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Abstract
The present work investigated the effects of different doses of biochar (2.5%, 5%, 10%), a by-product of the pyrolysis of 
woody biomass, on the growth of oat plants (Avena sativa L., cv “Danko”) grown under different crude oil concentrations 
(0.5%, 1%, 2%, 3%, 6%) added to the soil, evaluating both biometric (i.e. fresh weight) and biochemical (i.e., content of 
malondialdehyde and proline, and total antioxidant power) parameters. The findings indicate that biochar positively influ-
ences the fresh weight of oat plants across all concentrations of crude oil investigated. On the other hand, regarding oxidative 
stress, measured by malondialdehyde and proline content, biochar led to a significant reduction, with statistical significance 
observed at biochar concentrations > 2.5% and crude oil levels > 2% (malondialdehyde: ranging from -25% to -38%; proline 
ranging from -33% to -52%). Soil amendment with biochar increased the total antioxidant power, particularly at biochar 
concentrations > 2.5% and crude oil levels > 2% (ranging from + 20% to + 98%). These results suggest that biochar has a great 
potential in mitigating the negative effects of crude oil contamination on plant growth and oxidative stress levels, thereby 
highlighting its value as a conditioner in contaminated soils.
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Introduction

Soil contamination by crude oil is a critical global environ-
mental concern, frequently originating from mishaps during 
the extraction, transportation, and storage (Macaulay and 
Rees 2014). This type of pollution substantially threatens 
terrestrial ecosystems, compromising soil quality, habitat for 
flora and fauna, food security, and human health (Dijoo and 
Khurshid 2022; Ashraf et al. 2010; Whitworth et al. 2017). 
Particularly, crude oil spills and leaks can have devastating 

effects on soil health, disrupting its natural composition and 
contaminating it with toxic hydrocarbons and other harmful 
substances (Lovindeer et al. 2023). The consequences extend 
beyond the immediate proximity of the spill, as pollutants 
can infiltrate groundwater, rivers, and other water bodies, 
leading to widespread ecological damage and posing risks 
to human populations dependent on these resources. The 
impact on soil quality can be severe, affecting its fertility 
and ability to support plant growth (Polyak et al. 2024). 
Crude oil-contaminated soil may experience reduced water 
retention capacity, hindered nutrient cycling, and altered 
microbial communities, further worsening the degradation 
of ecosystems (Chen et al. 2023). Additionally, the presence 
of crude oil can inhibit seed germination and plant growth, 
ultimately diminishing biodiversity and ecosystem resilience 
(Ilyas et al. 2021) .

Addressing the contamination of soil by crude oil requires 
comprehensive strategies that include prevention, mitigation, 
and remediation efforts (Lim et al. 2016). These encompass 
implementing rigorous safety measures in oil extraction 
and transportation operations, developing technologies for 
early detection and rapid response to spills, and employing 
effective remediation techniques to restore affected soils to 
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their natural state. For example, the strategies proposed for 
the remediation of contaminated soils include the addition 
of microorganisms capable of metabolizing hydrocarbons, 
breaking them down into less harmful substances through 
biochemical processes (Chunyan et al. 2023). Another strat-
egy involves the use of hyperaccumulator plants, which can 
extract, transform, or accumulate soil contaminants (Rascio 
and Navari-Izzo 2011). In addition, mechanical strategies 
of excavation and removal of contaminated soil are used to 
physically remove the contaminants from the site, which will 
then be treated elsewhere (ur Rehman et al. 2023).

Nevertheless, there is a pressing need to find new sustain-
able strategies capable of reducing costs and time for the 
remediation of contaminated soils. In recent years, the uti-
lization of bio-based materials, such as biochar, has gained 
attention as a promising sustainable remediation strategy 
(Saeed et al. 2021). Biochar is one of the by-product derived 
from the pyrolysis process. Pyrolysis is a thermochemical 
process that decomposes organic materials in the absence of 
oxygen, producing biochar, wood distillate, and syngas (Gre-
wal et al. 2018). During pyrolysis, biomass such as wood or 
agricultural residues undergoes heating at high temperatures, 
typically between 400 to 700 °C. This thermal decomposi-
tion leads to the formation of biochar, a carbon-rich solid 
residue that improves soil fertility and reduces greenhouse 
gas emissions when applied as a soil amendment (Hage-
mann et al. 2018). Alongside biochar, pyrolysis also yields 
both wood distillate, a liquid product primarily used in the 
agriculture sector since it has a chemical composition that 
increases both the yield and the quality of the plants grown 
(Celletti et al. 2023; Fedeli et al.2023a), and syngas, a mix-
ture of carbon monoxide, hydrogen, and methane, which 
serves as a renewable energy source (Pradhan et al. 2015). 
Specifically, biochar is used as an agricultural amendment 
because it enhances soil fertility by improving water reten-
tion, nutrient availability, and soil structure (Laird et al. 
2010). Furthermore, biochar may serve as a habitat for ben-
eficial soil microorganisms, thereby promoting microbial 
activity and enhancing overall soil health (Das et al. 2021). 
These combined effects contribute to increased crop produc-
tivity, resilience to environmental stresses, and long-term 
sustainability in the agricultural system (Diatta et al. 2020; 
Kapoor et al. 2022; Fedeli et al. 2024a).

In soil remediation, the porous structure and large surface 
area of biochar make this material very effective in adsorbing 
a wide range of organic and inorganic contaminants, includ-
ing hydrocarbons and heavy metals (Laird et al. 2010; Saeed 
et al. 2021). By immobilizing pollutants and preventing their 
migration through soil layers, biochar offers a sustainable 
and cost-effective means of restoring contaminated sites and 
safeguarding environmental health (Sachdeva et al. 2023). 
In addition, biochar plays a crucial role in carbon sequestra-
tion and climate change mitigation. By incorporating biochar 

into the soil, carbon is effectively stored in a stable form for 
long periods, reducing atmospheric CO2 levels and mitigat-
ing the impacts of climate change (Woolf et al. 2010). This 
carbon sequestration potential sets biochar as a key product 
in global efforts to counteract climate change and transition 
towards a more sustainable future (Woolf et al. 2010). Fur-
thermore, the production of biochar offers a unique oppor-
tunity to valorize biomass waste streams, removing organic 
materials from landfills and incinerators (Khan et al. 2020; 
Kwapinski et al. 2010). This closed-loop approach not only 
reduces environmental pollution, but also creates economic 
opportunities for farmers and bioenergy producers.

Oat (Avena sativa L.) is a significant cereal crop world-
wide, ranking among the top six in global grain production 
(Stevens et al. 2004). It is primarily grown in regions such 
as Russia, Canada, the United States, and Europe (Leff et al. 
2004). This versatile crop thrives in various environmental 
conditions, including cool, humid climates and marginal, 
arid soils (Buerstmayr et al. 2007). Remarkably, oats can 
also grow in extreme conditions such as high altitudes, saline 
soils, and regions with significant temperature fluctuations, 
demonstrating their resilience and adaptability (Zhou et al. 
2014). Furthermore, oats have shown potential in phytore-
mediation, being able to grow in soils contaminated with 
hydrocarbons and aiding in their decontamination by stim-
ulating microbial activity that degrades pollutants (Aprill 
and Sims 1990; Liste and Prutz 2006). Oats also play a role 
in sustainable agriculture by improving soil structure and 
reducing erosion due to their extensive root system (Blanco-
Canqui et al. 2013).

To the best of our knowledge, this is the first study 
to investigate the effects of adding biochar to the soil to 
counteract the negative effects of crude oil contamination 
on plant growth, since the other two studies on this topic 
[Saeed et al. (2021) and Fedeli et al. (2023b)] investigated 
the effects of biochar on the remediation of soils contami-
nated by petroleum derivatives (diesel and gasoline, respec-
tively). Therefore, this study aimed to investigate the effects 
of biochar addition (2.5%, 5%, 10% w/w) in soils contami-
nated with different concentrations of crude oil (0.5%, 1%, 
2%, 3%, 6% w/w) on the growth and oxidative stress level 
of oat plants.

Material and methods

Biochar

Biochar (BioDea®) was provided by BioEsperia Srl (Arezzo, 
Italy); it was obtained from the pyrolysis at 600–650 °C of a 
blend of agricultural woody waste (including olive pomace, 
grape marc, walnut shells, and tree prunings), and, at the 
end of the process, biochar was mechanically collected. This 
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process allows to obtain a product with low ash and a high 
organic carbon content. The gases produced are extracted 
from the reactor head, via a vacuum system, without com-
ing into contact with the biochar, thus ensuring the absence 
of contaminants released during the pyrolysis. The phys-
icochemical properties of the biochar used are reported in 
Table 1.

Crude oil

The crude oil used in this study was the Azeri Light, a variety 
that holds significant importance in the global petroleum 
industry, being extracted from the waters of the Caspian Sea 
in Azerbaijan. Its chemical composition makes it particularly 
suitable for the production of refined petroleum products, 
such as high-performance gasoline and diesel. Managed 
primarily by British Petroleum, Azeri Light is a reliable 
source of energy supply and contributes significantly to the 
economy of Azerbaijan and the global oil supply. The char-
acteristics of the crude oil are reported in Table 2.

Experimental design and plant growing conditions

The experimental design consisted of testing four different 
concentrations of biochar (0%, 2.5%, 5%, and 10% w/w) and 
six different concentrations of crude oil (0%, 0.5%, 1%, 2%, 
3%, and 6% w/w) on the growth of oats (Avena sativa L., 
cv “Danko”), as shown in Fig. 1. This specific cultivar was 
chosen since it is primarily cultivated in Europe, particularly 
in countries like Italy, Germany, and Poland. It is esteemed 
for its adaptability to varying climates and its robust pro-
ductivity. “Danko” oat is favored for its resilience to dis-
eases and pests common in European agricultural settings, 
making it a reliable choice for farmers seeking consistent 
yields. This cultivar is valued for its ability to thrive under 

diverse environmental conditions, contributing to its wide-
spread popularity among oat growers across the continent. 
Each treatment was repeated in triplicate. The control (bio-
char = 0%, crude oil = 0%) consisted of commercial grow-
ing substrate only (100 g/pot; VigorPlant Italia Srl, Lodi, 
Italy – characteristics are reported in Table 3); while for the 
crude oil-contaminated pots, the substrate was first treated 
with the specific dose of crude oil and then, when neces-
sary, mixed with the relative biochar concentration. The oat 
seeds, provided by the Botanical Garden of the University 
of Siena (Italy), were first sterilized, following the proto-
col reported by Maresca et al. (2024), and then sown in the 
respective pots (7 seeds/pot). The pots were then stored in 
a climatic growth chamber with 60% RH, light intensity of 
300 μmol m−2 s−1 PAR, a day/night cycle of 14/10 h, and a 
temperature of 24/16 °C. Pots were maintained at a water-
holding capacity of 70% to ensure constant moisture. At 
the end of the 2-week growth period, only the aboveground 
part of the oat plants was harvested, weighed, and stored at 
-20 °C for the subsequent biochemical analysis.

Malondialdehyde content

The content of malondialdehyde (MDA) was evaluated fol-
lowing the procedure reported by Lamaro et al. (2023). In 
brief, 0.5 g of frozen material was mixed with 5 mL of an 
extraction solution containing 0.25% (w/v) 2-thiobarbituric 
acid (TBA) (Merck KGaA, Darmstadt, Germany) dissolved 
in 10% (w/v) trichloroacetic acid (Panreac, Castellar del 
Vallès, Barcelona, Spain). The mixture was then heated at 
95 °C for 30 min in a thermoblock (FALC instrument, Ber-
gamo, Italy), and quickly cooled on ice to block the reaction. 
After centrifugation at 4,000 rpm for 10 min (PK110 centri-
fuge, Alc International S.r.l., Cologno Monzese, MI, Italy), 

Table 1   Physicochemical characteristics of biochar

Particle diameter (µm)  < 200
Total nitrogen (%)  < 0.4
Total potassium (mg kg−1) 3020
Total phosphorus (mg kg−1) 340
Total calcium (mg kg−1) 9920
Total magnesium (mg kg−1) 852
Total sodium (mg kg−1) 291
Carbon in the carbonate (%)  < 0.1
Total carbon (%) 68.7
Water holding capacity (%) 23.5
Salinity (mS cm−1) 110
pH 9.9
Hash content (%) 4.6
H/C 0.2

Table 2   Chemical characteristics of the Azeri Light crude oil

Methane (mg kg−1) 0.00
Ethane (mg kg−1) 0.02
Propane (mg kg−1) 0.23
Isobutane (mg kg−1) 0.26
n-Butane (mg kg−1) 0.81
Isopentane (mg kg−1) 0.86
n-Pentane (mg kg−1) 1.1
Cyclopentane (mg kg−1) 0.15
C6 paraffins (mg kg−1) 2.2
C6 naphthenes (mg kg−1) 1.3
Benzene (mg kg−1) 0.22
Sulfur (mg kg−1) 0.17
Vanadium (mg kg−1)  < 2
Nickel (mg kg−1) 3
Iron (mg kg−1) 5
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the supernatant was collected and the absorbance measured 
at 532 nm and 600 nm using a UV–Vis spectrophotometer 
(Agilent 8453, Santa Clara, CA, USA). Calculations were 
performed by subtracting the absorbance at 600 nm and 
using an extinction coefficient of 155 mM−1 cm−1 for the 
MDA-TBA complex.

Proline content

The content of proline was evaluated following the proce-
dure reported by Azarnejad et al. (2024). In brief, 0.1 g of 
frozen material was mixed with 2 mL of 5-sulfosalicylic acid 

dihydrate (3%, w/v) (Merck KGaA, Darmstadt, Germany), 
and the resulting mixture was then centrifuged at 4,000 rpm 
for 10  min (PK110 centrifuge, Alc International S.r.l., 
Cologno Monzese, MI, Italy), and 0.5 mL of the superna-
tant was combined with 0.5 mL of glacial acetic acid (Merck 
KGaA, Darmstadt, Germany) and 0.5 mL of acid-ninhydrin 
reagent (1.25 g of ninhydrin (Carlo Erba, Milano, Italy) in 
30 mL of glacial acetic acid and 20 mL of 6 M phosphoric 
acid (Merck KGaA, Darmstadt, Germany)). After incubat-
ing the mixture for 1 h at 100 °C, they were cooled on ice 
to block the reaction. Finally, 1.5 mL of toluene was added 
to the sample. The absorbance of the clear supernatant was 
measured at 520 nm using a UV–Vis spectrophotometer 
(Agilent 8453, Santa Clara, CA, USA). A calibration curve 
was prepared using 1 mM L-proline (Merck KGaA, Darm-
stadt, Germany) as a stock solution, with concentrations 
ranging from 2 to 600 μL.

Total antioxidant power content

The total antioxidant power was evaluated following the 
procedure reported by Fedeli et al. (2024b). Frozen mate-
rials (0.5 g) were homogenized in 2 mL of 80% ethanol 
(Merck KGaA, Darmstadt, Germany) for 2 min and then 
centrifuged at 4,000 rpm for 5 min (PK110 centrifuge, 
Alc International S.r.l., Cologno Monzese, MI, Italy). 
From each sample, 200 μL of the resulting supernatant 
was mixed with 1 mL of 2,2-diphenyl-1-picrylhydrazyl 
(DPPH) solution (Merck KGaA, Darmstadt, Germany), 
prepared by dissolving 3.9 mg of DPPH in 100 mL of 80% 
methanol. Blank and control samples were also prepared 
by combining 200 μL of 80% ethanol with: 1 mL of 80% 

Fig. 1   Plant experimental 
growth scheme, showing dif-
ferent biochar (B) applications, 
different crude oil (CO) levels, 
and analysis done (created with 
Biorender.com)

Table 3   Physio-chemical characteristics of the substrate VigorPlant 
used in this study (Bianchi et al. 2024)

pH 5.30 ± 0.03
EC (mS cm−1) 1.12 ± 0.01
CEC (meq 100 g−1 DW) 56.89 ± 2.67
Porosity (%) 92
Moisture content (%) 43
Ca (mg kg−1 DW) 23,159 ± 296
Mg (mg kg−1 DW) 2846 ± 22
Na (mg kg−1 DW) 1379 ± 19
K (mg kg−1 DW) 1198 ± 17
P (mg kg−1 DW) 614 ± 14
S (mg kg−1 DW) 1410 ± 141
Fe (mg kg−1 DW) 1097 ± 10
Mn (mg kg−1 DW) 31 ± 1
Cu (mg kg−1 DW) 23 ± 1
Zn (mg kg−1 DW) 38 ± 1
Mo (mg kg−1 DW) 0.89 ± 0.01
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methanol (Merck KGaA, Darmstadt, Germany), and 1 mL 
of the DPPH solution, respectively. Following a 1 h incu-
bation period in darkness, the absorbance of the samples 
was measured at 517 nm using a UV–Vis spectrophotom-
eter (8453, Agilent, Santa Clara, CA, USA). The results 
were expressed as the percentage of antiradical activity 
(ARA), calculated using the following formula:

Statistical analysis

To test the effect of biochar and crude oil, a permutational 
analysis of variance (PERMANOVA) was performed. When 
the main test provided a p-value < 0.05, indicating differ-
ences between treatments, a pairwise permutation t-test was 
conducted as a post hoc analysis (p < 0.05). All statistical 
analyses were run with the R software (R Core Team 2024).

Results

The results of PERMANOVA (Table 4) showed signifi-
cant differences for all investigated parameters shoot fresh 
weight, MDA, proline, and ARA), for both factors (Biochar 
and Crude oil), and their interaction (Biochar × Crude oil).

Fresh weight

Biochar addition determined a significant increase in the 
fresh weight of oat plants at all concentrations of crude oil 
(CO) tested: 0% CO (5% B: + 31.66%; 10% B: + 47.08%), 
0.5% CO (10% B: + 48.36%), 1% CO (10% B: + 37.88%), 
2% CO (5% B: + 24.07%; 10% B: + 36.51%), 3% CO (5% 
B: + 45.75%; 10% B: + 58.59%), 6% CO (2.5% B: + 80.60%; 
5% B: + 71.42%; 10% B: + 102.59%) (Fig. 2).

ARA(%) =

(

1 −
sample absorbance

control absorbance

)

× 100

Malondialdehyde

As far as the content of MDA is concerned (Fig. 3), the 
addition of biochar determined a significant reduction in 
this parameter at CO concentrations > 2%: 2% CO (10% B: 
-24.34%), 3% CO (2.5% B:-26.95%; 5% B: -29.12%; 10% B: 
-26.16%), 6% CO (2.5% B: -36.76%; 5% B: -36.99%; 10% 
B: -37.58%).

Proline

The results for the content of proline (Fig. 4) were similar to 
those of MDA, with biochar addition determining a signifi-
cant reduction at CO concentrations > 2%: 2% CO (2.5% B: 
-41.34%; 5% B: -45.98%; 10% B: -40.80%), 3% CO (2.5% 
B: -52.84%; 5% B: -44.67%; 10% B: -37.21%), 6% CO (2.5% 
B: -40.32%; 5% B: -36.23%; 10% B: -33.66%).

Total antioxidant power

Biochar addition determined a significant increase in the 
total antioxidant power (Fig. 5) at CO concentrations > 1%: 
1% CO (10% B: + 13.49%), 2% CO (2.5%B: + 19.16%; 5% 
B: + 36.27%; 10% B: + 13.51), 3% CO (2.5% B: + 35.43%; 
5% B: + 89.96%; 10% B: + 91.66%), 6% CO (2.5% 
B: + 48.27%; 5% B: + 97.31%; 10% B: + 82.71%).

Discussion

Various methods have been suggested to address crude oil 
contamination, such as the introduction of surfactants and 
microbial processes (Liu et al. 2021; Huang et al. 2019). 
Recently, it was explored the potential of biochar as an envi-
ronmentally friendly solution for mitigating both diesel and 
gasoline-contaminated soils (Saeed et al. 2021; Fedeli et al. 
2023b). In both studies, the results were promising, since 
plants grown with biochar in contaminated soil showed an 
increase in both fresh weight and antioxidant compounds. 
Given the ability of biochar to reduce the uptake of both 

Table 4   Results of 
PERMANOVA on shoot fresh 
weight, malondialdehyde 
(MDA), proline, and total 
antioxidant power (ARA)

**  = p < 0.01; *** = p < 0.001

Source of variation Shoot fresh 
weight

MDA Proline ARA​

df R2 F R2 F R2 F R2 F

Biochar 3 0.37 63.67*** 0.20 13.78*** 0.23 20.30*** 0.14 58.45***

Crude oil 5 0.44 44.54*** 0.32 13.34*** 0.46 24.13*** 0.67 158.98***

Biochar × Crude oil 15 0.10 3.46*** 0.25 3.41** 0.12 2.11** 0.15 11.56***

Residuals 48 0.09 0.23 0.19 0.04
Total 71 1.00 1.00 1.00 1.00
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organic and inorganic pollutants by plants in polluted soils 
(Lu et al. 2015; Oliveira et al. 2017; Vannini et al. 2021), 
biochar is promising for effectively remediating soils con-
taminated with crude oil and fuels. However, there remains 
a notable gap in information regarding its application on the 
plant responses, since the topic remains unexplored.

Our results have demonstrated how the addition of bio-
char to soil contaminated with crude oil, is a potential 
strategy to mitigate the toxic effects of crude oil. Regard-
ing the fresh weight of the plants, which is an indicator of 
plant growth, the beneficial effects of biochar are evident 
even in the absence of crude oil (0%). Similar results were 

Fig. 2   Shoot fresh weight of oat leaves (mean ± standard error). 
The number along the horizontal axis indicates the concentration 
of crude oil (CO) added to the growing medium. B0 = without bio-
char; B2.5 = with 2.5% (w/w) biochar; B5 = with 5% (w/w) biochar; 

B10 = with 10% (w/w) biochar. Legend on the right shows significant 
differences, expressed as letters, following the permutation pairwise 
t-test; different letters indicate statistically significant (p < 0.05) dif-
ferences

Fig. 3   Malondialdehyde (MDA) content of oat leaves (mean ± stand-
ard error). The number along the horizontal axis indicates the 
concentration of crude oil (CO) added to the growing medium. 
B0 = without biochar; B2.5 = with 2.5% (w/w) biochar; B5 = with 5% 

(w/w) biochar; B10 = with 10% (w/w) biochar. Legend on the right 
shows significant differences, expressed as letters, following the per-
mutation pairwise t-test; different letters indicate statistically signifi-
cant (p < 0.05) differences
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found by Saeed et al. (2021) and Fedeli et al. (2023b) on 
maize (Zea mays L.) and oat plants, respectively, in the 
presence of soil contamination by petroleum derivatives. 
The positive effects of biochar are primarily attributed to 
its capacity to improve water retention, nutrient availabil-
ity, and soil structure (Hossai et al. 2020). Furthermore, its 
role in sequestering both hydrocarbons and heavy metals 

has been extensively studied (Qiu et al. 2022; Liang et al. 
2021; Li et al. 2021). Indeed, biochar has a porous struc-
ture that provides a large specific surface area and high 
absorption capacity (Hossai et al. 2020). This structure 
allows biochar to adsorb heavy metals and hydrocarbons 
present in the soil, thereby reducing their availability to 
plants. Once absorbed by biochar, these contaminants can 

Fig. 4   Proline content of oat leaves (mean ± standard error). The 
number along the horizontal axis indicates the concentration of 
crude oil (CO) added to the growing medium. B0 = without bio-
char; B2.5 = with 2.5% (w/w) biochar; B5 = with 5% (w/w) biochar; 

B10 = with 10% (w/w) biochar. Legend on the right shows significant 
differences, expressed as letters, following the permutation pairwise 
t-test; different letters indicate statistically significant (p < 0.05) dif-
ferences

Fig. 5   Antiradical activity (ARA) of oat leaves (mean ± standard 
error). The number along the horizontal axis indicates the concen-
tration of crude oil (CO) added to the growing medium. B0 = with-
out biochar; B2.5 = with 2.5% (w/w) biochar; B5 = with 5% (w/w) 

biochar; B10 = with 10% (w/w) biochar. Legend on the right shows 
significant differences, expressed as letters, following the permuta-
tion pairwise t-test; different letters indicate statistically significant 
(p < 0.05) differences



52781Environmental Science and Pollution Research (2024) 31:52774–52783	

become inactive and immobilized, preventing their spread 
in the soil and thereby minimizing damage to plants and 
soil organisms (Haider et al. 2022). Moreover, biochar can 
also promote soil microbial activity, including bacteria 
capable of degrading hydrocarbons (Zhang et al. 2019; 
Gorovtsov et al. 2020). The presence of biochar can cre-
ate a favorable environment for the growth and activity of 
these bacteria, thereby accelerating the process of hydro-
carbon biodegradation (Guo et al. 2022).

Biochar was crucial in reducing oxidative stress in oat 
plants. For both analyzed parameters, MDA and proline, 
a reduction to levels greater than 2% of crude oil was 
observed across nearly all levels of biochar tested. Under 
stress conditions, plant cells undergo damage to plasma 
membranes due to formation of reactive oxygen species 
(ROS) and breakdown of metabolic processes (Sharma 
et al. 2012). Malondialdehyde is known to be one of the 
main markers of oxidative damage to cell membrane 
lipids (Całyniuk et al. 2016). Its accumulation can ham-
per membrane functionality, affecting substance transport, 
ion balance, and the cell ability to maintain homeostasis 
(Morales and Munné-Bosch 2019). Similarly, proline is 
an osmotic stress protectant in response to environmental 
stress (Bashir et al. 2014). Under stress conditions, pro-
line plays an important role in stabilizing cell membrane 
and other cellular structures through the synthesis of ROS 
(Hossain et al. 2014). Our results are consistent with some 
studies in the literature, reporting that the addition of B is 
beneficial for plant growth in the presence of petroleum 
derivatives. However, unlike the only study available 
regarding this topic (to the best of our knowledge), our 
results have indeed shown a reduction in oxidative stress in 
plants, while Saeed et al. (2021), who evaluated the effect 
of adding 1% biochar to the soil on different levels of soil 
contamination with diesel (10% and 15%) on the growth of 
maize plants, reported an increase in oxidative stress to the 
leaves. These results highlight the possible implication of a 
dose-dependent response of biochar, as in our study, higher 
concentrations were tested, which resulted in a significant 
reduction in oxidative stress caused by crude oil.

Antioxidants also play a crucial role in the response to 
oxidative stress. They protect the cell from damage caused 
by cytotoxic O2 and prevent its conversion to H2O2 and 
O− in all organelles (Blokhina et al. 2003). The total anti-
oxidant power assay can be used to estimate the overall pool 
of different antioxidants such as flavones, isoflavones, fla-
vonoids, anthocyanins, coumarins, lignans, catechins, and 
isocatechins (Aqil et al. 2006). A high level of antioxidants 
indicates the prevention of lipid peroxidation and, conse-
quently, oxidative stress damage to plants (Chakravarty 
and Deka 2021). Our findings are consistent with those of 
Saeed et al. (2021), who observed an increase in antioxidant 
compounds in maize leaves grown with 1% biochar amidst 

10% and 15% diesel contamination, and with those of Fedeli 
et al. (2023b), who observed an increase in total antioxidant 
power in oat leaves with 5% biochar amidst 6% and 10% 
gasoline contamination.

Conclusions

The use of biochar at concentrations > 2.5% proved to be 
highly advantageous for the remediation of soils contami-
nated by crude oil. Compared to traditional remediation 
techniques, which often require the use of expensive and 
potentially harmful chemical substances, biochar offers a 
more economical and environmentally friendly alterna-
tive. Specifically, the results suggest that biochar has a 
beneficial effect on the growth of oat plants, regardless of 
the concentration of crude oil tested. Additionally, regard-
ing the oxidative stress indicators such as malondialde-
hyde and proline content, biochar showed a noteworthy 
decrease, with statistical significance noted at concen-
trations of biochar greater than 2.5% and crude oil lev-
els > 2% (malondialdehyde: ranging from -25% to -38%; 
proline ranging from -33% to -52%). Moreover, adding 
biochar into the soil boosted the overall antioxidant capac-
ity, particularly evident at biochar concentrations higher 
than 2.5% and crude oil levels > 2% (ranging from + 20% 
to + 98%).
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