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Spectral Properties of Coupled Bose-Einstein Condensates

Roberto Franzosi and Vittorio Penna
Dipartimento di Fisica & Unità INFM, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy.

(November 11, 2018)

We investigate the energy spectrum structure of a system of two (identical) interacting bosonic
wells occupied by N bosons within the Schwinger realization of the angular momentum. This picture
enables us to recognize the symmetry properties of the system Hamiltonian H and to use them for
characterizing the energy eigenstates. Also, it allows for the derivation of the single-boson picture
which is shown to be the background picture naturally involved by the secular equation for H . After
deriving the corresponding eigenvalue equation, we recast it in a recursive N-dependent form which
suggests a way to generate the level doublets (characterizing the H spectrum) via suitable inner
parameters. Finally, we show how the presence of doublets in the spectrum allows to recover, in the
classical limit, the symmetry breaking effect that characterizes the system classically.

I. INTRODUCTION

After the recent observation [1] of Bose-Einstein con-
densation in dilute atomic gases realized by confining
a macroscopic population of atoms in a potential trap
[2], a large amount of work has been devoted to con-
struct devices where two condensates [3] are trapped in
a double-well potential. The interaction of such coupled
Bose-Einstein condensates (BEC) gives rise to quantum
phenomena such as coherent tunneling and interference
effects that have been the subject of a huge number of
studies, both theoretic [4] and experimental [5].
The present paper is focussed on the dynamical aspects

inherent in the interaction of two condensates trapped in
two identical wells. Such a dynamics has been studied
thoroughly in Refs. [6] within the minimal interaction
scheme







ih̄ψ̇1 =
[

− h̄2

2m△− v + U |ψ1|2
]

ψ1 − Tψ2

ih̄ψ̇2 =
[

− h̄2

2m△− v + U |ψ2|2
]

ψ2 − Tψ1

(1)

where the classical fields ψj(r, t) obey two coupled Gross-
Pitaevskii equations (GPE), and U , v, T , describe the
interatomic scattering, the external potential and the
tunneling amplitude, respectively. Fields ψj(r) (often
called the wave functions of the condensate [2]) are de-
fined as the expectation value ψj(r, t) = 〈Ψ̂j(r, t)〉 of the
field operators Ψ̂j within the many-body quantum the-
ory of BEC’s [7]. The negligible space dependence of
ψj through the condensates allows one to set △ψj ≃ 0
so that Eqs. (1) reduce to a hamiltonian system with
two complex degrees of freedom where the nonlinear cu-
bic terms provide the system with an ample variety of
interwell processes.
Before discussing the goals of this paper, it is useful to

briefly review the relevant traits of the dynamics issued
from the space-independent form of Eqs. (1). Due to the
assumption that the bosonic wells are identical, the asso-

ciated model Hamiltonian H(ψ1, ψ2) = U(|ψ1|4+|ψ2|4)−
vN −T (ψ1ψ

∗
2 +ψ2ψ

∗
1) (N = |ψ1|2+ |ψ2|2) exhibits a per-

mutational symmetry (PS) realized by the exchange of
the dynamical variables ψ1, ψ2. Physically, this is repre-
sented by the population exchange, |ψj |2 being the boson
number of the j-th well up to a volume factor.

The structure of the model phase space P (this is two-
dimensional because N is a constant of motion) reflects
in a nontrivial way the presence of the PS. For energies
E < E∗, (E∗ is a critical value of the energy depending
on the model parameters) the orbits are placed concen-
trically around the energy minimum, and cover a region
C0 ⊂ P that has essentially the structure of the harmonic
oscillator phase space. This can be shown to entail the
oscillations of the two condensates’ populations around
the common value N/2. Also, for E < E∗ the PS maps
each orbit in itself. The remaining part of P , filled by
orbits with E > E∗, is formed by two (spatially) disjoint
components C+, C− such that P ≡ C+ ∪ C− ∪ C0. In
this case any given energy value E is associated with two
distinct orbits γ+ ∈ C+, γ− ∈ C− such that γ± → γ∓
under the PS action. The presence of two energy max-
ima (located in C+ and C− symmetrically) causes such
a structure. The remarkable feature is that, when E
crosses E∗ from below, the system undergoes a symme-
try breaking (SB) phenomenon [8] (governed by a bifur-
cation mechanism [9]) since the system ‘must’ choose to
evolve either along γ+ or along γ−. Dynamically, this
entails the emergence of a permanent gap between the
condensates’ populations. Such an effect is also called
a self-trapping effect [6,10] in that, within a finite range
of E, the system never leaves the region C+ (C−) where
was initially placed to go in C− (C+).

The investigation at the quantum level of the scenario
just described has been performed in Ref. [10] through
the model Hamiltonian

H = U(n2
1 + n2

2)− vN − T (a1a
+
2 + a2a

+
1 ) , (2)
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which represents the quantum counterpart of the Hamil-
tonian H(ψ1, ψ2) for the Laplacian-free Eqs. (1). A
simple way to obtain H relies on the fact that for low
numbers of bosons per well (a realizable experimental
situation) one can replace the condensate wave functions
ψj ’s with the raising (lowering) operator ai, (a

+
i ) obeying

the canonical commutators [ai, a
+
j ] = δij , i = 1, 2. Since

[N,H ] = 0, the total number of bosons N := n1 + n2,
ni := a+i ai, is a constant of motion (to simplify, we shall
denote its eigenvalue by N as well). The rigorous deriva-
tion of H is effected in Ref. [10] by using a mode depen-
dent form of the field operator Ψ̂j within the many-body
quantum theory [11] of BEC’s. It is important to recall
as well that model (2) has been studied also in Ref. [8]
from the viewpoint of dynamical system theory.
In this paper we investigate the spectral properties of

model (2) by combining the use of the PS and of a further
symmetry involving the change T → −T . The latter will
be called odd symmetry (OS) for recalling its basic role in
determining the structure of the energy spectrum when
the total boson number N is odd. Such symmetries are
used extensively to show that:
(i) after recovering the known nondegeneracy of the
Hamiltonian spectrum (see Ref. [8,10]), each energy
eigenstate is either symmetric or antisymmetric under
the PS action,
(ii) the doublets (pairs of close energy levels occurring in
the energy spectrum when the model parameters range in
a suitable interval) always pair a symmetric eigenstates
with an antisymmetric one; we shall show how this fea-
ture plays a basic role in the classic limit,
(iii) the separation mechanism causing the splitting of
the energy levels (the splitting effect has been observed
numerically in Refs. [8,10]) can be explained in a purely
analytic way,
(iv) the fact that total boson number is even/odd dramat-
ically influences the eigenvalues’ parity under the OS.
As to point (i), we wish to emphasize that the main

consequence of the nondegeneracy is to prevent the SB
phenomenon occurring in P as well as the ensuing self-
trapping of the system on a specific orbit of the two ones
associated with a given energy E > E∗. This reflects the
intrinsic tunneling effect due to the quantum nature of
the system.
For attaining results (i)-(iv) we first reformulate the

initial quantum problem of two coupled (identical) wells
through the Schwinger realization [12] of the spin alge-
bra in terms of two-boson operators. This allows one to
reconstruct Hamiltonian (2) within its dynamical alge-
bra (this is introduced in Appendix A). The form of H
thus obtained can be interpreted in terms of a bosonic
model defined on a nonhomogeneous linear lattice with
one effective boson (single-boson picture). Such a picture
has been derived in Ref. [13] and is reviewed in Sec. II
together with the related formal background. Thanks to
its group-theoretic character such a formulation is appli-

cable to many-well systems with any boson number N .
In Sec. III the diagonalization of H is faced in a sys-

tematic way by making explicit the PS and OS action on
the components of the energy eigenstates. The resulting
characterization of the eigenstates leads to identify the
recursive expression of the eigenvalue equation of H both
for even N and for odd N . This, in turn, enables us to
recognize explicitly a hidden parameter able to control in
an analytic way the level distance of the doublets. Such
a parameter seems to suggest an alternative procedure
to evaluate perturbatively the energy levels. A similar
mathematical problem was analysed in Ref. [8] as to the
problem of the dynamical tunneling through a separatrix,
where the splittings of the doublets were traced by using
the standard perturbation method.

II. SPIN PICTURE OF THE TWO-WELL MODEL

A convenient way to study the spectrum of H consists
in reformulating H by means of the Schwinger picture of
spin operators. The latter is a two-boson realization of
the spin operators [12]

J1 =
a1a

+
2 + a2a

+
1

2
, J2 =

a1a
+
2 − a2a

+
1

2i
, J3 =

n2 − n1

2
,

satisfying the commutators [Ja, Jb] = iǫabcJc of the alge-
bra su(2), where a, b, c = 1, 2, 3, and ǫabc is the totally
antisymmetric tensor [12]. The generators Ja of su(2)
commute with the Casimir operator C

.
= J2

1 + J2
2 + J2

3 ≡
J4(J4 + 1) which, in the Schwinger picture, leads to the
identification J4 ≡ (n2 + n1)/2. Consistently, one can
check that [J4, Ja] ≡ 0. Therefore, su(2) can be used to
rewrite Hamiltonian (2) which takes the nonlinear form

H = 2[UJ2
4 − vJ4 + UJ2

3 − TJ1] . (3)

The spin picture embodies explicitly in H the dimension
(2J + 1) of the Hilbert space H(N) of physical states
of H , where the eigenvalue J(= N/2) of J4 is the in-
dex of the spin representation [12]. The standard basis
BN = {|J,m〉, |m| ≤ J = N/2} (J3|J,m〉 = m|J,m〉) of
H(N) is related to the number operator states through
|J,m〉 = |n1, n2〉, where J = (n2 + n1)/2, m = (n2 −
n1)/2. Thus H and Ja can be seen as (2J +1)× (2J +1)
matrices. The fact that 2J4 ≡ N is a constant of motion
due to [H,N ] = 0 is ensured by [J4, Ja] ≡ 0.
An important consequence made explicit by the spin

picture is that the nonlinear term J2
3 arising in Eq. (3)

prevents the standard procedure of diagonalization of H
via a unitary trasformation of the group SU(2). Such a
procedure works only for matrices that can be written
as linear combinations of the algebra generators in that,
by construction, they can be reduced to one of the gen-
erators by some appropriate group transformations [12].
Since the diagonalization is greatly simplified by such a
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reduction, the latter practically identifies with the diag-
onalization itself. When a matrix O contains nonlinear
terms of its generating algebra (as in the case of Hamil-
tonian (3) with respect to su(2)), resorting to a larger
algebraic structure A enables one to express O as a lin-
ear combination of generators of A. Such an enlarged
algebra is called a dynamical algebra [14] for O.
About Hamiltonian H the problem is solved by rep-

resenting the algebra su
N
(2) [subscript N(= 2J) recalls

the algebra link with the total boson number] as a sub-
algebra of A = su(M) for a suitable values of M . In
Appendix A we show that A ≡ su

1
(N+1). The realiza-

tion in A of the su
N
(2) generators occurring in H reads

J3 = Σq(J + 1− q)nq, J+ =Σq [q (2J + 1− q)]
1
2 b+q bq+1,

J− ≡ (J+)
+ (J± = J1 ± iJ2), where b+q (bq) are rais-

ing (lowering) bosonic operators, nq = b+q bq, and q ∈
[1, N + 1]. Recalling that the constraint Nb := Σqnq ≡ 1
must be accounted for (see Appendix A) we shall call the
realization just obtained single-boson picture. This fur-
nishes the simplest way to represent in a linear form the
nonlinear term of H . In fact, Hamiltonian (3) becomes

H = C + 2UΣq[m
2(q)nq− τR(q, J) (b+q bq+1+ h.c.)] , (4)

with τ :=T/U , R(q, J) :=[(J+1/2)2− (m(q)− 1/2)2]1/2,
m(q) := J + 1 − q, and C = 2[UJ2− vJ ], where the
quadratic term has been re-expressed as a linear combi-
nation of number operators nq. A valuable alternative
form of the original model (2) is offered by Eq. (4) which
recasts the two-well dynamics in terms of the dynamics of
a single boson on a linear nonhomogeneous lattice. In the
single-boson picture physical states are expressed as [15]

|Ψ〉 = Σq ψq b
+
q |0, ..., 0〉 (5)

with the normalisation condition Σq|ψq|2 = 1 (see Ap-
pendix A). The system dynamics thus takes place on a
hypersphere inside C

N+1, where it can be interpreted in
a classical form. This matches the fact that states (5) can
be shown to be su

1
(N+1) coherent states [14]. Based on

Eq. (5), the Schrödinger problem i∂t|Ψ〉 = H |Ψ〉 can be
rewritten as a set of equations of motion

iΨ̇m = 2Um2 Ψm − T
[

R(J)

m+1 Ψm+1 +R(J)
m Ψm−1

]

, (6)

where we have introduced Ψm := ψq, and R
(J)
m := R(q, J)

with m := J + 1− q, to join the present formalism with
the spin picture basis BN where states are labeled by
m ∈ [−J, J ]. It is worth noting how Eqs. (6) can be
derived as well from the effective Hamiltonian

〈H〉=C +Σm[2Um2|Ψm|2−TR(J)
m (Ψ∗

mΨm−1+c.c.)] , (7)

representing the energy expectation value 〈Ψ|H |Ψ〉 ≡
〈H〉, provided the Poisson structure {Ψm,Ψ

∗
ℓ} = δmℓ/ih̄

is assumed (see commment [16]). The time evolution of

the dynamical variables (the components of |Ψ〉) is deter-
mined once the initial condition |Ψ(0)〉 at t = 0 has been
assigned. Upon denoting by Xm the components of the
H eigenstates |X〉, one can retrieve the secular equation

EXm = 2Um2Xm − T
[

R(J)

m+1Xm+1 +R(J)
m Xm−1

]

, (8)

from Eq. (6). Xm’s can be shown to be real.
The procedure relying on the dynamical algebra con-

struction has led to interpret model (2) as a lattice model
with one boson via Eq. (4). This procedure has been im-
plemented as well for illustrative purposes since it shows
clearly how the nonlinearity occurring in the matrix form
of H is transferred to the coefficients of the linear com-
bination in A. We point out that such a simplifica-
tion also works for a linear chain of S interacting wells
with N bosons whose Hamiltonian can be written via
the generators of su

N
(S). The latter, in fact, can be

always immersed within an algebra su(M) with M suffi-
ciently larger than S; moreover the two-boson realization
of su(M) can be obtained for any M .
The component form of secular equation (8) represents,

at the operational level, a basic intermediate result. The
latter, as shown in Sec. III, is used to characterize explic-
itly (in the same spirit of Bloch’s theorem for electronic
wave functions) the inner spectrum structure as well as
the structure of the energy eigenstates.

III. SPECTRUM STRUCTURE

In order to investigate the spectrum structure, we con-
sider first the effects of the PS and the OS on the energy
eigenstates, and make explicit how such two symmetries
strongly characterize the eigenstate components. Then,
we employ the results of such an analysis to recast the
eigenvalue equation related to equation (8) in a recur-
sive form, and identify the parameters able to control the
splitting of the energy levels. The case with half-integer
J and integer J are treated separately.
The PS is realized via the action of the unitary trans-

formation U1 := exp[iπJ1] which takes J3 = (n2 − n1)/2
into U1J3U

+
1 = −J3. This matches the effect of the PS

classical action which involves the exchange of popula-
tions n1 and n2. Let us introduce the hermitian operator
P := exp[−iπJ ]U1 whose action on the states |m〉 (we
drop the representation index J in |J,m〉 since it is fixed)
is deducible from the equation U1|m〉 = exp[iπJ ]| −m〉.
Owing to [H,U1] = 0, P can be diagonalized together
with H . The action of P on the standard basis, P |m〉 =
| −m〉, implies that, for a generic state |Ψ〉,

P : |Ψ〉 = ΣmΨm|m〉 → P |Ψ〉 = ΣmΨm| −m〉 .

In particular, the P action on an eigenstate |X〉 entails
the component transformation Xm → σX−m, where σ is
not fixed, in Eqs. (8). Actually, these remain unchanged

3



since R(J)

m+1 ≡ R(J)

−m for each m. The fact that P 2 ≡ I

fixes σ showing how the allowed eigenvalues for P are
σ = ±1. Since P : Xm → ±X−m, each eigenstate has
thus a definite symmetry character under m→ −m.
This fact suggests to reorganize the vectors basis in

terms of vectors |m,±〉 = (|m〉 ± | − m〉)/
√
2 that are

either symmetric or antisymmetric. The new basis al-
lows one to define in H(N) a symmetric (antisymmetric)
subspace H+(N) (H−(N)) whose vectors have compo-
nents we will denote by Φ+ (Φ−) such that PΦ± = ±Φ±.
When the description in the new basis is adopted then
Eqs. (8) for the eigenvector components can be written
in the matrix form

E

[

X+

X−

]

=

[

SJ(T ) 0
0 AJ (T )

] [

X+

X−

]

, (9)

where SJ(T ) (AJ (T )) is the sub-matrix associated with
symmetric (antisymmetric) sector, and 0 represents the
zero-matrix. The matrix equation (9) is separable in two
independent equations for X+ and X−: Their explicit
form which depends on the representation index J is dis-
played in the sequel.
The odd symmetry (denoted by OS) is obtained by

combining the action U3J1 U
+
3 = −J1 of U3 := exp[iπJ3]

on −TJ1 in H with the change T → −T which restores
the initial form of H . Since J can be either integer or
half-integer, for considering the two cases separately it is
convinient to introduce the matrix LJ(T ) := ||Lmℓ||

Lmℓ = 2Um2δm,ℓ − T [R(J)
m δm,ℓ+1 +R(J)

ℓ δm+1,ℓ], (10)

where m, ℓ = 1/2, 3/2, . . . , J if J is half-integer, and
m, ℓ = 1, 2, . . . , J if J is integer.
Let us start with the half-integer case. In Eq. (9), the

sub-matrices S
J
(T ) and A

J
(T ) coincide with the matrix

L
J
(T ) up to the quantity −ηTR(J)

1/2 which must be added

to the matrix element L 1
2

1
2
with η = −1(+1) in the an-

tisymmetric (symmetric) case. Representing U3 in the
basis ({|m,±〉}) entails

U3 =

[

0 D
−D 0

]

(11)

in which D = Diag(i,−i, . . .). The action of U3 on any
vector takes its symmetric components into the antisym-
metric ones and vice versa, namely PU3Φ

± = ∓U3Φ
±

if PΦ± = ±Φ±. The structure of energy spectrum is
reconstructed through the following three observations:
i) The secular equation for X+ and X− derived from
Eqs. (9) can be written in the reduced form

ECm=2Um2Cm − T
[

R(J)

m+1Cm+1 +R(J)
m Cm−1

]

, (12)

with C = X+, X−, for 1/2 < m ≤ J , whereas

0= [2U(1/2)2 −ηTR(J)

1/2 − E]C1/2−TR(J)

3/2C3/2 , (13)

holds for m = 1/2, where η ≡ −1 (+1) in the antisym-
metric (symmetric) case. For a given T 6= 0, Eqs. (12)
and (13) show that the eigenvalues E can be seen as a set
of functions Ea(T, η) of η with 1/2 ≤ a ≤ N/2, defined
implicitly. The energy eigenvalue Ea(T,+1) of each sym-
metric eigenstate can be derived from that Ea(T,−1) of
an antisymmetric eigenstate by moving η from −1 to +1,
and vice versa.
ii) We consider here the problem of ordering the set
of eigenvalues Ea(T,±1). For T → 0 (this eliminates
the η dependence) Eqs. (8) are solvable; the result-
ing eigenvalues are doubly degenerate since the equa-
tions for both the symmetric and the antisymmetric
components are identical. Explicitly, T → 0 entails
Ea(T,+1), Ea(T,−1) → 2Um2 for some m which shows
how the label a can be identified with m ∈ [1/2, J ].
The order induced by (positive) m on the set {2Um2 :
|m| ≤ J} is inherited both by the symmetric eigen-
values {Ea(T,+1)} and by the antisymmetric eigenval-
ues {Ea(T,−1)} as proven by the limit T → 0. This
also implies that, for sufficiently small T , Ea(T,±1) 6=
Eb(T,±1) if a 6= b.
iii) Implementing the action of U3 whose matrix form is
given by Eq. (11) on Eq. (9) leads to the equation

E

[

X̃−

X̃+

]

=

[

AJ(−T ) 0
0 SJ (−T )

][

X̃−

X̃+

]

, (14)

where X̃∓ = DX±, and P X̃± = ±X̃±. The substitu-
tion T → −T entails that [we use the simplified no-
tation E±

a (T ) := Ea(T,±1)] the set of the symmetric
(antisymmetric) eigenvalues {E+

a (T )} ({E−
a (T )}) coin-

cides with the set of the antisymmetric (symmetric) ones
{E−

b (−T )} ({E+
b (−T )}), where 1/2 ≤ a, b ≤ J . No-

tice that, in general, E±
a (T ) ≡ E∓

b (−T ), where not nec-
essarily b coincides with a. Nevertheless, for T → 0
E±

a (0) ≡ E∓
b (0) ≡ 2Ua2 = 2Ub2 implies that b = a,

as pointed out at point (ii).
As a consequence of points (i)-(iii), we find that the

symmetric eigenvalues are associated with the antisym-
metric ones through the formula

E±
a (T ) = E∓

a (−T ) (1/2 ≤ a ≤ J) . (15)

Also, since the eigenvalues equation can be cast in an
iterative form via the recurrence equation

dm(E) =(2Um2 − E)dm+1(E)−T 2[R(J)

m+1]
2dm+2(E), (16)

which starts from

0 =
[

U/2−E + ηTR(J)

1/2

]

d 3
2
(E)− T 2[R(J)

1/2]
2d 5

2
(E), (17)

and terminates with dJ(E) = 2UJ2 − E, consistently
with (iii) one finds that the eigenvalues cannot be even
functions of T .
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For integer J , the dimension of matrix S
J
(T ) changes

from that of matrix A
J
(T ). In the antisymmetric case

one finds AJ (T ) = LJ(T ), while in the symmetric
case (SJ (T ) := ||Smn||), where the indices runs over
0, 1, . . . , J , one finds S01 = S10 = −TR(J)

1 , Smn = Lmn

for m,n ≥ 1, and Smn = 0 otherwise. Eqs. (12) still hold
for integer J provided 2 ≤ m ≤ J . The two special cases
are those corresponding to m = 0, 1

0 = −EC0 − TσR(J)

1 C1 , (18)

0 = (2U − E)C1 − T
[

R(J)

2 C2 + σ R(J)

0 C0

]

, (19)

with C = X+, X−. The parameter σ must be set equal
to one in the symmetric case (C = X+), while in the
antisymmetric case (C = X−) the expected elimina-
tion of the component X−

0 follows from setting σ = 0.
Hence the dimensions of Hilbert sub-spaces are such that
dim H−(N)= dim H+(N)−1, while the secular equation
for X− will have a degree diminished of one. Explicitly,
one has

0 =

[

E(2U−E)

T 2
+σ2[R(J)

1 ]2
]

d2(E)−E[R(J)

2 ]2d3(E). (20)

In the symmetric case a (J + 1)-th degree equation for
E issues from (20) through formula (16). Comparing the
eigenvalue equations for the symmetric (σ = 1) and anti-
symmetric (σ = 0) states shows that each, but one, sym-
metric eigenvalue merges to an antisymmetric one when
σ goes from 0 to +1. Due to the diversity of the secular
equation with σ = 1 from that with σ = 0, even in the
case with integer J , the energy spectrum is constituted
by 2J nondegenerate eigenvalues {E±

a (T ) : 1 ≤ a ≤ J}
that for T → 0 form J pairs E±

a (T ) → 2Ua2 and a single
one E0(T ) which goes to zero in the same limit. Also,
due to the quadratic dependence of Eqs. (16), (20) on T ,
Eq. (15) must be replaced with

E±
a (T ) = E±

a (−T ) (1 ≤ a ≤ J) , (21)

which, contrary to what happens with half-integer J ,
maps each eigenvalue in itself under T → −T . In ad-
dition, of course, one must consider E0(T ) = E0(−T ) as
well. Figs. 1 illustrate the spectrum structure depen-
dence on T/U for N = 6, 7 (see also Fig. 2).

IV. DISCUSSION

The interesting feature disclosed by the above analy-
sis is the possibility to recognize both in the half-integer
and in the integer case two inner parameters (η and σ)
that control, in a way independent of T , the level split-
ting generating the doublets. The limit T → 0 causes a
coalescence of doublet levels such that E±

a (T ) → 2Ua2

which suggests T as a possible perturbative parameter for

evaluating the level splitting. On the other hand, Fig. 2
clearly shows that each eigenvalue E+

a (T ) remains close
to its partner E−

a (T ) on a finite range Ia(T ) of T indexed
by the eigenvalue label a. In the half-integer case, this
implies that, inside Ia(T ), indeed η represents a good
perturbative parameter (recall that E±

a (T ) = Ea(T, η)
with η = ±1) which allows one to evaluate Ea(T,±1) by
perturbing Ea(T, η), e. g., around η = 0. For integer
J , where the level separation is controlled by σ ∈ [0, 1],
one can observe an effect similar to that showed in Fig.
2: the symmetric eigenvalue Ea(T, 1) = E+

a (T ) remains
close to its antisymmetric partner Ea(T, 0) = E−

a (T ) on
a finite range. Because the function Ea(T, σ) joins ana-
litically E−

a (T ) to E+
a (T ) then σ can be assumed as the

perturbative parameter for the present case.
The actual size of the range Ia(T ) can be evinced

roughly from Fig. 2, where the level separation strongly
diverges only when E±

a (T ) cross E ≡ E∗ := NT (recall
that E∗ is the energy critical value defined in the intro-
duction; its derivation can be found in Ref. [13]). This
rule seems to be motivated from the insensitivity of Eq.
(17) (Eq. (20)) from the parameter η (σ) in the terms

ηTR(J)

1/2 − E (σ2[R(J)

1 ]2 − E2/T 2) ,

for suitable values of E, T and of the other coefficients.
Concerning the classical limit effected through N →

∞, numerical simulations with large boson numbers N
show that the series of doublets becomes degenerate (co-
alescence of the doublet levels) thus restoring the condi-
tions that allow for the SB effect. How recovering the lat-
ter is briefly illustrated via the following comparison be-
tween the classical and the quantum behavior of the two-
well system. Classically, at a given energy E > E∗, the
system described in P evolves either on γ− or on γ+ (see
Sec. I). Trajectories γ− and γ+ are such that the pop-
ulations’ gap n2 − n1 weakly oscillates around opposite
values −µ and +µ, respectively. Quantally, for E > E∗,
the combination |C±

a 〉 = |X+
a 〉 ± |X−

a 〉 of the symmet-
ric/antisymmetric eigenstates |X±

a 〉 of the ath doublet
can be shown to provide opposite nonvanishing expecta-
tion values 〈J3〉 = ±χ of J3 = (n2 − n1)/2. This fact is
caused by the eigenstate structure and was discussed in
Ref. [13]. Then, states |C±

a 〉 can be associated naturally
to a pair of isoenergetic orbits γ−, γ+ that have µ ≡ 2χ.
Increasing N , the time-dependent mixed state

|Ψ〉 = e−itE+
a (T )/h̄|X+

a 〉+ e−itE−

a (T )/h̄|X−
a 〉 (22)

(satisfying the Schrödinger problem of H) exhibits a sort
of temporary self-trapping effect (i. e. the localization
either on γ− or on γ+) which is repeated periodically and
has a duration increasing with N . In fact, because of the
oscillations of the factor exp{[it(E+

a (T )− E−
a (T )]} be-

tween +1 and −1 entailing |Ψ〉 ∝ |C+
a 〉 and |Ψ〉 ∝ |C−

a 〉,
respectively, the system stays in a quantum state involv-
ing the localization on γ± for intervals of the order of
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the period ∆t = 2πh̄/[E+
a (T ) − E−

a (T )] that increase
when the level separation is reduced. The system re-
mains definitively in the classical-like states (full emer-
gence of the SB effect inducing the self-trapping) when
the tunneling time from |C+

a 〉 to |C−
a 〉 diverges, namely

for [E+
a (T )− E−

a (T )] → 0 (coalescence of doublet levels
induced by N → ∞).

V. CONCLUSIONS

In Sec. I we have reviewed the dynamics of coupled
Bose condensates described by Eqs. (1) (in the approx-
imation with zero Laplacian terms) emphasizing the SB
phenomenon that occurs in the phase space when increas-
ing the energy over the critical value E∗. Such a phe-
nomenon (and the ensuing self-trapping effect on isoen-
ergetic orbits γ± ∈ P where n2 − n1 oscillates around
nonzero values ±µ) has prompted the study of model (2)
which represents the quantum counterpart of model (1)
within the two-mode approximation of the condensate
field operator. One of the purposes of the present work
was to investigate the dynamical behavior corresponding,
at the quantum level [through model (2)], both to the SB
effect and to the related self-trapping. An aspect we have
particularly deepened is the quantum counterpart (level
splitting) of the bifurcation mechanism generating pair
of isoenergetic trajectories γ± when E crosses E∗.
The formal set-up for studying the energy spectrum

has been developed in Sec. II by recasting model (2) for
the boson modes a1, a2 into the matrix form (3) within
the spin formulation à la Schwinger. The spin form of
Hamiltonian (3) makes easily viable the derivation of the
secular equation (8). The latter has been achieved by us-
ing the dynamical algebra method (this enacts systemat-
ically the reduction of Hamiltonian nonlinearities) whose
application is described in Appendix A.
In addition to supplying equation (8), the use of the

dynamical algebra method has shown the implicit link
of the secular equation with the effective-bosons model
(4). Such a model reformulates the two-well dynamics of
Hamiltonian H with N bosons in a noticeably simplified
form that consists of a single boson hopping on a non-
homogenous lattice (single boson picture). The interest
for the single boson picture and the underlying formal
construction is motivated by the possibility of extending
it to more structured models such as a chain model of S
condensates with N boson. The case S = 3, which raises
interest owing to its nonintegrable dynamical character,
is presently under investigation [18].
Sec. III has been devoted to make explicit the struc-

ture of the energy spectrum based on the symmetries of
H . Upon introducing the permutational symmetry (PS)
and recognizing the further odd symmetry (OS), we have
employed them to characterize the Hilbert space of H as
well as the energy eigenstates, both for half-integer J

(odd number of boson N) and for integer J (even num-
ber of boson N). The N -dependent form of the secular
equation obtained in the two cases has led to the central
result of Sec. III, namely to recognize the possibility of
introducing in a natural way inner parameters that con-
trol the level splitting in the energy spectrum doublets.
Such parameters –η [σ] is defined in Eq. (17) [Eq. (20)]

for half-integer [integer] J– have shown that the splitting
originating the doublets can be generated explicitly in
an analytic way. This fact combined with the doublets’
structure exhibited in Fig. (2) suggests that parameters
η, σ can be used as perturbative parameters in approx-
imating the doublet levels inside the regions of the T/U
axis where the levels keep close. This approach may be
preferable than the standard perturbative approach de-
pending on the natural parameter T/U : this, in fact, can
be shown to require higher and higher powers of T/U
when approximating levels far from the ground-state [8].
We emphasize the fact that generating the level split-

ting via the inner parameters η, σ can be interpreted as
the quantum form of the bifurcation mechanism issuing
pairs of orbits γ±. In general, our construction should
furnish the quantum framework for describing the bi-
furcation effects of any system whose Hamiltonian (in
the critical regions of its phase space) has locally the
same form of H . In this sense, both the quantum phase
models and spin models [17] in the mesoscopic system
physics promise interesting applications. We notice as
well that the matrix/algebraic analysis underlying the
study of ‘quantum’ bifurcation effects gives a valuable,
both formal and practical, tool for characterizing quan-
tally the chaos onset in the model with S = 3.
The classical limitN → ∞ has been commented in Sec.

IV, where the symmetry breaking (SB) effect inherent
in the classical two-well dynamics is recovered from the
quantum scenario via superposition (22) of the symmet-
ric and antisymmetric states of each doublet. In fact, the
coalescence of the doublet levels caused by N → ∞ (re-
vealed by numerical simulations) leads, through a limit-
ing process, to inhibit the oscillations of the system state
|Ψ〉 between |C+

a 〉 and |C−
a 〉 which ends up by coincid-

ing with one of such states. This realizes the localization
interpreted classically as the self-trapping effect.
We conclude by illustrating a possible reformulation

of Eq. (8) in a continuous form valid for large J di-
rected to extimate the low part of energy spectrum. Set-
ting Xm ≡Ym/[(m +J)!(J −m)!]1/2 in Eq. (8) provides
(2Um2−E)Ym = T [(J −m)Ym+1+(J +m)Ym−1], which
reduces to the second order equation (Ḟ := dF/dx)

F̈ − 2xsḞ + (2J + 1− sR+ E/T )F/R = 0 , (23)

where s := ±1 and x := m/
√
JR with R2 := 1+2UJ/T ,

while Y (m) ≡ exp[−αm2/J ]F (m/
√
JR ), with α :=

(sR − 1)/2, is the dependence of the (rescaled) compo-
nents Ym on (the continuous variable) m. The assump-
tion that F identifies with the n-th Hermite polynomial

6



gives the equation 2n ≡ [2J+1−R+E/T ]/R for s = +1
which, in turn, supplies a set of eigenvalues. Their de-
pendence on T is compared in Fig. 3 with the lowest part
of the spectrum of N = 20 bosons. This result as well as
the results/observations discussed above have prompted
further work that is presently in progress.
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APPENDIX A:

The type of enlarged algebra we deal with is A =
su(M) [the latter can be viewed as the generalized version
of the spin algebra with M2 − 1 generators]. Selecting
an appropriate value ofM allows one to rewrite the non-
linear Hamiltonian H in terms of a linear combination
of generators of A. This furnishes A with the status of
dynamical algebra for H . To construct explicitly A it is
useful to consider the two-boson form of the su(M) gen-
erators Eij := b+i bj , (i 6= j), Hij := (b+i bi − b+j bj)/2 that
satisfy the commutators [12]

[Eij , Ekl] = δjkEil − δilEkj ,

[Eij , Hkl] = (δjkEik − δjlEil + δilElj − δikEkj)/2 ,

with 1 ≤ i, j, l, k ≤ M . Within the present realization
of su(M), the representation theory of semi-simple Lie
groups [14] states that the eigenvalue Q of the invariant
operator Nb = Σib

+
i bi ([Nb, Eij ] = 0) selects a specific

representation of su(M) [Nb can be viewed as the total
particle number relatively to the creation (destruction)
processes caused by b+i (bi)]. In fact, the dimension of
the Hilbert space basis B(M,Q) = {|n1, ..., nM 〉, Q =
ΣM

i=1ni} is given by

dimB(M,Q) = (Q +M − 1)!/[(M − 1)!Q !] ,

where the states of the basis B(M,Q) are defined as
|n1, ..., nM 〉 = ⊗M

i=1|ni〉 and the number operator states
|nj〉 fulfil the equations

bi|ni〉 =
√
ni|ni −1〉, b+i |ni〉 =

√
ni +1|ni +1〉 .

The simplest realization of A = su
Q
(M) is achieved by

setting Q = 1 (single-boson picture); combining this fact
with the requirement of preserving the dimensionN+1 of
H(N), entails dimB(M, 1) =M ≡ N +1 thus providing
A = su

1
(N+1) as a dynamical algebra for H . The states

of the related basis {|q〉 = b+q |0, ..., 0〉, q ∈ [1, N + 1]} are

in a one-to-one correspondence with the states |J ;m〉,
|m| ≤ J = N/2, of the su

N
(2) standard basis (J3|J ;m〉 =

m|J ;m〉) via the index map m =J +1−q.
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FIG. 1. First figure shows the energy eigenvalues vs. T/U for J = 7/2; second figure shows the case J = 3 (different types
of line identify different eigenvalues).

FIG. 2. Solid lines represent the eigenvalues E±
a vs. T/U for J = 15/2. The dashed line describes the curve E = 2JT . For

each pair E±
a , the splitting becomes evident when 2JT reachs E±

a .

FIG. 3. The figure shows the seven lowest eigenvalues vs. T/U for J = 10 (solid lines); the seven dashed lines corrispond to
the approximate eigenvalues derived from Eq. (23) for s = +1. The approximation remains good for large values of T/U .
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