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Abstract: Protein–protein interactions (PPIs) are fundamental processes governing cellular functions,
crucial for understanding biological systems at the molecular level. Compared to experimental meth-
ods for PPI prediction and site identification, computational deep learning approaches represent an
affordable and efficient solution to tackle these problems. Since protein structure can be summarized
as a graph, graph neural networks (GNNs) represent the ideal deep learning architecture for the task.
In this work, PPI prediction is modeled as a node-focused binary classification task using a GNN
to determine whether a generic residue is part of the interface. Biological data were obtained from
the Protein Data Bank in Europe (PDBe), leveraging the Protein Interfaces, Surfaces, and Assemblies
(PISA) service. To gain a deeper understanding of how proteins interact, the data obtained from
PISA were assembled into three datasets: Whole, Interface, and Chain, consisting of data on the whole
protein, couples of interacting chains, and single chains, respectively. These three datasets correspond
to three different nuances of the problem: identifying interfaces between protein complexes, between
chains of the same protein, and interface regions in general. The results indicate that GNNs are
capable of solving each of the three tasks with very good performance levels.

Keywords: protein–protein interaction; bioinformatics; artificial intelligence; deep learning; graph
neural networks; protein graph; protein interface

1. Introduction

Proteins are large, biopolymeric molecules that are fundamental players in all living
beings, with a variety of both structural and functional roles in cellular processes. Protein
function is actually closely related to protein structure, which can be described on four
different levels: the primary structure, namely the amino acidic sequence; the secondary
structure, which is the local conformation of the peptide chain, consisting of helices, sheets,
or coils; the tertiary structure, specifically the three-dimensional configuration of the
molecule; and the quaternary structure, formed by two or more tertiary structure subunits
that bind together, creating a protein complex. The smallest quaternary structure is a
dimer, which is formed by two subunits, i.e., two monomers: if the two subunits have a
similar nature, the protein complex is called a homodimer; otherwise, the formation of a
heterodimer occurs. The amino acidic sequence determines the very final structure of the
protein, which, in turn, dictates its biochemical functions. The analysis of the structural
features of proteins is often helpful in understanding the biological processes that they are
involved in, which ligands they bind to, and which molecular complexes they form [1].

Since proteins are responsible for various cellular functions, and many of these func-
tions require the interaction of more protein molecules rather than individuals acting
alone [2], protein–protein interaction (PPI) represents a key aspect of their activity. Signal
transduction, i.e., a complex process involving PPIs that transmits information inside the
cell to regulate gene expression [3], the binding between antibodies and protein antigens
in the immune response [4], or the role of cellular adhesion proteins in maintaining tissue
integrity [5] are only a few evident examples suggesting that a deeper knowledge about
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PPIs is critical. In addition, understanding these interactions is crucial not only for deci-
phering the complex orchestration of biological systems but also for the identification of
novel therapeutic targets for disease intervention [6]. In addition, predicting which residues
are involved in PPIs may help drug discovery, improve the accuracy of protein–protein
docking, and obtain a richer annotation of protein function [7].

With the emerging developments in the machine learning and deep learning fields,
an increasing number of researchers have explored their application to PPIs, since con-
ventional experimental approaches for PPI prediction and site identification are expensive
and time-consuming. Initially, computational methods mainly used common statistical
features and highly conserved patterns in polypeptides since many functionally important
proteins are preserved across species. [8]. The underlying idea is that proteins sharing
homologous sequence patterns or structures may have a tendency of possessing the same
interaction properties. The real consistent application of machine learning methods in
PPI prediction can be traced back to 2001 [9]. In this phase, algorithms including deci-
sion trees [10], naive Bayes [11], random forests [12], and support vector machines [13]
were employed. The following decade met a large spread of deep learning techniques
applied to the PPI research field, showing far better results. Deep multi-layer perceptrons
(MLPs) [14] and convolutional neural networks [15] were two of the most used methods in
this phase. Subsequently, in more recent years, Yang et al. [16] were the first to apply graph
convolutional networks (GCNs), i.e., a particular type of graph neural network (GNN),
to the prediction of PPIs. This approach displayed particularly good performance since
GNNs deal with graph-structured data with minimal information loss, and the complex
nature of protein macro-molecules can be naturally represented with graphs. As a con-
sequence, GNNs are shown to be a versatile and powerful tool for identifying specific
interaction sites on proteins, or predicting the existence of interactions between protein
pairs [6]. In addition, graph structures allow one to obtain protein representations from 3D
Cartesian coordinate systems, maintaining spatial information and preserving multi-level
rotation and translation equivariance. Therefore, graph neural networks, in all their various
combinations and shapes [17–22], represent one of the most promising and performing
architectures in such a wide realm of computational tools.

The methods for computational PPI site prediction can be roughly classified into
two classes according to the information used for prediction [23]. The first class consists
of sequence-based approaches that require readily available protein sequences. These
generally have limited predictive accuracy due to the lack of structural and geometrical
information [24]. The second class includes structure-based approaches that infer PPI
sites from known structures. These are often more accurate and practically useful because
proteins with unknown functions can be taken into account as well. These studies typically
formulate the PPI problem as a graph-based learning task, such as node classification,
link prediction, or graph classification, employing suitable GNN architectures to carry
out the task. Nodes can represent amino acidic residues, i.e., what remains when two
or more amino acids combine to form a peptide and the elements of water are removed,
or secondary structures, depending on the problem at hand.

This study is proposed as the natural extension and evolution of [1]. Hence, a large
amount of generic dimers, in both homogeneous and heterogeneous settings, have been
retrieved from the PDBePISA database to build the graph-based dataset. Instead of consid-
ering a correspondence graph in the identification of biologically significant cliques, in this
new perspective, protein complexes that directly represent the peptide chains of the original
dimer are fed as input into GNNs. Nodes represent residues and the final task is the binary
classification of interface residues. A structure-based approach is used, since dimers are
represented as graphs in which residue nodes interact also with others located outside their
immediately close neighborhood. In addition, three different implementations are exploited
in order to involve the same dataset from different points of view and to try to understand
which configuration is more useful to the GNN in the learning phase. The first considers
all the dimer chains, with both self-interactions and interactions between different chains.
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The second takes into account pairs of interacting chains belonging to the same protein
complex, with self- and reciprocal interactions. The last one involves single chains of the
same dimer, excluding any type of interaction among different chains.

The rest of this paper is organized as follows: Section 2 shows the experimental
results, which are contextually discussed. Then, Section 3 presents the materials and
methods involved in the study, hence the GNN model, the dataset and its preprocessing
phase, and the experimental setting. In addition, it presents an ablation study: a series
of additional experiments carried out on subsets of the original features, both for nodes
and edges, in order to evaluate the performance of the models in the absence of specific
groups of attributes. Moreover, it provides a detailed example of a use case, in order to
show the practical employment of a protein file, from the necessary processing phase to the
corresponding output of the model. Finally, Section 4 draws some conclusions on current
research and explains future perspectives.

2. Results and Discussion

PPI prediction is defined as a node-focused binary classification task using a GNN.
The goal is to determine whether a generic node (residue) belongs to a protein interface or
not. To test the predictive capabilities of the GNN model and evaluate its performance from
different perspectives, experiments were carried out on the three different datasets. For each
of these, a grid-search procedure was conducted to select the best model configuration.
Performances of the best architecture for each dataset are reported in Table 1.

Table 1. Performance of the best architecture for each dataset as a result of the grid-search procedure.

Dataset Acc BAcc Precision Recall FScore AUC

Whole 0.9467 0.8946 0.8982 0.8108 0.8522 0.9794
Interface 0.9610 0.8880 0.8627 0.7927 0.8262 0.9793

Chain 0.8335 0.7717 0.5454 0.6731 0.6025 0.8679

The best model configurations obtain very good results on all the datasets. All metrics
show very high values for the Interface and Whole datasets, meaning that GNNs are capable
of efficiently answering the two corresponding questions (see Section 3.2) on a per-residue
basis. In particular, the best result is achieved in the Whole dataset, in which the model is
capable of recognizing about 81% of interacting nodes while maintaining a high precision
value of around 90% and resulting in the highest F-score and balanced accuracy values,
scoring approximately 86% and 90%, respectively. However, promising results are still
achieved in the Interface dataset, in which only pairs of interacting chains are considered:
the key interpretation lies in the different number of nodes belonging to the two datasets,
as the second one is composed of a greater number of nodes, resulting in a slight drop in
performance. Not surprisingly, the more general question, arisen from the Chain dataset,
is the most difficult to answer. In this case, the binary classification is based solely on the
nature of the residue, the local structure of the protein, and the features of neighbor nodes
and edges, without any conditioning on the chain or other protein, which should bind to
the interface that the residue is part of. Nevertheless, even if the performance is not on par
with the other two datasets, the values of all the metrics reach very good levels also for the
Chain dataset, in which the model is able to recognize almost 68% of the interacting nodes,
with an F-score of more than 60%.

3. Materials and Methods

In this section, the data and the experimental methodology used in this work are de-
scribed. In particular, Section 3.1 presents an overview of the GNN model, the architecture
used for PPI prediction. Section 3.2 proposes a precise description of the dataset obtained
from the preprocessing phase (also described here) and the subsequent graph generation
procedure. Subsequently, Section 3.3 shows the experimental setup chosen for the study,
with specific reference to data setting, model selection, and evaluation. Section 3.4 presents
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an ablation study, which is a series of additional experiments to further investigate the
influence of specific node/edge features from the dataset on the model’s predictive perfor-
mances. Finally, Section 3.5 shows a practical use case, with a visual representation of the
model predictions on a specific protein.

3.1. The GNN Model

A graph is a non-linear, non-Euclidean data structure defined as a tuple G = (N, E, LN , LE),
where N represents the set of nodes and E ⊆ N × N is the set of edges. Nodes describe
entities, while edges stand for the relationships between them. Nodes and edges can
be associated with values or vectors of values describing their attributes, and are de-
fined as node feature vectors, ln ∈ LN , ∀n ∈ N, and edge feature vectors, en,m ∈ LE,
∀(n, m) ∈ E, respectively.

In this context, GNNs represent a well-established paradigm within the field of ma-
chine learning, in which they have been successfully applied to an enormous variety of
different tasks involving graph-structured data [25]. They exhibit a notable capacity for
directly handling relational data in graph format while minimizing information loss and
offering high flexibility [26]. Initial conceptualization of GNNs appeared in 2005 [27],
followed by a comprehensive mathematical formulation in 2009, which also demonstrated
that GNNs are universal approximators on graphs [28]. In the original work, GNNs op-
erated by replicating the topology of the input graph and employing a message-passing
mechanism between neighboring nodes to produce outputs on specific locations within the
graph. This process was achieved by the means of two MLP units implementing as many
parametric functions: a state transition function on each node of the graph and an output
function where needed. In this context, problems can be categorized based on their focus
on different elements within a graph: node-focused, edge-focused, or graph-focused. In
node-focused problems, the model is asked to produce an output in correspondence with
each node of the graph or a subset thereof, which can be used for classification, regression,
or clustering purposes. Conversely, edge-focused problems concern tasks in which the
output is produced either on each edge of the graph or on a subset of E. Finally, graph-
focused tasks deal with problems in which a unique output is produced on the whole
graph, and the goal is to predict a property or to cluster the complex object represented
by the graph. In this latter case, the output is generally calculated on the nodes and then
aggregated by sum or average operations to obtain a single output for each graph.

3.2. Dataset Description

The first step for building the dataset was to search for biological data in the Protein
Data Bank in Europe (PDBe), leveraging the Protein Interfaces, Surfaces and Assemblies
(PISA) service (all the information is available at https://www.ebi.ac.uk/pdbe/pisa/),
an interactive tool provided by the PDBe database to study the stability of macro-molecular
complexes (proteins, DNA/RNA, and ligands, accessed on 12 April 2024). This is essentially
regulated by certain physicochemical properties, such as the free energy of the complex
formation, hydrogen bonds, hydrophobic specificity, salt bridges across interfaces, solvation
energy gain, and interface area. This information is used by the PISA service to analyze
a given structure and to make predictions about a potential complex. It is possible to
search for a protein using either a query, by indicating its PDB identification code, or to
download entire databases. In this latest case, some parameters are available to filter the
data, such as the type of interaction, keywords, presence of salt bridges or disulfide bonds,
and symmetry number. To collect the dataset for the study, generic dimers characterized
by a protein–protein interaction were retrieved from the PDBePISA database, for a total of
46,523 protein samples.

To guarantee biological significance, some criteria were enforced, such as a ⟨x, y, z⟩
symmetry, and only two interacting protein molecules at each interface. Subsequently,
each sample was processed with the Graphein 1.7.0 Python package [29] to build the
corresponding residue-based graph. Graphein is designed to streamline computational

https://www.ebi.ac.uk/pdbe/pisa/
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analysis for biomolecular structures, offering functionalities for constructing graph and
surface mesh representations of various biomolecules, including proteins, nucleic acids,
and small molecules. Additionally, Graphein facilitates the retrieval of structural data and
chemical information from prominent bioinformatics databases such as the Protein Data
Bank and ChEMBL. Therefore, a single graph was produced for each protein, with nodes
representing the amino acid residues and edges representing the chemical bonds and forces
between them, as depicted in Figure 1.

Figure 1. Example of a graph-based representation of the protein methyltransferase with PDB code
3C3P. The resulting graph on the right is composed of nodes representing the residues and edges
representing the bonds between them. In the example, nodes are depicted with a gradient color
scheme based on the afferent chain along the protein structure, from blue to orange, while edge color
is defined by the number of interactions between residues. Nodes and edges are associated with
feature vectors describing their properties in both residues and secondary structure granularity.

Nodes and edges are associated with feature vectors describing their attributes. In par-
ticular, residue-level features—each residue is represented by the corresponding carbon
alpha atom Cα—are collected into a vector x ∈ R

89 describing some physicochemical prop-
erties, such as their position vector in the three-dimensional space, the accessible surface
area, the residue torsion angles, and DSSP [30], Meiler [31], and ExPASy [32] descriptors.
A more detailed description is available at the link in the Supplementary Materials. On
the one hand, the Meiler representation [31] is a simplified model employed in computa-
tional biology and bioinformatics to depict the structural characteristics of amino acids.
The method portrays each amino acid as a collection of geometric shapes approximating
its backbone and side chain atoms, enabling the efficient analysis and modeling of protein
structures and interactions in computational studies while reducing complexity. On the
other hand, the ExPASy service [32], developed by the Swiss Institute of Bioinformatics
(SIB), provides general non-residue specific features. It draws amino acid descriptors along
the primary sequence of the protein, such as hydrophobicity, polarity, and molecular weight.
DSSP [30] assigns each residue to a secondary structure element (SSE), such as α-helices,
β-strands, and turns, by examining their hydrogen bonds and backbone geometries. This
represents a standardized approach for characterizing protein secondary structures, with a
total of 8 SSE classes, including the special class random coil, a conformation indicating
the absence of a regular secondary structure. A generic edge between two nodes u, v ∈ N
is represented by a feature vector eu,v ∈ R

11, quantifying the distance between their Cα

atoms (measured in angstrom Å) and describing the type of bonds established between
the residues. These are represented as a non-categorical vector where a non-null value
indicates the presence of a specific type of bond (e.g., multiple atom-level bonds between
two residues are considered as parallel edges between residue-level Cα nodes, and are
thus condensed in a single undirected edge). The ground truth for the classification task
is obtained from PDBePISA, which defines a generic residue as interacting based on its
solvation energy value. In particular, the solvation energy gain of the interface, expressed
in kcal/M, is calculated as the difference in solvation energies of all residues between
dissociated and associated (interfacing) structures. Therefore, a solvation energy equal to
zero corresponds to non-interfacing residues, and a solvation energy different from zero
corresponds to interfacing residues, i.e., located within the interfaces on the protein surface.
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To test the predictive capabilities of the GNN model and gain some insight on chain
interactions within proteins, three different alternative datasets were considered. The first
dataset, which will be referred to as the Whole (protein) dataset, is composed of undirected
graphs representing proteins in their entirety. All the interacting chains, possibly intercon-
nected to let the information flow from a chain to another, are considered here, and are
composed of 31,979 protein samples. Labels were associated to each node, representing
the locations of all the interfaces within the protein at once. As shown in Figure 2, from a
single protein graph belonging to this dataset, two other sets of objects can be extracted.

Figure 2. Example of sample extraction for different dataset settings. On the left, the single graph
built on the protein with PDB code 3C3P as depicted in Figure 1, and belonging to the Whole

(protein) dataset, in which a generic graph represents the entire protein; above, the extracted samples
belonging to the Interface dataset, in which a single graph represents a couple of interacting chains;
below, the extracted samples belonging to the Chain dataset, in which a single graph represents a
single chain. Note that the Interface dataset includes more samples than the other two, since multiple
instances of the same generic chain can occur, meaning that it can interact simultaneously with
different chains: in this case, the labels are adapted to the specific interface instance. As a result,
the label in the Whole and Chain datasets are obtained by the superposition of all chain instances
among the interfaces.

After slightly increasing the resolution of the dataset, in the second setting, each pair
of interacting chains belonging to a generic protein was considered as a single sample.
Each chain of the pair includes all its residues. In this context, repeated instances of the
same chain can occur when this interacts simultaneously with two or more chains within
the protein. Given that the interface location changes for each pair of interacting chains,
the label associated to each node will be different. This dataset will be referred to as the
Interface dataset, since a single graph represents the interaction between two single chains
within the same protein, and it is composed of 73,427 interface graphs. In the last setting,
further increasing the resolution of the graphs, each sample was represented by a single
chain of residues, so, for a generic protein, only one instance of each chain could occur in
the produced graphs. This dataset will be referred to as the Chain dataset and it is composed
of 87,375 chain graphs, which include all their residues. More details about the datasets are
reported in Table 2.
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Table 2. Description of the datasets Whole, Interface, and Chain. N and E refer to the number of
nodes and edges belonging to a single sample, respectively, while % resi represents the percentage of
interacting residues. Note that the total number of nodes in the Interface dataset is greater than the
number of nodes in the other datasets, since multiple instances of the same chain can occur.

Dataset Samples Nmin Nmax Emin Emax % resi

Whole 31,979 10 9288 19 40,369 18.87
Interface 73,426 4 7197 2 28,567 11.83

Chain 87,375 2 3607 1 14,376 18.87

By treating a protein as a collection of coupling chains (i.e., using the Interface dataset),
it is possible to focus the analysis on such critical interaction sites. This approach allows
for a deeper understanding of how different protein components come together to form
functional complexes. Identifying these interfaces is crucial for deciphering the molecular
mechanisms underlying various cellular processes, including signal transduction, gene
regulation, and immune responses. Conversely, the Chain dataset considers each chain
within a protein independently, disregarding inter-chain interactions. While this simplifies
the analysis, it provides insights into the individual behavior and properties of each chain
within the protein ensemble. Eventually, considering proteins in their entirety as in the
Whole (protein) dataset, without breaking them down into coupled or independent chains, is
essential for understanding their overall structure, function, and behavior within biological
systems. As a consequence, each dataset is investigated to answer a different biological
question. The Chain dataset can provide an answer to the general question: which amino
acids belong to interface regions in this peptide chain? This question is investigated by
looking only at the characteristics of the amino acids and the structure of the peptide chain
that they belong to. Thanks to the properties of GNNs, parts of the chain closer to the amino
acid under analysis will be more influential in taking the decision with respect to other
regions. The Interface dataset is instead ideal for answering the question: which amino acids
play a role in the PPI between two peptide chains of the same protein, thus contributing to
the formation of its own quaternary structure? In this scope, the binary classification of
amino acids is conditioned to the particular PPI under analysis. The decision is based on
the amino acid features and the structure of the chain, as well as on the specific structure
of the interacting chain and the reciprocal position of the structures. Finally, the Whole
(protein) dataset may answer the question: which amino acids play a role in PPIs between
the protein complex that they belong to and other protein complexes? The decision is based
on the features of the amino acid under analysis and the quaternary structure that it is a
part of, additionally influenced by the characteristics of the other interacting structures and
the relative positioning of the two protein complexes.

3.3. Experimental Setup

In this work, PPI prediction is modeled as a node-focused binary classification task
using a GNN. The goal is to determine whether a generic node (residue) belongs to a
protein interface or not. To test the predictive capabilities of the GNN model and evaluate
its performance, experiments were carried out on the three different datasets: Whole,
Interface, and Chain, described in Section 3.2. To maintain consistency across datasets,
a seed was employed to split data into (non-overlapping) training, validation, and test
sets in all the experiments in order to allocate the same proteins to the same sets in all
three settings. As an example, the protein 3C3P shown in Figure 1 was assigned to the
test set, and so were its extracted components, as described in Figure 2. Generally, in ML
applications, the training set refers to the data used to train the model, and hence to adapt
its parameters to the task at hand. The validation set is commonly used during the learning
process for early stopping procedures, so as to avoid overfitting, i.e., when the model
loses its generalization capabilities and specializes on the training data. Finally, the test set
represents a never-before-seen set of data used for the evaluation of the model performance.
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Usually, in a binary classification task, the performance of the model is measured in
terms of accuracy; this metric, however, is not as precise on unbalanced datasets as the ones
considered in this work. Hence, some other widely used metrics are also considered to
evaluate the quality of the predictors, namely accuracy, balanced accuracy, recall, precision,
F-score, and AUC (area under ROC curve). The different outcomes of predictions made by
a generic model compared to the actual ground truth are described by the true positive,
true negative, false positive, and false negative instances. On one hand, a true positive (TP)
occurs when the model correctly identifies an instance belonging to the positive class, while
a true negative (TN) ensues when it correctly identifies an instance belonging to the negative
class. On the other hand, a false positive (FP) arises when the model mistakenly classifies a
negative instance as positive, and a false negative (FN) occurs when it incorrectly labels a
positive instance as negative. These distinctions are crucial for evaluating the accuracy and
reliability of classification models, providing insights into their performance and potential
areas for improvement. Therefore, the evaluation metrics correspond to the following:

Accuracy =
TP + TN

TP + FP + TN + FN

Balanced Accuracy =
1
2

(

TP

TP + FN
+

TN

TN + FP

)

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F-Score =
2TP

2TP + FP + FN

Observe that the F-score can be interpreted as a weighted average of the precision and
recall to provide a more balanced measure in cases of unbalanced datasets. In addition,
balanced accuracy is defined as the average of the recall values obtained on each class.
Finally, the AUC is the integral of the ROC curve and is equal to 1 for an ideal classifier
and 0.5 for a random one, where the ROC curve corresponds to the plot of the true
positive rate against the false positive rate at each threshold value. To find the best-
performing architecture, an extensive grid-search procedure was carried out on the GNN
hyperparameters; the search space as well as the best architecture for each setting in terms
of F-score is reported in Table 3.

Table 3. Hyperparameter search space and best configurations obtained for the GNN model in the
grid-search procedure, in all the dataset settings. Note that wbal refers to the fraction of the balancing
weight that has been assigned to the minority class at training time; a value of wbal = 0 means that
no balancing policy has been used at training time, while a value of wbal = 1 means that the classes
have been perfectly balanced. Moreover, h refers to hidden layer units in the network state and
output, respectively, nets and neto, with a value of h = 0 meaning that no hidden layers are used in
the architecture.

Hyperparameter Grid-Search
Best Configuration

Whole Interface Chain

state dimension 16, 32, 64 32 16 16
max iteration 3, 4, 5 5 5 5

wbal 0, 0.2, 0.5, 1 0.5 0.5 1
nets units h 0, 256, 512 256 256 256
neto units h 0, 256 0 256 256

All the models were implemented with GNNKeras [33]—a Keras-based library for
GNN recurrent architectures—and trained for 500 epochs with a cross-entropy loss function,
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an Adam optimizer with an initial learning rate of 0.001, and an early stopping procedure
on the validation set. Moreover, since the ratio of negative/positive examples in the datasets
is quite high, the multiple percentage of this ratio (wbal) was considered in the grid search
as a weight for positive examples to balance the learning process. Note that the training
set is perfectly balanced with a value wbal = 1 (i.e., the total number of positive examples
weighs as much as the total number of negative ones, so a single positive example is more
important at training time than a negative one), while a value wbal = 0 means no balancing
policy is used, so a positive example is as important as a generic negative example.

The best architectures in terms of F-score were further investigated in an ablation
study to evaluate the impact on the model’s performance in identifying protein interaction
sites by systematically removing a set of node/edge features from the datasets. This helps
in determining which features are most informative for accurate predictions, guiding the
refinement of predictive models for protein–protein interface identification. The procedure
is described in detail in Section 3.4.

3.4. Ablation Study

To evaluate the importance of the contribution of the different feature components,
an ablation study was carried out on the best architecture for each dataset setting. In partic-
ular, node features were grouped into four sets (3D position, Meiler, ExPASy, and DSSP
components), while edge features were grouped into three sets (distance, weak chemical
bonds, and strong chemical bonds). Experiments were conducted so as to eliminate one
feature/edge group at a time from the datasets and evaluate the performance of the model
in the absence of that group. The performance gap obtained by the new model gives an
estimate of the importance of the features that were not considered during the learning
process. The results of the ablation study on the three different datasets are reported in
Tables 4–6.

Table 4. Ablation study on the Whole dataset with the best architecture obtained from the grid-search
procedure. The minimum value for each metric is highlighted in bold. Note that “None” refers to
Table 1, in which all features are included in the learning process.

Excluded Group Acc BAcc Precision Recall FScore AUC

None 0.9467 0.8946 0.8982 0.8108 0.8522 0.9794

3D Position 0.9469 0.8953 0.8985 0.8120 0.8531 0.9793
Meiler 0.9432 0.8913 0.8824 0.8079 0.8435 0.9761

ExPASy 0.9434 0.8953 0.8753 0.8178 0.8456 0.9770
DSSP 0.9041 0.8418 0.7501 0.7415 0.7458 0.9411

distance 0.9446 0.8928 0.8882 0.8095 0.8470 0.9779
weak bonds 0.9450 0.8918 0.8935 0.8062 0.8476 0.9773
strong bonds 0.9392 0.8736 0.8966 0.7678 0.8273 0.9729

Table 5. Ablation study on the Interface dataset with the best architecture obtained from the grid-
search procedure. The minimum value for each metric is highlighted in bold. Note that “None” refers
to Table 1, in which all features are included in the learning process.

Excluded Group Acc BAcc Precision Recall F-Score AUC

None 0.9610 0.8880 0.8627 0.7927 0.8262 0.9794

3D Position 0.9582 0.8826 0.8476 0.7838 0.8145 0.9758
Meiler 0.9614 0.8890 0.8647 0.7944 0.8281 0.9791

ExPASy 0.9584 0.8861 0.8431 0.7918 0.8166 0.9776
DSSP 0.9188 0.8464 0.6277 0.7518 0.6842 0.9327

distance 0.9586 0.9036 0.8175 0.8317 0.8245 0.9793
weak bonds 0.9596 0.8879 0.8505 0.7942 0.8214 0.9771
strong bonds 0.9555 0.8796 0.8291 0.7805 0.8041 0.9715
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Table 6. Ablation study on the Chain dataset with the best architecture obtained from the grid-search
procedure. The minimum value for each metric is highlighted in bold. Note that “None” refers to
Table 1, in which all features are included in the learning process.

Excluded Group Acc BAcc Precision Recall F-Score AUC

None 0.8335 0.7717 0.5454 0.6731 0.6025 0.8679

3D Position 0.8188 0.7577 0.5130 0.6598 0.5772 0.8526
Meiler 0.8324 0.7627 0.5443 0.6513 0.5930 0.8618

ExPASy 0.8139 0.7638 0.5028 0.6835 0.5794 0.8547
DSSP 0.7528 0.7232 0.4048 0.6758 0.5063 0.8029

distance 0.8492 0.7404 0.6045 0.5662 0.5847 0.8588
weak bonds 0.8480 0.7522 0.5940 0.5989 0.5964 0.8658
strong bonds 0.8248 0.7635 0.5260 0.6653 0.5875 0.8589

Interestingly enough, the worst model performance is obtained when the DSSP compo-
nent is excluded at training time, hence when no information about the secondary structure
elements (SSEs) is provided to the models. In this context, although the recall score is
comparable to that obtained in the previous study, missing information causes a general
drop in performance over all the other metrics. Observe that the F-score is significantly
affected, suffering from a drop of more than 14% in the worst scenario comparing to the
original model. This outcome is in line with the expectations based on biological data, since
the backbone torsion angles between adjacent amino acid residues in a protein chain are
included among the SEE features. These angles determine the local conformation of the
protein backbone, which affects its 3D structure and, consequently, the functional form
of the protein. Variations in dihedral angles directly cause a change in the arrangement,
affecting the folding pattern of the protein, which leads to the formation of the secondary
structures. Additionally, the backbone torsion angles play a crucial role in determining
the accessibility of amino acid residues to the surrounding solvent, hence impacting the
protein’s accessible surface area and, as a result, its interfaces.

3.5. Use Case

A practical example of usage of the model is represented by the prediction of the inter-
acting residues within the protein methyltransferase shown in Figures 1 and 2, with PDB
code 3C3P. In particular, the use case was performed on the Whole protein setting, as previ-
ously described in Section 3.2. The graph representation of the 3C3P protein was obtained
using the Graphein Python package, described by 566 residue-based nodes, only 98 of
which are located at the interfaces. The ground truth information for the interacting residues
was retrieved from the PDBePISA database, which is used only to give an insight on the
predictive capabilities of the trained model.

In inference mode, the trained model is able to successfully solve the task for each
residue of the protein, with a total accuracy among the two classes of 97%, correctly
classifying 550 residues and misclassifying a total of 16 residues within the protein. In
particular, the model recognizes 90% of the interacting residues, with only nine interacting
residues incorrectly classified as non-interacting.

Figure 3 shows a graphical representation of the predictions inferred by the model on
the protein methyltransferase.
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Figure 3. Example of a use case on the protein methyltransferase with PDB code 3C3P. On the left,
the residue-based graph representation obtained with Graphein Python package, colored as stated
in Figure 1; on the right, the output of the GNN model in the binary node-focused classification
task, in which the model is asked to predict whether or not a residue is located in the interface. True
positive (TP), true negative (TN), false positive (FP), and false negative (FN) predictions are colored in
green, white, blue, and red, respectively. The model correctly classifies 461 non-interacting residues
(TN) and 89 interacting residues (TP), while it fails to recognize 9 non-interacting residues (classified
as interacting, i.e., FP) and 7 interacting residues (classified as non-interacting, i.e., FN).

4. Conclusions

In this work, the biological problem of identifying the interfaces on the protein surface
is modeled as a node-focused binary classification by means of a GNN, which is asked
to determine whether a generic residue belongs to a protein interface or not. Model
performance was measured in terms of F-score and balanced accuracy in three different
settings and unbalanced dataset scenarios. The results suggest that the approach presented
in this work is very promising, being able to score almost 86% and 90%, respectively, with,
however, room for improvement. Moreover, an ablation study was carried out on the
best architecture for each dataset, grouping nodes’ and edges’ features and confirming the
expectations based on the biological importance of the descriptors.

Future research may possibly investigate the PPI prediction task on the three datasets
from a different perspective: in the new context, the protein graph could be composed of
nodes representing SSEs, such as α-helices and β-sheets, with sequence-specific features
extracted by a sequence-based architecture, namely an LSTM model. Emerging GNN-
based models have the potential to enhance the precision and scope of research in this
field, and incorporating sequence-based models for residue-based sequences, together with
GNNs for the protein structure, could open new avenues for investigating PPI prediction.
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The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
PPIs Protein Protein Interfaces
PDB Protein Data Bank
PISA Proteins, Interfaces, Structures and Assemblies
GNN Graph Neural Network
MLP Multi-Layer Perceptron
LSTM Long Short-Term Memory
DSSP Define Secondary Structure of Proteins
SSE Secondary Structure Element
ROC Receiver Operating Characteristic
AUC Area Under the ROC Curve
TP True Positive
TN True Negative
FP False Positive
FN False Negative
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