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In this paper we study frame definability in finitely valued modal logics and establish 
two main results via suitable translations: (1) in finitely valued modal logics one 
cannot define more classes of frames than are already definable in classical modal 
logic (cf. [27, Thm. 8]), and (2) a large family of finitely valued modal logics define 
exactly the same classes of frames as classical modal logic (including modal logics 
based on finite Heyting and MV-algebras, or even BL-algebras). In this way one 
may observe, for example, that the celebrated Goldblatt–Thomason theorem applies 
immediately to these logics. In particular, we obtain the central result from [26]
with a much simpler proof and answer one of the open questions left in that 
paper. Moreover, the proposed translations allow us to determine the computational 
complexity of a big class of finitely valued modal logics.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Propositional modal logic is, at the level of frames, famously incomparable (in terms of expressive power) 
with first-order logic. Indeed, there are classes of frames definable in first-order logic that are not modally 
definable and viceversa. An example of the former phenomenon is the class of frames axiomatizable by the 
first-order sentence ∀x ∃y (Rxy ∧ Ryy), and an example of the latter is the class of frames axiomatized by 
“Löb’s formula” �(�p → p) → �p which defines frames with transitive relations where the converse relation 
is well-founded [31, pp. 33–34].
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The original Goldblatt–Thomason theorem [14, Thm. 8] provides a model-theoretic characterization of 
modal axiomatizability for elementary classes of frames in terms of closure under taking generated subframes, 
disjoint unions, bounded morphic images, and reflection of ultrafilter extensions. Even though the proof 
in [14] is algebraic in spirit (with a detour via the usual extension of Stone duality), there are well-known 
ways of obtaining the result by pure model-theoretic methods [29]. Each closure condition in the theorem is 
necessary (see [29, p. 6]). Furthermore, the condition of elementarity of the class can be relaxed to closure 
under ultrapowers. There are also results, already contained in [14], using more complicated constructions 
which characterize any modally axiomatizable class of frames.

Many-valued modal logics, i.e. expansions with modalities of non-classical propositional logics with an 
intended many-valued semantics, have been around at least since Kristen Segerberg studied three-valued 
modal logics in [23]. The topic gained momentum with Melvin Fitting’s work when he axiomatized in [12,13]
the relational semantics for these logics based on Kripke frames with finitely valued propositional evaluations 
in each world (possibly, also, finitely valued accessibility relations between worlds), and proposed a natural 
interpretation of modalities capitalizing on the lattice structure of the semantics of the base logic. This 
proposal inspired, in particular, a long and nowadays quite lively stream of research in fuzzy modal logics 
(see e.g. [2,4,5,10,16–18,21,32,33]). As a part of this research, Bruno Teheux [26] has established an analogue 
of the Goldblatt–Thomason theorem for modal Łukasiewicz logics determined by finitely valued Kripke 
models over crisp frames (i.e. with a two-valued accessibility relation).

The goal of the present paper is to investigate frame definability in the many-valued context in a general 
approach that encompasses Teheux’s results. We prove two main results: (1) each class of crisp frames 
definable in a finitely valued modal logic is already definable in classical modal logic, and (2) for a large 
family of finitely valued modal logics, the converse inclusion also holds, that is, their definable crisp frames 
coincide with those definable in classical modal logic. We proceed via translations of the many-valued 
modal logic into classical modal logic and back (inspired by the Kolmogorov–Glivenko translation) which 
preserve crisp frames. Furthermore, for these finitely valued modal logics, our translations ensure that their 
computational complexity coincides with that of their two-valued counterparts.

The first result generalizes a (little known) work by Steven K. Thomason [27] in which he translated 
finitely valued modal logics into two-valued modal logics. His approach mostly stayed at the level of frames 
and did not provide an explicit recursive definition. Moreover, his result was restricted to a class of logics in a 
language with standard connectives and truth constants. We propose a translation close to Thomason’s, but 
based on models, with an explicit recursive definition, and free from the mentioned syntactical restrictions. 
The converse inclusion that we present in our second main result has not yet been considered in the literature, 
as far as we know, and it applies to any modal logic based on a finite lattice algebra that can interpret 
a Boolean algebra (thus, including modal logics based on finite Heyting and MV-algebras, and even BL-
algebras). Therefore, even though Teheux’s result had been presented as a generalization of the original 
theorem from [14], it actually follows from the classical Goldblatt–Thomason theorem and our results. This 
also answers, as we will see, an open problem left in [26]. Incidentally, we can also obtain the extension of 
the Goldblatt–Thomason theorem for predicate finitely valued modal logic using the work from [34] for the 
classical setting.

The paper is arranged as follows: §2 succinctly presents the necessary preliminaries regarding the syn-
tactical and semantical setting of the paper. §3 introduces our translation from finitely valued to classical 
modal logic, shows that it has the intended semantic behavior. §4 contains the mentioned two main results 
of the paper: in §4.1 we prove that many-valued modal definability implies classical modal definability and 
§4.2 shows that the implication can be reversed whenever the many-valued modal logic is based on a finite 
lattice algebra that interprets a Boolean algebra. §5 uses the results in the previous sections to prove that 
the problems of validity and consequence from finite sets of premises in the considered many-valued modal 
logics have exactly the same computational complexity as their classical counterparts. Finally, §6 offers 
some concluding remarks and lines for further research.
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2. Preliminaries

Let A = 〈A,∧A,∨A, . . .〉 be an arbitrary finite (henced bounded) lattice possibly expanded with further 
operations (which from now on we will call a lattice algebra). When convenient, we will denote the top and 
the bottom element of A respectively as 1A and 0A, although they need not be part of the signature of the 
algebra. For the sake of lighter notation, we will drop the superindex A in the operations when the algebra 
is clear from the context. In particular, we will refer to the following instances:

• A Boolean algebra is a lattice algebra A = 〈A,∧,∨,¬〉 in which the lattice is distributive and ¬ is the 
complement operation (that is, for each element a ∈ A, a ∨ ¬a = 1 and a ∧ ¬a = 0).

• A pseudocomplemented lattice is a lattice algebra A = 〈A,∧,∨,¬〉 in which ¬a = max{b ∈ A | a ∧b = 0}
for each a ∈ A.

• A Stone algebra is a pseudocomplemented lattice A = 〈A,∧,∨,¬〉 in which the lattice is distributive 
and ¬a ∨ ¬¬a = 1 for each a ∈ A.

• A Heyting algebra is a lattice algebra A = 〈A,∧,∨,→〉 such that a → b = max{c ∈ A | a ∧ c ≤ b} for 
each a, b ∈ A.

• An MV-algebra is a lattice algebra A = 〈A,∧,∨,&,→〉 such that
– & is commutative, monotonic w.r.t. the lattice order, and has 1 as neutral element,
– for each a, b ∈ A, a → b = max{c ∈ A | a & c ≤ b},
– for each a, b ∈ A, (a → b) ∨ (b → a) = 1,
– and for each a, b ∈ A, a ∨ b = (a → b) → b.

The formulas of the modal language Fm��
A (τ) are built from a denumerable set of propositional variables 

τ by means of the binary connectives ∧ and ∨, an n-ary connective for each additional n-ary operation of 
A, and the unary connectives (modalities) � and �.

In particular, if 2 is the two-element Boolean algebra, we may think of the formulas of Fm��
2 (τ) as the 

usual classical modal language.
We will work with crisp frames F = 〈W,R〉 as in classical modal logic, i.e. W is a non-empty set (whose 

elements are called worlds) and R ⊆ W 2 is a binary relation (called accessibility relation). A Kripke A-
valued model M is defined as a pair 〈F, V 〉, where F = 〈W,R〉 is a frame and V : τ ×W −→ A is mapping 
called a valuation; we say that M is based on F. Given such a model, for each w ∈ W and each formula 
ϕ ∈ Fm��

A (τ), we inductively define the truth-value ‖ϕ‖Mw as:

‖p‖Mw = V (p, w), if p ∈ τ

‖◦(ψ1, . . . , ψn)‖Mw = ◦A(‖ψ1‖Mw , . . . , ‖ψn‖Mw ), for each n-ary connective ◦,

‖�ψ‖Mw = sup≤A
{‖ψ‖Mv | Rwv},

‖�ψ‖Mw = inf≤A
{‖ψ‖Mv | Rwv}.

A formula ϕ from Fm��
A (τ) is said to be A-valid in a frame F = 〈W,R〉 (in symbols, F |=A ϕ) if for any 

A-valued model M based on F, ‖ϕ‖Mw = 1A for every world w ∈ W (alternatively, we say that ϕ is globally 
true in M). Furthermore, a set of formulas Φ from Fm��

A (τ) modally A-defines a frame class F if F contains 
exactly those frames where every ϕ ∈ Φ is A-valid (if Φ = {ϕ}, we say that ϕ modally A-defines F); cf. [26, 
Definition 2.2 and 2.3]. Similarly, we may say that a class F of frames is modally A-definable if there is a 
set of formulas Φ that modally A-defines F . Finally, given a frame class F , we define a consequence relation 
in the following way: for each Γ ∪ {ϕ} ⊆ Fm��

A (τ), we write Γ �Log(F,A,τ) ϕ iff for each F ∈ F and each 
A-valued model M based on F we have that ϕ is globally true in M whenever all formulas from Γ are 
globally true in M. Thus, Log(F , A, τ) can be called the global modal A-valued logic given by F .
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Observe that in the case A ∼= 2 we retrieve the standard definitions from classical modal logic. In this 
case, we use the standard notation 〈M, w〉 |= ϕ to signify that ‖ϕ‖Mw = 1A.

3. Translating finitely valued modal logics into classical modal logics

In this section, we provide a translation of formulas of a many-valued modal logic into formulas of standard 
two-valued modal logic. In contrast to [27], we give an explicit inductive definition of the translation already 
at the level of models.

Given a finite lattice algebra A and a denumerable set of variables τ = {p1, p2, . . .}, we define τ∗ =⋃
i≥1

{pai | a ∈ A}. Now, we define translations Ta from Fm��
A (τ) into Fm��

2 (τ∗), for each element a ∈ A, by 

simultaneous induction as follows:

T a(pi) = pai (i ≥ 1)

T a(◦(ψ1, . . . , ψn)) =
∨

b1,...,bn∈A
◦A(b1,...,bn)=a

(T b1(ψ1) ∧ . . . ∧ T bn(ψn))

T a(�ψ) = (
∨

k≤|A|
b1...bk∈A

b1∨A...∨Abk=a

k∧

i=1
�T bi(ψ)) ∧ �(

∨

b∈A
b≤a

T b(ψ))

T a(�ψ) = (
∨

k≤|A|
b1,...,bk∈A

b1∧A...∧Abk=a

k∧

i=1
�T bi(ψ)) ∧ �(

∨

b∈A
a≤b

T b(ψ)).

Furthermore, given any A-valued model M = 〈F, V 〉 based on a frame F = 〈W,R〉 for Fm��
A (τ), we 

define a 2-valued model M∗ for Fm��
2 (τ∗) based on the same frame and with a valuation V ∗ defined as 

follows:

V ∗(pai , w) = 1 iff V (pi, w) = a, for each i ≥ 1, each w ∈ W, and each a ∈ A.

Given this, it is not hard to see that the translation T a(ϕ) simply rewrites in the classical modal language 
the conditions for ϕ to take the value a; more precisely, by induction on the complexity of formulas, we can 
easily prove the following lemma:

Lemma 1 (Switch Lemma). Let A be a finite lattice algebra, τ a denumerable set of variables, and M an 
A-valued model based on a frame F. For each formula ϕ ∈ Fm��

A (τ), and each world w, we have: ‖ϕ‖Mw = a

iff 〈M∗, w〉 |= T a(ϕ).

We can easily obtain the following axiomatization result for classical models of the form M∗:

Lemma 2. Let A be a finite lattice algebra and τ a set of variables. Consider the following set T ∗(τ) ⊆
Fm��

2 (τ∗) of (modality-free) formulas:
∨

a∈A

pai , ¬(pai ∧ pbi ) (a, b ∈ A, a �= b, pi ∈ τ).
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Then:

1. If M is an A-valued model, then the formulas of T ∗(τ) are true in every world of the 2-valued model 
M∗.

2. If N is a 2-valued model for the language Fm��
2 (τ∗) that satisfies in each world all the formulas of

T ∗(τ), we define a model M for the language Fm��
A (τ) as follows:

• M is based on the same frame as N,
• V M(pi, w) = a iff 〈N, w〉 |= pai .
Then, N = M∗.

Observe that if τ is finite, then T ∗(τ) in Lemma 2 is finite as well.

Remark 3. It should be clear that the translation we have presented in this section allow us to give very quick 
proofs of certain properties of many-valued modal logics on crisp frames. For example, both compactness 
and the finite model property are inherited from two-valued modal logic.

4. Modal frame definability

In this section, we will establish our main results. First, we will see that in an A-valued modal logic we 
cannot define more classes of crisp frames than are already definable in classical modal logic. Second, for a 
wide class of algebras, the converse also follows, namely, any class of frames which is definable in two-valued 
modal logic will be modally A-definable.

4.1. Modal A-definability implies modal 2-definability

Recall that, for a modal formula ϕ of Fm��
2 (τ∗), we have the classical property [22, Prop. 4.3] that the 

truth of ϕ in any pointed model 〈M, w〉 depends only on the restriction (denoted by M|n) of 〈M, w〉 to 
worlds that can be reached from w through R in at most n steps, where n = rank(ϕ), i.e., the modal rank of 
ϕ ([22, Def. 4.2]). Observe that rank(ϕ) = rank(T a(ϕ)), since our translation does not increase the modal 
rank. Then, for such a formula, the Switch Lemma can be extended to:

‖ϕ‖Mw = a iff 〈M∗, w〉 |= T a(ϕ) iff 〈M∗|n,w〉 |= T a(ϕ).

From this we may obtain the following version of [27, Theorem 8]:

Theorem 4. Let A be a finite lattice algebra, let ϕ be a formula from Fm��
A (τ) (assume w.l.o.g. that τ =

{p1, . . . , pn} is the finite set of variables that appear in the formula), and let F be a class of frames. Then, 
ϕ modally A-defines F iff F is modally 2-defined in Fm��

2 (τ∗) by

ϕ∗ := (
∨

m≤rank(T 1(ϕ))

¬�m(
∧

T ∗(τ))) ∨ T 1(ϕ).

Proof. (⇒): Assume first that ϕ modally A-defines the frame class F . Our goal is then to show the following 
two claims:

(1) the formula ϕ∗ is 2-valid in every frame from F , and
(2) every frame where ϕ∗ is 2-valid belongs to the class F .
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To see (1), take any 2-valued model M for Fm��
2 (τ∗) based on a frame F from F . The formula ϕ∗ is a 

material implication, so assume that at an arbitrary world w of M all the antecedents of ϕ∗ hold. Then, let 
k = rank(T 1(ϕ)) and consider the pointed model 〈M|k,w〉. The theory

∨

a∈A

pai ,
∧

a,b∈A
a	=b

¬(pai ∧ pbi ) (1 ≤ i ≤ n)

globally holds in 〈M|k,w〉 since that is what the hypothesis of all the antecedents of ϕ∗ holding means. Now 
take any model based on F of the form N∗ for Fm��

2 (τ∗) such that 〈M|k,w〉 ∼= 〈N∗|k,w〉 corresponding to 
some N for Fm��

A (τ). There is always one such model: e.g. interpret the predicates of τ∗ for the worlds in 
〈M|k,w〉 as in that model and in every other world let p1

i hold and pai fail, for each 1 ≤ i ≤ n and each a �= 1. 
Now, by hypothesis, ‖ϕ‖Nw = 1, so, by the Switch Lemma, 〈N∗, w〉 |= T 1(ϕ). Then, 〈N∗|k,w〉 |= T 1(ϕ), and 
so 〈M|k,w〉 |= T 1(ϕ), as desired.

In order to prove (2), suppose that ϕ∗ is 2-valid in a frame F. Take any model for Fm��
2 (τ∗) of the form 

M∗ based on F for some corresponding model M for Fm��
A (τ) also based on F. Since ϕ∗ is globally true in 

M∗ (and all the antecedents of ϕ∗ hold at any world), we must have that T 1(ϕ) is globally true in M∗, and 
by the Switch Lemma, ϕ is globally true in M. Since for any such M based on F there is a corresponding 
M∗, it follows that ϕ is A-valid in F. Thus, F ∈ F .

(⇐): Assume now that ϕ∗ modally 2-defines the class F . As before, we need to show the following two 
claims:

(1) the formula ϕ is A-valid in every frame in F , and
(2) every frame where ϕ is A-valid is in the class F .

To see (1), consider any A-valued model M based on a frame F ∈ F . In the corresponding model M∗ for 
Fm��

2 (τ∗) the formula T 1(ϕ) is globally true (as ϕ∗ is), so by the Switch Lemma, ϕ is globally true in M, 
as desired. To see (2), suppose now that ϕ is A-valid in the frame F. Reasoning as before, by the Switch 
Lemma, this means that ϕ∗ is 2-valid in F, so F ∈ F . �
4.2. When does modal 2-definability imply modal A-definability?

The aim of this subsection is to provide sufficient conditions for recovering the modal A-definability of a 
class of frames from its modal 2-definability. Whether the conditions we provide are necessary or not is left 
as an open problem. In Theorem 4 we have seen that, given a finite lattice algebra A, any class of (crisp) 
frames definable by a formula of Fm��

A in the A-valued associated modal logic is definable by a formula of 
classical modal logic. To have the reciprocal, one would expect the algebra A to interpret classical logic in 
some sense.

Assume for the rest of this section that A has the following non-trivial lattice reduct1

Red(A) = 〈A,∧A,∨A,¬A〉

enriched with ¬Ax = uA(x), where u(x) is a distinguished unary term. An example is when A is a bounded 
residuated lattice and u(x) = x → 0. However, in general, we do not require A to be residuated.

In this context, we provide a sufficient algebraic condition for formulas in the language Fm��
A to A-define 

any class of frames definable in classical modal logic. We start by introducing a useful definition:

1 For the sake of lighter notation, in this section, we often drop the superindex A in the operations.
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Definition 1. A {∨, ∧, 1, ¬}-algebra B is said to be interpretable in A via a unary FmA-term t(x) if

• Eq(tA) = {〈a, b〉 ∈ A2 | tA(a) = tA(b)} is a congruence of Red(A),
• tA(1A) = 1A, and
• Red(A)/Eq(tA) is isomorphic to B.

Equivalently, tA(a) ∧B′
tA(b) := tA(a ∧A b), tA(a) ∨B′

tA(b) := tA(a ∨A b), ¬B′
tA(a) := tA(¬Aa) are 

well-defined operations in tA(A), and B is isomorphic to the algebra

B′ = 〈tA[A],∧B′
,∨B′

,¬B′
, 1A〉.

Clearly, tA : A → B′ is an epimorphism and B′ is a lattice with top element 1A. If A is bounded, then 
so is B′ and 0B′ = tA(0A).

Example 5. Any pseudocomplemented lattice A interprets via t(x) = ¬¬x its algebra of regular elements
Reg(A) = {a ∈ A | ¬¬a = a},2 which happens to be a Boolean algebra. To see this, notice that Reg(A) =
{¬¬a | a ∈ A} because ¬¬¬¬a = ¬¬a, and ¬¬1 = 1. Moreover, ¬¬a = ¬¬b is a congruence since 
¬¬a = ¬¬a′ and ¬¬b = ¬¬b′ imply:

¬¬(a ∧ b) = ¬¬(¬¬a ∧ ¬¬b) = ¬¬(¬¬a′ ∧ ¬¬b′) = ¬¬(a′ ∧ b′),
¬¬(a ∨ b) = ¬¬(¬¬a ∨ ¬¬b) = ¬¬(¬¬a′ ∨ ¬¬b′) = ¬¬(a′ ∨ b′).

Therefore, in B = Reg(A) we have the following induced operations:

a ∧B b := ¬¬(a ∧ b) = ¬¬a ∧ ¬¬b = a ∧ b

a ∨B b := ¬¬(a ∨ b) (no further reduction is possible)
¬Ba := ¬¬(¬a) = ¬a

and Reg(A) is a Boolean algebra because a ∧B ¬a = ¬¬0 = 0 and a ∨B ¬a = ¬¬(a ∨¬a) = 1 by the density 
of a ∨ ¬a in pseudocomplemented lattices (see [1] for the identities utilized). In particular, any Heyting 
algebra A interprets a Boolean algebra in this way.

Remark 6. In Example 5, Reg(A) is not necessarily a subalgebra of A (because of disjunction), but it 
contains as a subalgebra its Boolean skeleton B(A). These algebras coincide if and only if A is a Stone 
algebra (see [6]).

Example 7. Any finite MV-algebra A interprets its Boolean skeleton B(A), via t(x) = nx for any n ≥ |A|, 
because nA = B(A) and n(·) : A → A is an endomorphism thanks to the validity of the following equations:

n(x ∧ y) ≈ nx ∧ ny

n(x ∨ y) ≈ nx ∨ ny

n(¬x) ≈ ¬nx
n1 ≈ 1.

To see this, consider a subdirect representation A ⊆ Πi∈ICi, where the Ci are finite MV-chains. Each chain 
has length at most n and thus it is easily verified by cases that na ∈ {0Ci , 1Ci} in each chain Ci; therefore 

2 The formulas in this example should be read in the light of the previous definition, though we drop some superscripts for the 
sake of a lighter notation.
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nA ⊆ B(A). Moreover, if a = 〈ai〉i ∈ B(A), then ai ∈ B(Ci) = {0Ci , 1Ci}. Therefore, nai = ai for each 
i ∈ I, and thus a = na ∈ nA.

Notice that if A is a Glivenko bounded residuated lattice in the sense of [9], then A interprets Reg(A)
via ¬¬x. Although this algebra is not necessarily Boolean, in some cases it is an MV-algebra and, thus, it 
interprets a Boolean algebra.

Example 8. By [28, Thm. 2], in every BL-algebra one can define an MV-algebra, and then, in the finite case, 
one can interpret a Boolean algebra as remarked before.

We are interested in term interpretations of Boolean algebras due to the following result:

Theorem 9. Let A be a finite lattice algebra which interprets via a term t(x) a Boolean algebra, let ϕ be 
a formula from Fm��

2 (τ) and let F be a class of frames. Then, ϕ modally 2-defines F iff t(ϕ) modally 
A-defines F .

Then, putting this together with Theorem 4, we obtain:

Corollary 10. Let A be a finite lattice algebra which interprets via a term t(x) a Boolean algebra. Then, the 
class of modally A-definable frames coincides with the class of modally 2-definable frames.

Example 11. Thanks to the previous examples, Corollary 10 implies that the modal logic associated to an 
expansion of a finite pseudocomplemented lattice or a finite BL-algebra defines the same class of crisp frames 
as classical modal logic (this includes, respectively, Heyting algebras and MV-algebras). In particular, this 
result includes the modal extensions of Łukasiewicz finitely valued logics studied by Teheux in [26] and 
solves the open problem left in that paper of determining whether their definable classes of frames coincide 
with those definable in classical modal logic.

The rest of this subsection is devoted to proving Theorem 9. We start by showing that the two-valued 
global consequence of modal formulas is preserved when allowing models to take values on an arbitrary 
finite Boolean algebra.

Proposition 12. Let F be a frame and B be a finite Boolean algebra. Then, for each set Γ ∪{ϕ} ⊆ Fm��
2 (τ)

of formulas, we have:

Γ �Log({F},B,τ) ϕ if and only if Γ �Log({F},2,τ) ϕ.

In particular, when Γ = ∅, we obtain that ϕ modally 2-defines and B-defines the same class of frames.

Proof. Without loss of generality, we may identify B with a power 2n of the two-element algebra, and thus 
any valuation V : τ ×W → B has the form V (p, w) = 〈Vi(p, w)〉ni=1 where Vi : τ × W → 2. Take a model 
M = 〈F, V 〉. An easy induction shows that for any formula ψ and any w ∈ W , ‖ψ‖Mw = 〈‖ψ‖〈F,Vi〉

w 〉ni=1.

Assume that Γ �Log({F},2,τ) ϕ and Γ is globally true in a B-valued model M = 〈F, V 〉. That is, for each 

ψ ∈ Γ and each w ∈ W , ‖ψ‖Mw = 1B = 〈1〉ni=1, and hence ‖ψ‖〈F,Vi〉
w = 1. Therefore, ‖ϕ‖〈F,Vi〉

w = 1 for 
each i ∈ {1, . . . , n} and each w ∈ W , i.e. ϕ is globally true in M as desired. Reciprocally, assume that 
Γ �Log({F},B,τ) ϕ and Γ is globally true in a classical model M = 〈F, V 〉. Then, the diagonal valuation 

V ′(p, w) = 〈V (p, w)〉ni=1 only gives values in {〈1〉ni=1, 〈0〉ni=1} ⊆ B and is such that ‖ψ‖〈F,V
′〉

w = 〈1〉ni=1 = 1B

for each ψ ∈ Γ and each w ∈ W . By hypothesis, ‖ϕ‖〈F,V
′〉

w = 〈‖ϕ‖〈F,V 〉
w 〉ni=1 = 〈1〉ni=1 for each w ∈ W , and 

thus ‖ϕ‖M = 1 for each w ∈ W . �
w
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The next step consists in obtaining a similar preservation result when changing the algebra via the notion 
of interpretability defined above.

Proposition 13. Let F be a frame and assume that a finite lattice algebra A interprets a {∨, ∧, 1, ¬}-algebra 
B via a unary term t(x). Then, for each set of formulas Γ ∪ {ϕ} ⊆ Fm��

2 (τ), we have:

Γ �Log({F},B,τ) ϕ iff t[Γ] �Log({F},A,τ) t(ϕ).

In particular, when Γ = ∅, we obtain that the class of frames modally B-defined by ϕ coincides with the 
class of frames modally A-defined by t(ϕ).

Proof. For any valuation V : τ ×W → A (forming an A-valued model M based on F), define a valuation 
V ∗ = tA ◦ V : τ ×W → B (forming a B-valued model M′ based on F). Then, one can show by induction 
on the complexity of formulas ψ ∈ Fm��

2 (τ) that for any w ∈ W :

‖ψ‖M
′

w = tA(‖ψ‖Mw ) = ‖t(ψ)‖Mw ∈ B.

Assume that Γ �Log({F},B,τ) ϕ and t[Γ] is globally true in an A-valued model M = 〈F, V 〉. Then, by the 
previous observation and the fact that tA(1A) = 1A, Γ is globally true in the B-valued model M′ and, 
hence, so is ϕ. Therefore, t(ϕ) is globally true in M.

Reciprocally, assume that t[Γ] �Log({F},A,τ) t(ϕ). Suppose now that Γ is globally true in a B-valued 
model N = 〈F, VB〉. Choose an A-valued M with a valuation V : τ ×W → A such that VB = tA ◦ V and 
hence N = M′. Then, t[Γ] is globally true in M and, hence, so is t(ϕ). Therefore, ϕ is globally true in N as 
desired. �

Clearly, Theorem 9 follows from Propositions 12 and 13. Furthermore, since the preservation of conse-
quence in these propositions holds at the level of a fixed frame, it also holds for the consequence given by 
a class of frames.

Corollary 14. Let F be a class of frames and assume that a finite lattice algebra A interprets a Boolean 
algebra via a unary term t(x). Then, for each set of formulas Γ ∪ {ϕ} ⊆ Fm��

2 (τ), we have:

Γ �Log(F,2,τ) ϕ iff t[Γ] �Log(F,A,τ) t(ϕ).

We end this subsection with two remarks regarding the algebraic character of the notion of interpretability 
that has been instrumental in our translation.

Remark 15. The property of interpreting a Boolean algebra in A via a term t(x) is quasiequational in A. 
Hence, if A interprets a Boolean algebra via t(x), then any member of Q(A) interprets some Boolean 
algebra via t(x) (not necessarily the same one). If t(x) is idempotent (which is the case in the examples we 
have), this property has a simple equational characterization because the identities in A:

t(x ∨ y) ≈ t(t(x) ∨ t(y))
t(x ∧ y) ≈ t(t(x) ∧ t(y))
t(¬x) ≈ t(¬t(x))
t(1) ≈ 1

imply the congruence character of Eq(t). They are actually equivalent to idempotency plus congruence. 
Therefore, if A interprets B via an idempotent term t, then any member of V(A) interprets a member of 
V(B) via t.



10 G. Badia et al. / Annals of Pure and Applied Logic 174 (2023) 103273
Remark 16. The conditions for nx in Example 7 are equational, except the inclusion B(A) ⊆ nA which is 
given by a quasiequation. Hence, any algebra in the variety V(A) generated by A interprets via t(x) = nx

a subalgebra of its Boolean skeleton, and any algebra in the quasivariety Q(A) interprets the full Boolean 
skeleton.

According to [8], all algebras of a variety V of MV-algebras interpret via a term their full skeleton if 
and only if V satisfies the equation 2x2 ≈ (2x)2, in which case t(x) = 2x2 does the job. This is the case of 
the variety generated by the Chang algebra. However, this example is orthogonal to ours because the only 
non-trivial finite MV-algebra satisfying this equation is 2.

4.3. Goldblatt–Thomason theorem and related results

With the main theorems in hand, we are already in a position to state a Goldblatt–Thomason theorem 
for a large class of many-valued modal logics as a consequence of the classical theorem itself [14, Thm. 8]
and Corollary 10.

Corollary 17 (Finitely valued Goldblatt–Thomason Theorem). Let A be a finite lattice algebra which inter-
prets via some term a Boolean algebra. Furthermore, let F be an elementary class of frames. Then, F is 
modally A-definable by a set of formulas in Fm��

A (τ) iff F is closed under taking generated subframes, 
disjoint unions, and bounded morphic images, and reflects ultrafilter extensions.

It is known that the characterizing conditions of Corollary 17 could be weakened to closure under ultra-
powers or under ultrafilter extensions (see [15]). Moreover, from the two theorems obtained by Van Benthem 
in [30, Section 4.2], we obtain the following additional characterizations of finite (transitive) definable frames:

Corollary 18. Let A be a finite lattice algebra which interprets via some term a Boolean algebra. Then, a 
class F of finite frames is modally A-definable in Fm��

A (τ) iff it is closed under taking generated subframes, 
finite disjoint unions, and local p-morphic images.

Corollary 19. Let A be a finite lattice algebra which interprets via some term a Boolean algebra. Then, a 
class F of finite transitive frames is modally A-definable in Fm��

A (τ) iff it is closed under taking generated 
subframes, finite disjoint unions, and p-morphic images.

Observe now that the translation in §3 may be extended to the first-order modal setting rather easily 
(after all, the semantics of � and � is similar to that of ∃ and ∀):

T a(Pn
i ) = Pna

i (i ≥ 1)

T a(∃xψ) = (
∨

k≤|A|
b1...bk∈A

b1∨A...∨Abk=a

k∧

i=1
∃xT bi(ψ)) ∧ ∀x (

∨

b∈A
b≤a

T b(ψ))

T a(∀xψ) = (
∨

k≤|A|
b1,...,bk∈A

b1∧A...∧Abk=a

k∧

i=1
∃xT bi(ψ)) ∧ ∀x (

∨

b∈A
a≤b

T b(ψ)).

Consequently, using [34, Thm. 3.6] (a Goldblatt–Thomason Theorem for first-order modal logic) and our 
method we could obtain:



G. Badia et al. / Annals of Pure and Applied Logic 174 (2023) 103273 11
Corollary 20. Let A be a finite lattice algebra which interprets via some term a Boolean algebra. Let F be a 
class of frames closed under elementary equivalence. Then, F is modally A-definable by a set of formulas in 
Fm��∃∀

A (τ) iff it is closed under bounded morphic images, taking generated subframes, and disjoint unions.

5. Computational complexity of many-valued consequence

Following an idea used in [11, Section 3.3], we may rewrite our translation from §3, using additional 
propositional letters, in such a way that the length of the translated formula becomes polynomial on the 
length of the original one. This technique will allow us to easily check that the complexity of the consequence 
and validity problems of many-valued modal logics coincides with that of their two-valued counterparts.

Let τ∗ = {qaϕ | a ∈ A, ϕ ∈ Fm��
A (τ)} and redefine T ∗(τ) as

∨

a∈A

qapi
, ¬(qapi

∧ qbpi
) (a, b ∈ A, a �= b, pi ∈ τ).

Then consider the theory T ∗(τ) ∪ {E(ϕ) | ϕ ∈ Fm��
A (τ)}:

E(◦(ψ1, . . . , ψn) := qa◦(ψ1,...,ψn) ↔
∨

b1,...,bn∈A
◦A(b1,...,bn)=a

(qb1ψ1
∧ . . . ∧ qbnψn

)

E(�ψ) := qa�ψ ↔ (
∨

k≤|A|
b1,...,bk∈A

b1∨A...∨Abk=a

k∧

i=1
�qbiψ ) ∧ �(

∨

b∈A
b≤a

qbψ)

E(�ψ) := qa�ψ ↔ (
∨

k≤|A|
b1,...,bk∈A

b1∧A...∧Abk=a

k∧

i=1
�qbiψ ) ∧ �(

∨

b∈A
a≤b

qbψ).

Observe that the length of these formulas is always bounded by c2|A||A| where c is a constant number.
Using this theory, we can obtain a translation from many-valued to classical consequence:

Theorem 21. Let A be a finite lattice algebra, τ a denumerable set of variables, and F a class of frames. 
Then, for each Γ ∪ {ϕ} ⊆ Fm��

A (τ), we have:

Γ �Log(F,A,τ) ϕ iff

{q1
θ | θ ∈ Γ} ∪ T ∗(τ) ∪ {E(ψ) | ψ ∈ Fm��

A (τ)} �Log(F,2,τ∗) q
1
ϕ.

Furthermore, if Γ ∪ {ϕ} is finite, the theory T ∗(τ) ∪ {E(ψ) | ψ ∈ Fm��
A (τ)} can be taken to be finite as 

well, involving only the relevant axioms for ψ being a subformula of some formula of Γ ∪ {ϕ}. Then, as in 
Theorem 4, we have that

�Log(F,A,τ) ϕ iff

�Log(F,2,τ∗) (
∧

m≤rank(ϕ)

�m(
∧

(T ∗(τ) ∪ {E(ψ) | ψ subformula of ϕ})) → q1
ϕ.

Note that the combined length of the set of translated formulas in the first statement is polynomial 
w.r.t. the combined length of formulas in Γ ∪{ϕ}. Similarly, the length of the translated formula in the last 
statement is polynomial w.r.t. the length of ϕ (thanks, among others, to the bounded size observed above 
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for the formulas E(ψ)), and thus A-valued consequence and validity are polynomially reducible to their 
classical counterparts. Therefore, from Theorem 21 and the results from [7] for consequence in two-valued 
modal logic, the problem of consequence from a finite set of premises in many-valued modal logics over all 
crisp frames is decidable. Moreover, is in EXPTIME for the A-valued analogues of the logics K, T, and 
B, in PSPACE for analogues of the logic S4, and in co-NP for the analogues of the logics KD45 and S5. 
Similarly, using the classical results from [20], we obtain that the problem of validity in many-valued modal 
logics over all crisp frames is in PSPACE for the A-valued analogues of the logics K, T, B, and S4, and 
in co-NP for the analogues of KD45 and S5. Finally, thanks to the reverse translation for the many-valued 
modal logics in Corollary 14, we can conclude that all these computational problems are also complete in 
their corresponding complexity class. In particular, we have covered the complexity results in [3] for finitely 
valued Łukasiewicz modal logics through a completely different proof.

6. Conclusion

In this paper we have only scratched the surface of the potential of the translation introduced in §3. 
We believe that the application in obtaining Corollary 17 is quite a nice illustration of the power of this 
translation. We did not only provide an alternative to the rather complex proof from [26], but we also 
generalized the result to any finite residuated lattice that interprets a Boolean algebra by a term (the case 
of finite MV-algebras being just one example). Moreover, we also managed to prove some new Goldblatt–
Thomason style results that were not considered in [26]. Observe that, due to the duality of the modalities 
� and � classically, the translation can be defined in the context of unimodal systems as well where we 
only have one of � or �.

A similar translation to that in §3 can be offered for many-valued modal logics on frames with a many-
valued relation by considering a suitable polymodal classical counterpart (we leave the details to the reader; 
the idea is to introduce classical modalities for each value of the accessibility relation). However, due to 
the added complexity introduced by the many-valued accessibility relation, we are not able to obtain an 
analogue of our main result with the help of such translation.

The more important open problem around Theorem 9, though, is whether all the conditions we have 
found are actually necessary. There are more general definitions of interpretability (see [19]) because the 
homomorphism condition is needed only to handle the modal operators. It would be interesting to explore 
these more general versions.

In future work, we intend to use the techniques in this paper to study other topics in finitely valued first-
order and modal logic, such as 0-1 laws. Finally, we notice that the results obtained here might be relevant 
for the philosophical debate [24] around the so called “Suszko’s thesis” [25], namely, that many-valued logics 
can be reduced to two-valued logic.
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