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Abstract

Female density and distribution are dependent on resource phenology and female
availability strongly influences male mating behaviour and success. When a male
adopts a ‘resource defence’ tactic, his reproductive success depends on the location
and attractiveness of his territory. Environmental factors associated with territory
quality are expected to influence mating success, for example, through territory fea-
tures or male–male competition. In a protected population of a mountain-dwelling
polygynous herbivore, the Alpine chamois Rupicapra r. rupicapra, we investigated
the relationships among mating opportunities, some environmental variables (snow
depth, topographic features and size of territories) and male intra-sexual competition
for mating. We recorded the mating behaviour and territory size of 15 GPS-GSM
radio-tagged territorial males, during five rutting seasons (early November to early
December: N = 8 individuals in 2011, N = 9 in 2012, N = 8 in 2015, N = 11 in
2016, N = 7 in 2017; 80% of them were observed for more than one mating season)
and related them to snow depth and topography of territories. In ruts with deep snow
cover, territorial males had smaller territories and higher number of mating opportuni-
ties than in ruts with lower snow cover. Smaller territories showed the highest values
of terrain roughness, in turn with little or no snow cover in the mating season, and
were visited by a greater number of females, than larger territories. Number of wins
was positively influenced by snow depth and negatively related to the frequency of
aggressions. The frequency of male–male aggressive interactions was greater during
ruts with deep snow cover and for males with territories at higher elevations; addi-
tionally, it was negatively related to interactions won. Thus, snow depth, which influ-
ences resource distribution and female movements, is confirmed as a strong
determinant of male mating opportunities and mating behaviour.

Introduction

A territory is an exclusive area defended by one individual
who rarely moves beyond its limits. The territory owner reacts
aggressively to intruding conspecifics of the same sex and
behaves submissively outside (Burt, 1943: for mammals;
Owen-Smith, 1977: for ungulates). Males can compete directly
or indirectly for mates, for example, for resources that attract
females (Emlen & Oring, 1977). The evolution of one of
these mating tactics depends on female availability, which is
directly related to female density, distribution, group size and
stability, and indirectly related to the distribution of resources
(Clutton-Brock, 1989; Gosling, 1986). When the spatial distri-
bution of receptive females is predictable in time and space

(e.g. when they occupy small stable ranges around clumped
resources) or in areas where resources are abundant and tem-
porally stable, such as in forests (Geist, 1987; Owen-
Smith, 1977), ‘resource defence polygyny’ will be favoured
(Emlen & Oring, 1977). In this system, males gain access to
females by exploiting how resources will influence female dis-
tribution and by competing for resource-rich sites. Thus, the
reproductive success of a male depends on the location and
attractiveness of his territory (Carranza et al., 1990; Car-
ranza, 1995, for red deer Cervus elaphus). Conversely, a harsh
climate and strongly seasonal food resources generate group
instability and oestrus synchrony, thus militating against the
development of male territoriality (Gosling, 1986; for Capri-
nae: Corlatti & Lovari 2023).
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Territoriality is common in ungulates (Geist & Walther, 1974)
with exceptions (Owen-Smith, 1977): it is quite rare in the
Caprinae, probably because of the environmental features
where most species of this subfamily have evolved, that is,
rugged areas with a harsh climate and highly seasonal food
resources (Geist, 1985; Schaller, 1977). Thus, understanding
the way environmental variables influence the reproductive
success of territorial males would be important to shed light
on factors shaping the development of territoriality.
Information is controversial on the relationship between size

of a territory and the owner’s mating success. Johansson (1996)
reported that roe deer Capreolus capreolus male mating suc-
cess was related to the availability of nutritious food resources
in territories and not to territory size. By contrast, Vanp�e
et al. (2009) suggested that territory size – not habitat quality
– influenced the number of female roe deer in a male territory.
Information is missing on the influence of environmental vari-
ables and topographic features of a territory (e.g. elevation,
slope and aspect) on female attractiveness. Several studies on
territorial ungulates have shown a relationship between access
to potential mates and territory features such as forage quality/
abundance (American pronghorn Antilocapra americana:
Kitchen, 1974; puku Kobus vardoni and topi antelopes Dama-
liscus lunatus: Balmford et al., 1992; red deer: Carranza, 1995)
and safety from predators (e.g. percentage of vegetation cover,
cliff height and steepness: mountain reedbuck Redunca fulvoru-
fula chanleri: Dunbar & Roberts, 1992; puku and topi ante-
lopes, Balmford et al., 1992).
Information on polygynous ungulates indicates that individ-

ual dominance can also influence reproductive success (Pelle-
tier & Festa-Bianchet, 2006; Willisch et al., 2012;
Wolff, 1998). Females could gain genetic benefits by choosing
a ‘good’ dominant male, for example, with a good territory
(Balmford et al., 1992; Byers et al., 1994; Hogg, 1987; Tri-
vers, 1972), with exceptions (Lovari et al., 2009). In fact, terri-
tory quality could be indirectly related to the owner’s
dominance (Balmford et al., 1992), which is costly in terms of
energy invested in the defence of an area (Parker, 1974), stress
level (Corlatti et al., 2012; Creel, 2001; Mooring et al., 2006)
and susceptibility to parasites (Corlatti et al., 2012, 2019; Pel-
letier et al., 2005).
We investigated the relationships among topographic features

and size of territory, male dominance, snow depth and mating
opportunities, in a weakly polygynous, mountain-dwelling large
mammal, the Alpine chamois Rupicapra r. rupicapra (Bovidae:
Caprinae). Two alternative reproductive tactics (ARTs) have been
described in male chamois (Corlatti et al., 2012; Kr€amer, 1969):
during the rut (November), at the lower elevations, some individ-
uals (territorials, T) defend an exclusive area from intruders and
try to keep females there; other males (non-territorials, NT) court
females by following them and intruding other males’ territories.
Territories in chamois have been described as hotspots attractive
to females during the rut because of reduced snow cover (von
Hardenberg et al., 2000). Moreover, Lovari et al. (2006) sug-
gested that snow cover could have an important effect on deter-
mining the success of ARTs in chamois. In autumns with
abundant snowfalls, females would move to lower elevations
where they can meet territorial males (von Hardenberg

et al., 2000), favouring their mating success. In years with negli-
gible or delayed snow cover, female chamois would rut at higher
elevations, where non-territorial males may have an advantage
(Lovari et al., 2006). This suggestion has been recently confirmed
(Corlatti et al., 2020). Male chamois change mating tactic neither
as the rut progresses nor across years (Cotza et al., 2023). They
start to show territorial behaviour in late spring (von Hardenberg
et al., 2000). However, no information exists on the relationships
among mating opportunities, territory features (e.g. size, eleva-
tion, slope and terrain roughness), snow depth, intra-sexual com-
petition and dominance (in terms of frequency of male–male
aggressive interactions and number of wins) of a territory owner.
We used intensive GPS-GSM radio-tracking and individual-level
direct behavioural observations to assess these relationships. We
assumed that snow cover is a major ultimate determinant of the
number of females available to territorial male chamois (Corlatti
et al., 2020; Lovari et al., 2006), which has been shown as a reli-
able predictor of male reproductive success (Corlatti, Bassano,
et al., 2015). We investigated environmental and behavioural fac-
tors potentially influencing mating opportunities, territory size
and indices of dominance and aggression for territorial male
chamois. We predicted that (i) mating opportunities will be posi-
tively associated with snow cover (Corlatti et al., 2020; Lovari
et al., 2006), territory size (Vanp�e et al., 2009) and topographic
indices of territory roughness because of the relevant potential
effect on territory attractiveness to females (Balmford
et al., 1992). Additionally, we would expect a strong male–male
competition to occupy the best territories in terms of access to the
highest number of females (Carranza & Valencia, 1999; Gibson
& Guinness, 1980; Vanp�e et al., 2009). Accordingly, the best ter-
ritories should be occupied by the ‘dominant’ competitors in
intra-sexual contests; thus, we expected mating opportunities to
be positively associated with the frequency of male–male aggres-
sive interactions and with the number of wins. We predicted that
(ii) territory size would be negatively associated with snow cover,
which has been repeatedly shown to limit ungulate movements
(Rivrud et al., 2010; van Beest et al., 2011), and it would be posi-
tively related to the frequency of aggressive interactions and the
number of wins because the costs of defence should increase as
territory size increases (Hixon, 1980; Schoener, 1983, 1987). In
ruts with deeper snow, non-territorial males and females have
been shown to move to lower elevations, where territorial males
stay (Corlatti et al., 2020; von Hardenberg et al., 2000), which
would likely increase the probability of male–male interactions.
Thus, we predicted that both (iii) the number of interactions won
and (iv) the frequency of male–male aggressive interactions
would be positively associated with snow cover and with the
number of mating opportunities because a greater number of
females in territories would be expected to attract competing
males.

Materials and methods

Study area and population

Our study was conducted in the upper part of the Orco Valley
(45°2702100 N, 7°1002700 E), within the Gran Paradiso National
Park (GPNP), Western Italian (Graian) Alps. The area extends
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between 1600 and 2300 m a.s.l. Snow cover lasts from
November to May. During the study years, mean temperature
at rut time (early November to early December) has been
�0.6°C (maximum of 12°C in November 2015 and minimum
of �10.5°C in December 2012). The chamois population in
the Park has been protected since 1922 and its size is esti-
mated at c. 6800 individuals presently, over 710.44 km2 (2018
GPNP count). The density of the population in the study area
is estimated at 10 ind/km2 (Corlatti, Fattorini, & Nelli, 2015).
Predation by the golden eagle Aquila chrysaetos and by the
red fox Vulpes vulpes may occur on kids, although occasion-
ally (Bertolino, 2003). Large terrestrial predators were absent
(2011–2012) to rare (2015–2017, grey wolf Canis lupus; see
also Palmegiani et al., 2013). For further details on the study
area, see Lovari et al. (2006), Corlatti et al. (2012), and Cor-
latti, Bassano, et al. (2013).

Data collection and analysis

Capture, marking and behavioural observations

Between February 2010 and January 2013 and between
November 2015 and January 2016, 31 adult (4–13 years old)
male chamois were darted for sedation and fitted with individ-
ually recognizable Global Positioning System (GPS; 1 fix/7 h)
collars, with very high-frequency (VHF) beacon devices (Vec-
tronic Aerospace GmbH, Berlin, Germany) and coloured ear
tags. In accordance with Italian law, chamois were sedated
with a combination of xylazine (40 mg/animal) and ketamine
(20 mg/animal) to reduce levels of stress due to handling
(Bassano et al., 2004) and reversed by an injection of atipa-
mezole (5 mg/animal; Dematteis et al., 2009), following a
standardized procedure already used in previous studies on the
species in the same area (Corlatti et al., 2012; von Hardenberg
et al., 2000). The study reported in this paper is relevant to
territorial males only (N = 15) and was conducted during five
rutting seasons (6th of November to 5th of December; 2011:
N = 8 individuals, 2012: N = 9, 2015: N = 8, 2016: N = 11,
2017: N = 7). The distinction between territorial (T) and non-
territorial (NT) males was based according to Corlatti
et al. (2012): during the rutting season, T males show site
fidelity, hence a smaller home range size, and win aggressive
interactions – within their territories, while losing outside –
with intruding males, in respect to NT individuals. The num-
ber and the outcome of aggressive interactions (cf.
Kr€amer, 1969; Lovari, 1985; Lovari & Locati, 1991) with
other males were recorded for a total of c. 7 h of observa-
tions/individual/year, by focal animal sampling (Alt-
mann, 1974), during the rutting period (cf. Corlatti
et al., 2012; Cotza et al., 2023). Observations were evenly
distributed over the entire rut and across all males (cf. Corlatti
et al., 2012) and were conducted through binoculars and spot-
ting scope from distant locations to avoid disturbance. For fur-
ther details of the male classification, see Corlatti
et al. (2012).
We collected a total of 281 h of observations on territorial

males (median value = 7 h/male; IQR = 4.5–8 h/male).

Mating behaviour indices

For each rutting period and for each male, we calculated: (i)
individual home range size (90% fixed kernel, B€orger
et al., 2006) and (ii) the index of wins in aggressive interac-
tions with other males (IW index: number of interactions won/
total number of interactions; cf. Corlatti et al., 2012).
Besides the index of wins in aggressive interactions with

other males (IW index), we calculated the hourly frequency of
intra-sexual aggressive interactions for each male (number of
interactions/number of observation hours). The number of
females within 50 m of the focal male was also recorded,
every 20 min, during the focal animal sampling bouts (cf.
above): we then calculated the mean number of females per
hour per each male, as an index of mating opportunities (Cor-
latti et al., 2012; Corlatti, Caroli, et al., 2013; von Hardenberg
et al., 2000).

Topographic features of territory and snow
depth data

We considered kernel 90% estimates of home range size to
evaluate relationships among territory size, topography, snow
depth, dominance and mating opportunities for territorial
males. After failure of GPS-GSM radio-tag batteries, efforts
were made to replace the collar before the following mating
season. Meanwhile, coordinates of visual locations/individual/
day were recorded on a map. We found no significant differ-
ences between GPS-based and visually based home range esti-
mates (Mann–Whitney test: U = 24, P-value = 0.44) in a
subsample of territorial males (N = 8). Through QGIS software
(QGIS Development Team, 2016), we visually inspected 90%
kernel estimates of home ranges and overlaid them to a digital
elevation model (DEM, reference system: WGS84-32N) of the
study area, with a spatial resolution of 10 9 10 m (Tarquini
et al., 2012; Tarquini, Isola, Favalli, & Battistini, 2007; Tar-
quini, Isola, Favalli, Mazzarini, et al., 2007), transformed to a
resolution of 25 9 25 m, to fit the resolution of the home
range shapefiles. From the DEM, we obtained the following
parameters/indices (raster maps) for our study area:

• elevation (in m),
• slope, terrain roughness, terrain ruggedness index (TRI) and

topographic position index (TPI), as indices of terrain
asperity.

In our same study area, Nesti et al. (2010) showed that
throughout the year nearly all males used south and south-east
facing slopes. Our observations and preliminary analyses have
confirmed this pattern (see Fig. S1). Therefore, we did not
consider the aspect as a variable in our study.
We used ‘terrain’ function, from ‘raster’ library (Hij-

mans, 2019) in R, to obtain the above maps. Eventually, we
extracted the values of the environmental parameters corre-
sponding to each cell defining the territories, using the function
‘extract’, ‘raster’ library (Hijmans, 2019) in R, and we calcu-
lated their median values.
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During the ruts of 2011–2012 and 2015–2017, daily values
of snow depth (in cm) were collected from a weather station
in our study site (Lake Serr�u, 2275 m a.s.l.- A.E.M. Turin).
We calculated the median value of snow depth for each rutting
season (Table S1).

Statistical analyses

The considered dependent variables were either positive contin-
uous (mating opportunities: median value = 0.75, IQR = 0.33–
2.36; territory size: median value = 10.75 ha, IQR = 5.72–
16.00 ha; frequency of male–male aggressive interactions:
median value = 0.89, IQR = 0.68–1.09) or bounded between 0
and 1 (index of wins in male–male aggressive
interactions � IW index: median value = 0.90, IQR = 0.79–
1.00), for which it was plausible to assume gamma- and beta-
conditional distributions respectively (Bolker et al., 2009;
Crawley, 2007). However, a preliminary data exploration sug-
gested that these conditional distributions were not a good fit
to our data and that the realized values could be best described
by using simple linear models.
The IW index was arcsine square root transformed before

model fitting, as customary for percentage data (Crawley, 2007).
For the other dependent variables, we first checked if a trans-
formation of it could lead to a better model fit through a Box–
Cox transformation for linear models (function ‘boxcox’,
‘MASS’ library; Venables & Ripley, 2002). The Box–Cox
transformations suggested a square root transformation for mat-
ing opportunity index and the frequency of aggressive

interactions, and a logarithms transformation for territory size.
Additionally, a log-transformation of median snow and territory
size was used, in the predictors, to make their distribution
more homogeneous.
We tested for collinearity among the available explanatory

variables (snow depth, territory size, elevation, slope, terrain
roughness, terrain ruggedness index – TRI, topographic posi-
tion index – TPI, frequency of aggressive interactions and IW
index) by calculating the variance-inflation factors, using the
function ‘vif’, ‘car’ library (Fox & Weisberg, 2019), in R.
Slope and TRI showed very high VIF values (>105).
For each dependent variable, we fitted a global additive

model (i.e. a model with all the biologically meaningful vari-
ables at hand that could plausibly explain the variation in the
dependent variable), first with, then without, individual identity
of males (ID) as a random intercept to account for repeated
sampling of the same individual. The two models were com-
pared through a F-test (function ‘anova’, ‘stats’ library; R Core
Team, 2022): if they were not statistically different, we
retained the model without the random term. We also visually
inspected the residual distribution of the selected global model
to check for the fulfilment of the underlying assumptions in
terms of linearity, normality and heteroscedasticity. We used
functions ‘check_model’ and ‘check_heteroscedasticity’ (‘per-
formance’ library; L€udecke et al., 2021).
Then, we fitted four a priori models for each dependent var-

iable, following prior predictions: a global model (see above),
an intercept-only model, a model including only the beha-
vioural predictors (frequency of aggressive interactions, mating

Table 1 Model selection for the mating opportunity index (mean number of females/h), territory size (HR, 90% KDE), index of wins in male–

male aggressive interactions (IW, interactions won/total interactions) and frequency of male–male aggressive interactions (number of

interactions/h) of territorial male Alpine chamois in 2011–2012 and 2015–2017

Response Predictor df AICc DAICc Weight Evidence ratio

Mating

opportunities

Altitude + (log)HR + (log)Snow + Roughness + TPI 8 58.5 0.00 0.947

Altitude + Frequency of Interactions + IW + (log)HR + (log)Snow +

Roughness + TPI

10 64.2 5.78 0.053 18

— 3 80.3 21.88 0.000 56 387.3

Frequency of Interactions + IW 5 81.4 22.95 0.000 96 278.5

Territory size Altitude + (log)Snow + Roughness + TPI 6 64.1 0.00 0.932

Altitude + Frequency of Interactions + IW + (log)Snow + Roughness + TPI 8 69.4 5.25 0.068 13.8

— 2 100.2 36.11 0.000 69 372 424

Frequency of Interactions + IW 4 103.5 39.42 0.000 363 031 440

Index of wins Altitude + Frequency of Interactions + (log)HR + (log)Snow + Mating

Opportunities + Roughness + TPI

9 7.9 0.00 0.734

Frequency of Interactions + Mating Opportunities 4 10.2 2.29 0.233 3.1

Altitude + (log)HR + (log)Snow + Roughness + TPI 7 15.4 7.53 0.017 43.2

— 2 15.5 7.61 0.016 44.9

Frequency of

interactions

Altitude + IW + (log)HR + (log)Snow + Mating

Opportunities + Roughness + TPI

9 �11.0 0.00 0.628

IW + Mating Opportunities 4 �8.8 2.28 0.200 3.1

— 2 �7.8 3.29 0.122 5.2

Altitude + (log)HR + (log)Snow + Roughness + TPI 7 �6.0 5.08 0.050 12.7

The table includes: response variables, explanatory variables included in the predictors, degrees of freedom, Akaike information criterion cor-

rected for small sample size (AICc), DAICc values, model weight and evidence ratio for the best model (i.e. the relative likelihood of the top-

ranked model vs. each model in the list). Selected models are in bold.

TPI, topographic position index.
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opportunities and index of wins) and a model including only
the environmental variables (territory size, elevation, terrain
roughness, TPI and median snow depth during the rut), exclud-
ing the variable used as the response.
We finally compared the four models following an approach

based on the minimum Akaike’s information criterion, cor-
rected for small samples (AICc: Hurvich & Tsai, 1989) and
selected unnested models with cumulative AICc weight >0.95
(Arnold, 2010; Burnham & Anderson, 2002). If more models
were included in the final candidate set, we averaged their
parameters to obtain final estimates (Burnham & Ander-
son, 2002). Data points in the diagrams have been jittered to
improve data visualization.
All models were fitted with the ‘lm’ function (‘stats’

library), but the models investigating mating opportunities were
fitted with the function ‘glmmTMB’ (‘glmmTMB’ library;
Brooks et al., 2017) in R. All analyses were performed in R
3.6.1 (R Core Team, 2022), in RStudio 2022.07.1 (RStudio
Team, 2016).

Results

Selected models supported an effect of snow depth and terri-
tory size on the mating opportunity index (Table 1). In particu-
lar, we found decreasing mating opportunities with lower snow
depth (Table 2; Fig. 1a) and a negative relationship with terri-
tory size, with a greater number of females visiting smaller ter-
ritories, albeit statistically non-significant (Table 2; Fig. 1b).
With respect to territory size, selected models supported an

effect of terrain roughness, topographic position index (TPI)
and snow depth (Table 1). In particular, we found a negative
relationship between snow depth and territory size, with smal-
ler territories in years of deeper snow cover (Table 2; Fig. 2a).
Smaller territories showed the highest values of terrain rough-
ness and TPI (Table 2; Fig. 2b, c).
Selected models supported an effect of snow depth and fre-

quency of male–male aggressive interactions on the index of
wins (IW index; Table 1). We found a positive relationship

Table 2 Parameter estimates from the models selected to investigate

variation in the mating opportunity index (mean number of females/h),

territory size (HR, 90% KDE), index of wins in male–male aggressive

interactions (IW, interactions won/total interactions) and frequency of

male–male aggressive interactions (number of interactions/h) of

territorial male Alpine chamois in 2011–2012 and 2015–2017

Response Predictor b SE 95% CI

Mating

opportunities

Intercept 1.000 0.078 0.85; 1.15

(log)HR �0.181 0.097 �0.37; 0.01

Altitude 0.123 0.064 0.00; 0.25

Roughness 0.074 0.077 �0.08; 0.22

TPI 0.070 0.082 �0.09; 0.23

(log)Snow 0.186 0.069 0.05; 0.32

Territory size Intercept 2.243 0.070 2.10; 2.38

Altitude �0.009 0.075 �0.16; 0.14

Roughness �0.297 0.079 �0.46; �0.14

TPI �0.336 0.074 �0.49; �0.19

(log)Snow �0.230 0.075 �0.38; �0.08

Index of wins Intercept 1.285 0.035 1.21; 1.36

Mating

opportunities

0.051 0.050 �0.05; 0.15

Frequency of

interactions

�0.136 0.043 �0.22; �0.05

(log)HR 0.033 0.062 �0.09; 0.16

Altitude 0.007 0.040 �0.07; 0.09

Roughness �0.084 0.046 �0.18; 0.01

TPI 0.013 0.046 �0.08; 0.11

(log)Snow 0.157 0.046 0.06; 0.25

Frequency of

interactions

Intercept 0.923 0.029 0.86; 0.98

Mating

opportunities

0.029 0.039 �0.05; 0.11

IW �0.101 0.036 �0.17; �0.03

(log)HR 0.052 0.049 �0.05; 0.15

Altitude 0.067 0.030 0.01; 0.13

Roughness �0.057 0.037 �0.13; 0.02

TPI �0.009 0.037 �0.08; 0.07

(log)Snow 0.104 0.039 0.02; 0.18

Confidence intervals that do not include 0 are shown in bold.

CI, Confidence interval; TPI, topographic position index.
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Figure 1 Effects of: (a) snow depth (in cm) and (b) territory size (Kernel 90%, ha), on the mating opportunity index (N females/h), for territorial

male Alpine chamois in 2011–2012 and 2015–2017. The predicted values are shown with 95% confidence interval; dots represent raw data.
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between snow depth and the IW index, with greater IW index
in years with deeper snow cover (Table 2; Fig. 3a) and
decreasing IW index with increasing frequency of aggressions
(Table 2; Fig. 3b).
Finally, with respect to the frequency of male–male aggres-

sive interactions, selected models supported an effect of snow
depth, index of wins (IW index) and elevation (Table 1). We
found a positive relationship between snow depth and the fre-
quency of interactions, with higher frequency of aggressions in
years with deeper snow cover (Table 2; Fig. 4a). We also
found decreasing frequency of aggressions with increasing IW
index (Table 2; Fig. 4b) and increasing frequency of interac-
tions for males with the territory at higher elevations (Table 2;
Fig. 4c).

Discussion

Throughout our study, during the rut, male territory size was
smaller in years with abundant snowfalls than in years with
lower snow depth (prediction ii). Several studies have sug-
gested that snow depth strongly influences ungulate move-
ments (Rivrud et al., 2010; van Beest et al., 2011) because
of increased costs due to locomotion, food searching and
thermoregulation (Dailey & Hobbs, 1989; Parker et al., 1984;
Richard et al., 2014). In ungulates, abundant snow cover has
been shown to trigger a reduction in home range size
(Cederlund, 1983; Georgii & Schr€oder, 1983; Grignolio
et al., 2004), displacement to other areas (Bocci et al., 2012;
Mysterud, 1999; Mysterud et al., 2001) and changes in diet
(e.g. switch from grazing to browsing; Goodson et al., 1991;
Kozena, 1986; Obrtel et al., 1984). Quality and dispersion of
food resources influence female distribution (Emlen &
Oring, 1977). In mountainous environments, availability of
nutritious vegetation is highly seasonal and it is usually
reduced in winter (Shackleton & Bunnell, 1987). If so, dur-
ing the cold period, one would expect females to use
clumped resources in snow-free areas. In our study area, in
late autumn–winter, the summer range of female chamois
(i.e. upper meadows at >2400 m a.s.l.) is often covered with
snow. The attraction to snow-free clumped food resources
makes female ranging movements broadly predictable, favour-
ing males present in snow-free sites located at lower eleva-
tions (Corlatti et al., 2020; Lovari et al., 2006; von
Hardenberg et al., 2000). Accordingly (prediction i), during
ruts with deeper snow cover (cf. Corlatti et al., 2020; Lovari
et al., 2006), our results have shown greater mating opportu-
nities for territorial males – who usually stay at lower
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Figure 2 Effects of: (a) snow depth (in cm), (b) terrain roughness

index and (c) topographic position index (TPI), on territory size (Kernel

90%, ha), for territorial male Alpine chamois in 2011–2012 and 2015–

2017. The predicted values are shown with 95% confidence interval;

dots represent raw data.
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elevations than non-territorial ones (Corlatti, Bassano,
et al., 2013; our data).
Home range size is negatively related to habitat quality and

resource availability (Cimino & Lovari, 2003; Harestad &
Bunnel, 1979; Sa€ıd et al., 2009): smaller territories may pro-
vide a greater quantity and quality of resources, thus attracting
more females (Carranza, 1995; Kitchen, 1974). In contrast with
our prediction (i), our results suggest that a greater number of
females appeared to be attracted to smaller territories, thus pro-
viding greater mating opportunities for the territory owners.
These territories were characterized by greater indices of
roughness than larger ones: in fact, a steep and precipitous ter-
rain should prevent snow accumulation, thus allowing chamois
an easier access to food resources and to refuge areas (Berdu-
cou, 1982; Schr€oder, 1971a, 1971b; von Elsner-Schack, 1985).
Our results have suggested that ‘quality’, in terms of terrain
roughness, appears to be more important than territory size,
possibly because it allows females the access to snow-free ter-
rain, thus food resources, in that season. Presumably, male
Alpine chamois would have greater mating opportunities if
holding a territory in a rugged area, free from snow at rut
time, in November. This relationship is expected to be stronger
in years with abundant snowfalls early in the rut (see also Cor-
latti et al., 2020; Lovari et al., 2006). Lovari et al. (2006) sug-
gested and Corlatti et al. (2020) showed that, in years with
snowfalls early in the rut, territorial males have a greater
reproductive success, as females are forced to move to lower
elevations to access forage (cf. Introduction). Conversely, non-
territorial males could gain reproductive advantage in years
with low or delayed snowfalls because females rut at higher
elevations (Lovari et al., 2006). The greater number of females
observed in male territories during snowy ruts provides support
to this prediction.
Female ungulates often select habitats providing safety to

them and to their offspring from predators (Ciuti et al., 2005;
Hamel & Côt�e, 2007; P�erez-Barber�ıa & Nores, 1994). Informa-
tion is less abundant on female selection of habitat features in
male territories during the mating period. Dunbar and

Roberts (1992) suggested that mountain reedbuck females were
mainly attracted to male territories located at a lower distance
from escape terrain (see also Howard, 1986, for habitat selec-
tion in female mountain reedbuck). In our study area, large ter-
restrial predators were absent (2011–2012) to rare (2015–2017,
grey wolf). It is unlikely that the direct effect of terrain steep-
ness on the number of females in territories was related pri-
marily to searching for safety from terrestrial predators. The
only winged predator, the golden eagle, may attack on both,
steep or less steep locations. Our results suggest that topo-
graphic features play an important role in attracting female
chamois to territories with minor snow depth.
Non-territorial males tend to stay at higher elevations than

territorial ones (Lovari et al., 2006; Corlatti, Bassano,
et al., 2013; our data), follow oestrus females and try to
intrude territories of other males (Corlatti et al., 2012;
Kr€amer, 1969; von Hardenberg et al., 2000), thereby possibly
influencing the positive relationship between elevation and
male–male aggressive interactions.
In ruts with deep snow, non-territorial males, as well as

females, tend to move to lower elevations where territorial
males are (Corlatti et al., 2020; Corlatti, Bassano, et al., 2013).
The increased possibility of male–male interactions could
explain the positive relations between snow depth and both the
frequency of aggressive interactions and the index of wins in
interactions (predictions iii and iv). In fact, territorial males are
usually dominant over non-territorial ones (Corlatti
et al., 2012).
Aggression and social rank (Corlatti et al., 2012; Patton

et al., 2001; Pelletier et al., 2003) and courtship behaviour
(Hirschenhauser & Oliveira, 2006; Knapp, 2003) depend on
levels of androgen hormones. A previous study showed that
territorial males had higher levels of androgen metabolites than
non-territorial ones, during the rut (Corlatti et al., 2012). In
contrast to our predictions (iii and iv), we found no relation-
ship between frequency of male–male aggressive interactions,
as well as win numbers, and mating opportunities of territorial
males (i.e. the number of females in their territory). A male
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Figure 3 Effects of: (a) snow depth (in cm) and (b) frequency of male–male aggressive interactions (N interactions/h), on the index of wins in

male–male aggressive interactions, for territorial male Alpine chamois in 2011–2012 and 2015–2017. The predicted values are shown with 95%

confidence interval; dots represent raw data.
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will defend his territory from intruding males irrespective of
the number of females present there and a male capable to
defend a territory more attractive to females would gain prior-
ity access to mates (‘prior residence advantage’, Brad-
dock, 1949; Maynard-Smith, 1982).
In contrast with our prediction (ii), our analyses supported a

relationship neither between territory size and frequency of
male–male aggressive interactions, nor with number of wins.
Furthermore, in contrast with prediction (i), no relation was
found between mating opportunities and dominance of the
male (in terms of wins and frequency of interactions).
We found that the frequency of interactions was negatively

related to the index of wins in interactions, and vice versa. We
may assume that dominant individuals are less frequently chal-
lenged in comparison with sub-dominant ones. Displays should
be related to actual fighting ability or dominance rank
(Geist, 1971) and permit individuals to assess their opponents,
allowing them to avoid fights when they are unlikely to win
(Zahavi, 1975, 1977). Male chamois manly assess rank in
intra-sexual contests through aggressive behaviours patterns
(Lovari, 1985), rather than on size-related traits (Corlatti
et al., 2012; Corlatti, Caroli, et al., 2013). Quite often rutting
males utter a relatively low-pitched grunt, the ‘rut call’, a
vocal dominance display (Lovari, 1985), that it could be a
‘honest’ advertisement for the opponents (e.g. roaring for red
deer: Clutton-Brock & Albon, 1979). In addition, olfactory
cues may be important too (Coblentz, 1976; Moore & March-
inton, 1974): during the rut, male chamois often mark the veg-
etation, sliding up and down their supraoccipital glands and
advertising their presence thus (Lovari, 1985); additionally,
they often shake their body and urinate at the same time, thus
impregnating their flank pelage with scent (Lovari, 1985).
Although these observations require experimental confirmation,
such displays may advertise dominance to potential opponents.
In conclusion, our study has shown that mating opportunities

of territorial males increased during the rutting seasons with
deeper snow cover and in territories located on steep, broken
terrain, that is, those areas from which snow slides away first,
thus making forage easily available. If so, territoriality in
chamois could have developed from a combination of female
movements to snow-free clumped resources during the rut with
some males defending attractive territories, thereby getting
greater mating opportunities.
Territoriality is a rare mating tactic among Caprinae, espe-

cially in species occurring in open areas (Corlatti & Lovari,
2023). After assessing that territorial and non-territorial behav-
iour of male chamois seem to be a life-time reproductive tac-
tic, Cotza et al. (2023) have suggested it as an adaptation to
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Figure 4 Effects of: (a) snow depth (in cm), (b) index of wins in

male–male aggressive interactions and (c) elevation (m), on the

frequency of male–male aggressive interactions (N interactions/h), for

territorial male Alpine chamois in 2011–2012 and 2015–2017. The

predicted values are shown with 95% confidence interval; dots

represent raw data.
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environmental stochasticity or a DNA-fixed behaviour. On the
other hand, if we assume that earlier chamois were non-
territorial as all other Caprinae – but for the serows Capricor-
nis spp., which are forest resource defenders (Akasaka & Mar-
uyama, 1977; Geist, 1987; Kishimoto & Kawamichi, 1996) –
environmental stochasticity (i.e. accumulation of snow cover
in the rutting season) could have favoured the development of
territoriality in male chamois at lower elevations which, on
time, could have become a fixed trait. A larger sample size
and a longer-term study, combined with ad hoc DNA ana-
lyses, would allow a better evaluation of the relationships
between inter-annual variation of snow cover and mating
parameters.
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Supporting Information

Additional Supporting Information may be found in the online
version of this article:

Figure S1. Frequency histogram for the aspect of territories
in ruts 2011–2012 and 2015–2017. The aspect was considered
as distance from the South (0° = S, 90° = E and O,
180° = N).
Table S1. Median value and interquartile range (IQR) of

snow depth, during the rut period (6th of November to 5th of
December), of each study year.
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