distribution.We include in theOLS regression assortativity
and density and we control for the Gini coefficient of the scarcity index. Table 5 shows
that higher Gini index of strength is associated with higher inequality in utility post-
trade, and the effect is significative and quite strong. More assortative networks also
lead to a more unequal distribution of utility after trade, as we illustrated with the
example of the 6-node network above, while on the contrary a more dense network
leads tomore equal final distribution. It is important to note that in our experiment there
never is high inequality in terms of initial endowments: there are only two possible
endowments which have the same value in utility term for all agents, and an agent
can have an initial advantage only if they own a relatively scarce endowment. The
magnitude of this is not large, as the maximum value of the Gini coefficient of the
scarcity index is 0.15. In Appendix C we discuss experiments with larger inequality
in initial allocations.
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Table 5 Effect of network
metrics on inequality

Gini of post-trade utility

Intercept 0.099***

(0.000)

Gini strength 0.0254***

(0.000)

Assortativity 0.0087***

(0.000)

Density −0.0084***

(0.000)

Gini scarcity index 0.0458***

(0.001)

Observations 61,637

R-squared 0.615

Joint significance (p value F-statistics) 0.00

Standard error in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Remark 2 Amore equal allocation in equilibriumcanbe implementedby redistributing
network strength from high strength agents to low strength ones.

To see how the position of an agent in the network affects her own utility, we regress the
utility gain from trade on node strength and node betweenness centrality, controlling
for how assortative the immediate neighbourhood of the node is and how scarce is the
endowment of the agent. The results of the OLS regression are reported in Table 6.
Node strength and betweenness centrality are both positively correlatedwith the utility
gain in equilibrium; the higher the fraction of agent’s neighbours, the larger the utility
gain. Moreover agents endowed with larger quantities of the relatively scarce good in
the economy are able to extract more utility from trade. All effects are significative.

Appendix C: Experiment with large inequality in initial endowments

If we allow inequality in initial endowments to be larger we expect that when agents
who are disadvantaged in endowments are also disadvantaged in terms of network
connections, inequality in network strength will increase inequality in utilities, and
viceversa. To verify this hypothesis we consider a different exercise, allowing much
larger variation in endowments and edge weights. To limit the computational burden,
instead of considering all simple non isomorphic graphs we restrict our attention to a
specific family of weighted connected graphs that can be seen as a linear combination
of stars, where theminimally connected network is a star and themaximally connected
network is a complete one. This class of networks is a weighted analogous to nested
split graphs (König et al. 2014), that are graphs with a nested neighbourhood structure,
where the set of neighbours of lower degree nodes is contained in the set of neighbours
of higher degree ones. Except for the limiting case of the complete graph, the nodes in

123



Decentralized pure exchange processes on networks

Table 6 Effect of node metrics
on post-trade utility

Individual utility gain

Intercept 0.0505***

(0.000)

Strength 0.1246***

(0.000)

Betweenness 0.0702***

(0.000)

Neighbourhood disassortativity 0.0583***

(0.000)

Scarcity index − 0.0875***

(0.000)

Observations 423,643

R-squared 0.832

Joint significance (p value F-statistics) 0.00

standard error in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

our networks can be divided in two partitions according to their degree: nodes in the
core are connected between each other and with all the nodes in the periphery, while
nodes in the periphery are connected only to nodes in the core, giving a multi-hub
network. We generate networks in this class with 3, 5 and 7 nodes and we let initial
endowments of the two goods in the economy vary such that the total quantity of each
good is constant across all experiments, e1 = ∑

n xi,1 = 30 and e2 = ∑
n xi,2 = 18

respectively. All agents have the same preferences over the two goods, represented by
a Cobb–Douglas function U (x1, x2) = x0.51 x0.52 . To initialise each experiment with n
agents, we generate a set of different initial endowments such that the sum of good
1 is 30 and the sum of good 2 is 18 and we compute the limit points of the trading
dynamics for each network and endowments, generating 107,484 experiments with
3 agents, 76,433 experiments with 5 agents and 10,762 with 7. We then split the
obtained dataset according to the following rule: we rank agents in terms of initial
endowments and of network strength: the agent with the largest endowments gets the
highest endowments ranking and the agent with the largest strength gets the highest
strength ranking. The ranking for initial endowments is found by evaluating utility
at initial conditions for each agent.3 Then we put in one group, (different rank) all
those experiments for which the most disadvantaged agent in terms of endowments is
advantaged in terms of connections. This means all the experiments where the poorest
agent is at most second in the network strength ranking with 3 agents, first with 5
and 7 agents. Conversely we collect in the other group (similar rank) the remaining
experiments. Results are summarized in Table 7, showing a positive and significant
relationship between inequality in endowments and inequality in equilibrium utility in
the same rank group and a negative significant relationship in the different rank both

3 Alternative ranking measures have been evaluated, namely the sum of initial endowments and the
Euclidean norm of the vector of initial endowments, and they do not change our results.
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Table 7 Inequality dependence
on endowments and strength

OLS Same rank Different rank

Intercept 0.0186*** 0.0163***

(0.000) (0.000)

Gini Endowments 0.9521*** 0.9604***

(0.001) (0.001)

Gini strength 0.0510*** −0.0072***

(0.002) (0.003)

Observations 99,974 72,397

R-squared 0.821 0.845

Joint significance 0.00 0.00

Standard error in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

with homogeneous and non homogeneous preferences. On the basis of this result we
can say:

Remark 3 A social planner interested in implementing a more equal allocation in
equilibrium may decide to redistribute in two ways: either redistributing endowments
from agents who have high network strength to those who have low network strength,
or redistributing network strength (changing the network) from agents with high initial
endowments to agents with low initial endowments.

Appendix D: Effect of higher order structures

Higher order structures often capture important properties of the network and of the
dynamical process (Salnikov et al. 2019). We already took into account the role of
triangles elsewhere in this paper, here we focus on two types higher order structures on
4 nodes: tetrahedra where only one node has endowment e1 (e2) while the remaining
nodes have e2 (e1) and tetrahedra where two nodes have endowment e1 (e2) and the
other two have e2 (e1). For each we compute an index analogous to the clustering
coefficient, which gives the fraction of higher order structures in the network over
the possible number of high order structures of that dimension. Given that the two
measures are correlated (Pearson’s 0.59), we include each of them separately in the
regression

The results reported in Tables 8 and 9 show that both types of higher order structure
are positively and significantly correlated with total utility gain, and that there is
effectively no difference if we include one or the other in the regression. Similarly
with the clustering coefficient for dissimilar triangles we can check that both higher
order structures decrease inequality after trade, but even in this case density explains
more of the variance than both higher order indices.
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Table 8 Effect of higher order
structures on post-trade utility

Total utility gain

Intercept −0.5019***

(0.006)

Tetrahedra (1 different endowment) 0.0162***

(0.004)

Assortativity −0.0308***

(0.001)

Connected 0.0941***

(0.002)

Endowments similarity 0.3656***

(0.001)

Number of nodes 0.1028***

(0.001)

Observations 61,367

R-squared 0.817

Joint significance (p value F-statistics) 0.00

Standard error in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 9 Effect of higher order
structures on post-trade utility

Total utility gain

Intercept −0.5017***

(0.006)

Tetrahedra (2 different endowments) 0.0255***

(0.004)

Assortativity −0.0308***

(0.001)

Connected 0.0941***

(0.002)

Endowments similarity 0.3648***

(0.001)

Number of nodes 0.1028***

(0.001)

Observations 61,367

R-squared 0.817

Joint significance (p value F-statistics) 0.00

Standard error in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Appendix E: Details of the simulations

In Sect. 1 we consider as starting point to generate the weighted networks in our
experiments the set of simple non isomorphic graphs on n ∈ [3, 7] nodes, and then
we compute all permutations of endowments for each graph in this set. We did this
operation for the sake of computational speed, but one shortcoming of this approach
is that some of these permutations are redundant as they are equivalent in terms of
initial configuration of the trade dynamics. To clarify this, recall that nodes in a graph
can be grouped into orbits with respect to the graph automorphisms. Orbits identify
the “role” of nodes in the graph: for example in a star, there are 2 roles, the hub and
the periphery. Figure 5 shows two connected graphs on 4 nodes, one showing 3 node
orbits the other 2. Node orbits are important because help us identify those networks
which are equivalent in terms of trade dynamics. Take as example the leftmost graph
in Fig. 8, and consider the case in which 1 agent has endowment (1, 2) and 3 agents
have endowment (2, 1). There are only three different trade configurations: one in
which either of the two green nodes has endowment (1,2), one in which the red node
has (1,2) and finally one in which the blue node has endowment (1,2), as can be seen
in Fig. 9.

Fig. 8 Two examples of connected non-isomorphic graphs on 4 nodes where nodes with the same orbit
have the same colour

Fig. 9 The three different trade configurations for the graph with 3 different node roles when there is one
different endowment. Endowment types are represented by filled or empty stars. Note that in the leftmost
graph, permuting the endowment between the two green nodes makes no difference for the trade dynamics
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Appendix F: Further numerical examples

In this section we discuss some additional numerical examples on networks with 3
nodes. We have three agents with Cobb–Douglas utility function with constant return
to scale:Ui (x) = xαi

1 x1−αi
2 . Call αi the exponent of the utility function for agent i , and

xi (0) = (xi,1, xi,2) the initial allocation for agent i . The network is represented by a
unitary 2-simplex, where the barycentric coordinates of a point represent the weight
of each edge.

Let us start from the example in Fig. 6. For the same case, Fig. 10 shows the projec-
tions of the set of equilibria on the planes of the utility of two agents respectively, and
makes the homeomorphism more evident. Agent 3 has the highest initial endowment,
and ends up having the highest level of utility in all the possible cases, ranging from
3.315 in its minimum, when the network is a star in which agent 2 is the core (blue
vertex), to 3.330 in its maximum (when agent 3 is the core of the star). From this we
can infer that the trade with agent 1 is the most advantageous for agent 3, as well as
for agent 2, as also her utility hits the minimum point when she cannot trade with
3, and then increases when they trade on networks in which most of the interactions
are between 2 and 3 (there is higher weight on this edge, as represented in the blue
area). Clearly there is an asymptote in the growth of agent 1 utility moving towards
a star in which agent 3 is the core (green area) and viceversa for agent 3 moving
towards a star for which 1 is the core (red area). Looking at Fig. 10, utility of agent 1
is represented on the x axis, and utility of agent 3 on z axis: the figure has a twist in
correspondence of the green area, where the utility of 1 stabilises around 2.430 and
utility of 3 steeply increases till its maximum, while in correspondence of the red area
utility of 1 stabilises around 3.330 while utility of 1 reaches its maximum.

In Fig. 11 we start from a different point in the space of goods, keeping the same
utility functions. The initial allocations are such that x1,1 > x2,1 > x3,1 and x2,2 >

x1,2 > x3,2 that is agent 1 and 2 have a lot of both goods and agent 3 is the poorest
in both goods. As before each agent maximises her utility gain when she is the core
of a star. Agent 3 is the one who is worse off by being a peripheral node when agent

Fig. 10 Projection of equilibria
in the space of utility on agents’
planes
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Fig. 11 Equilibria of the fair
trading represented on the space
of utilities for the case
α1 = α2 = α3 = 0.5 (left) and
projection on two-agents’ planes

1 or agent 2 are the core. This is not surprising as she is the one with the worst initial
allocation. Viceversa utilities for agents 2 and 3 hit their minimum when agent 3 is
in the core. By going towards the points in which the frequency of trades is mainly
between agents 1 and 2 (the networks represented by the edge between the red and
blue vertices in Fig. 6) their utility is close to the maximum, meaning that both rich
agents would prefer trading among themselves because they can extract more utility,
instead of trading with the poor agent only.

In Fig. 12 it is possible to observe the shape of the equilibrium points in the space
of commodity one and commodity two respectively, holding the other commodity
constant. As we would expect this is also a curved simplex, with each agent getting
the highest quantity of each commodity (the vertices of the curved simplex) when they
are the core of a star network.

We then consider the case of extreme inequality in which agent 1 starts with a lot of
both goods and agents 2 and 3 have a much inferior initial allocation, more precisely
x1,1 > x3,1 > x2,1 and x1,2 > x2,2 = x3,2, results are represented in Fig. 13 for the
case of a Cobb–Douglas with α1 = α2 = α3 = 0.5, and in Fig. 14 for the case in
which they all prefer good 2 than good 1, that is their utility functions are such that
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Fig. 12 Set of equilibria of a fair
trading on the space of one
commodity only

αi = 0.2 for i = 1, 2, 3. Given the disproportion in initial allocations, the utility of
agent 1 is greater than the two “poor” agents for all possible networks, while agents
2 and 3 maximise their utility when they are the core of a weighted star, as expected.
Nonetheless note that both agents 2 and 3 will prefer to be in the periphery of the star
where agent 1 is the core than being in the periphery of the star where any of the other
“poor” agent is in the core, even if the richest agent is maximizing her utility in this
case. This is because both agents 2 and 3 prefer to have a consistent number of trades
with agent 1, that is they will always prefer to trade in networks in which the weight of
the edge connecting them with agent 1 is higher ceteris paribus, and this determines
the “boomerang” shape of the set of equlibria.
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Fig. 13 α1 = α2 = α3 = 0.5,
extreme inequality: agent 1 is
rich agents 2,3 are poor

Now consider the case in which agent 1 is still the richest, but the initial allocation is
much less unequal than the previous two cases. The initial allocations in this case are
x1,1 > x2,1 > x3,1 and x1,2 > x2,2 > x3,2, so agent 3 is the poorest. The results are
represented in Fig. 15, preferences are the same as before. We can see how the picture
drastically changes: now agent 2 worst position is when she is a peripheral node of a
star where agent 1 is the core, and the higher the frequency of trade in which agent 1
is involved, the lower agent’s 2 utility. Agent 3, the most disadvantaged, is worst off
when she is in the periphery of a star with 2 in the core, she would prefer agent 1 to be
the core. In general her utility will decrease the higher the weight on the edge between
2 and 1.
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Fig. 14 α1 = α2 = α3 = 0.2,
extreme inequality: agent 1 is
rich agents 2,3 are poor

Fig. 15 α1 = α2 = α3 = 0.2
moderate inequality: agent 1
richer than agents 2 and 3
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