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Data-driven design-based mapping of forest
resources

Mappatura di risorse forestali in approccio da disegno

S. Franceschi, R.M. Di Biase, L. Fattorini, M. Marcheselli and C. Pisani

Abstract The mapping of forest resources in a study region is approached when the
region is partitioned into spatial units by means of a completely data driven, design-
based sampling strategy. When auxiliary variables are available for all the units, the
prediction of the densities of an interest attribute can be performed by using an as-
sisting model. Under these circumstances, the model residuals are interpolated using
the inverse distance weighting interpolator with a data-driven smoothing parameter
selection, and the density of the attribute for each unit is obtained by summing pre-
diction and interpolated error. Finally, densities are rescaled to match the traditional
total estimate with the sum of mapped values. The uncertainty is accounted for by a
bootstrap procedure. A simulation study is performed and a case study is presented.
Abstract La mappatura di risorse forestali per le unita spaziali che compongono
una regione di studio viene affrontata con un approccio data-driven basato sul dis-
egno. Se sono disponibili variabili ausiliarie, la previsione del valore dell’ attributo
di interesse puo essere effettuata con strategie assistite da modello. I residui del
modello vengono previsti utilizzando [’interpolatore inverse distance weighting
dove il parametro di smorzamento viene selezionato con una procedura data-driven
e le densita dell’attributo vengono ottenute sommando le previsioni e gli errori
interpolati. Inoltre le densita vengono riscalate in modo tale che la stima del to-
tale ottenuta sommando i valori previsti coincida con quella ottenuta con approcci
tradizionali. L’incertezza delle stime e valutata attraverso una procedura bootstrap.
Uno studio di simulazione viene effettuato e viene presentato un caso di studio.

Key words: selection rule, smoothing parameter, regression estimator, harmoniza-
tion, pseudo-population bootstrap
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1 Introduction

Wall-to-wall maps of forest attributes are essential information sources for forest
management and most of the methodologies applied for mapping rely on model-
based inference, owing to the impossibility to estimate values at non-sampled units
without any assumption.

We present an alternative approach to forest mapping, in which an assisting
model is used, but uncertainty stems from the adopted sampling scheme, in ac-
cordance to a model-assisted perspective [1]. However, any interpolator adopted
for mapping can achieve statistical soundness only if it is proven to be design-
based asymptotically unbiased and consistent (DBAU&C). Conditions ensuring
DBAU&C, derived by [3] for finite populations of spatial units when the sole spa-
tial information is available, are extended to allow for the exploitation of auxiliary
sources of information, such as those provided by satellites and aircraft-based sen-
sors, available for each spatial unit (e.g., pixels) partitioning the study area.

In particular, we propose a completely data-driven, design-based strategy for
mapping forest attributes. The first step is the selection of a model using an Akaike-
type criterion for choosing an appropriate set of available auxiliary variables. Using
the least-squares method, the predictions of the attribute densities are obtained for
each spatial unit. Then, the inverse distance weighting (IDW) interpolator, which
relies on Tobler’s first law of geography [9], is adopted for interpolating the resid-
uals for non-sampled units on the basis of the residuals that are known for each
sampled unit. Following [5], the leave-one-out cross-validation is used to select the
smoothing parameter adopted in the IDW interpolator. Subsequently, the interpo-
lated values at non-sampled units are obtained by summing model predictions and
interpolated residuals.

Finally, we rescaled the resulting densities in such a way that the total obtained
from the interpolated values matches traditional total estimates [7]. Moreover, a
bootstrap technique is used to estimate relative root mean squared errors of the pre-
dicted values.

2 Data-driven mapping

Consider a study area partitioned into N spatial units and suppose to be interested
in the reconstruction of the whole map of the spatial population, that is the estima-
tion of the density of an interest attribute for each spatial unit, by using a suitably
selected sample of units. It is worth noting that usually the size of the spatial units
are known and therefore the estimation of the density is theoretically equivalent to
the estimation of the total amount in each spatial unit. Furthermore, suppose that a
large set of covariates is available, as it is common in forest inventories. To select the
assisting model for obtaining predictions, we performed a variable selection using
an Akaike-type criterion, as suggested by [2]. Indeed, strongly correlated auxiliary
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variables can induce instability in the model while they can exhibit a poor prediction
capability when weakly correlated to the interest variable.

Let f; and x; respectively be the density of the interest attribute and the vector of
selected covariates for spatial unit j, in such a way that densities can be expressed
as fj = B'xj+e¢;(B). The choice of B can be made using a least-square criterion
to minimize the residual sum of squares. Denoting by b the ordinary least-squares
solution for B, if b was known, the residuals for each sampled unit would be ¢ (b) =
fj—b'x;, while the residuals for non-sampled units could be obtained using the IDW
interpolator. In particular, the j-th interpolated residual would be given by

N
2j(b) =Zjej(b)+(1—2;) ) wij(c)e;(b)
i=1

where Z; is equal to 1 when the j-th unit is sampled and 0 otherwhise and w;;(¢t) =
Zl-d;joC / ):f\’: 1 Zld; j‘x, with d; ; denoting the distance between the centroid of unit i
and unit j, and o > 2 is the smoothing parameter. As consequence, the resulting
interpolated value for the density for unit j would be fj(b) = b'x; +¢;(b).

Unfortunately, the least-square solution b is unknown, involving the knowledge
of the density for each unit. Nevetherless, as suggested by [8], an estimate b can be
obtained as a function of Horvitz-Thompson estimators. Then, IDW interpolation
can be performed with b replaced by its sampling estimator b on the basis of the
observed residuals e i(b) = f; —b'x; so that the interpolated densities are given by
Ji(b) =b'x;+2i(b). o

As to the asymptotic properties, f;(b) is consistent because, as the extent f’f the
spatial units partitioning the study area decreases and their number increases, b con-
verges to b and, consequently, 7;(b) converges to f;(b), which in turn is DBAU&C
under conditions derived in [3]: i) the existence of a Riemann integrable function
giving the density of the interest attribute at any point of the study area; ii) some
sort of regularity in the shape of the spatial units; iii) the use of an asymptotically
balanced spatial sampling scheme. Commonly adopted sampling schemes ensuring
DBAU&C are simple random sampling without replacement, one-per-stratum strat-
ified sampling and systematic sampling.

Moreover, the IDW interpolator depends on the smoothing parameter ¢ deter-
mining the roughness of the surface of interpolated residuals. As suggested by [5],
the value of o can be selected by means of the leave-one-out cross-validation and
the corresponding IDW interpolator is proven to remain DBAU&C.

Finally, it is worth noting that, in a design-based setting, the total of the interest
attribute is commonly estimated by traditional estimators, such as the regression
estimator, which necessarily give rise to different total estimates with respect to the
one achieved by summing the interpolated values for all the spatial units. To obtain
non-discrepant results, a harmonization of the estimated map can be achieved by
rescaling density estimates in analogy with [7].

As to the evaluation of precision, each step of the proposed mapping strategy
(Akaike-type selection of the assisting model, choice of the smoothing parameter
and harmonization of maps with the total estimate) should be considered, since all
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of them are sample dependent. The use of bootstrap seems to be the sole way for
facing the complexity of this data-driven mapping procedure. More precisely, the
map of the interpolated values is taken as a pseudo-population from which bootstrap
samples are drawn using the same sampling scheme adopted to produce the original
sample, as suggested by [5] and [4]. Under the conditions ensuring DBAU&C, the
estimated map converges to the true map, so that the bootstrap distribution should
converge to the true distribution, also providing consistent estimators of its mean
squared errors.

3 Simulation study

The performance of the proposed data-driven mapping strategy was empirically as-
sessed by means of a simulation study performed on a real survey region located in
Calabria (Southern Italy). The values of several auxiliary variables and the value of
growing stock volume (interest attribute) were available for each pixel partitioning
the study region.

In order to check the improvement as the number of pixels partitioning the study
area increases and their size become smaller, the study area was partitioned consid-
ering three different pixels sizes and the values of interest and auxiliary attributes
were aggregated within those pixels.

From each of the three partitions, 10,000 samples were independently selected
by means of one-per-stratum sampling (OPSS) with a constant sampling fraction of
4%. For each sample, selection of auxiliary variables was performed, the growing
stock volume estimate for each pixel was derived by using the IDW interpolator,
where the value of the smoothing parameter was obtained by means of leave-one-
out cross-validation and, finally, harmonization was implemented. Furthermore, for
each simulation run, 1,000 bootstrap samples were selected from the estimated map
by the same OPSS scheme adopted for extracting the original sample, then boot-
strapped maps were used to achieve the bootstrap root mean squared error esti-
mates. From the resulting Monte Carlo distributions, several perfomance indexes
were computed. Results show that usually 4 or 5 covariates are selected out of the
11 originally available, suggesting that the selecting rule is likely to choose parsimo-
nious models. Also for the choice of the smoothing parameter, small values are the
most commonly selected, probably owing to the smoothness of the error surfaces
to be interpolated (see Fig. 1). Furthermore, relative bias values and relative root
mean squared errors quickly decrease in minima, means and maxima as the spa-
tial grain decreases, with a balance between underestimation and overestimation,
showing also a relevant spatial autocorrelation of negative and positive values (see
Tab. 1).

As to the bootstrap root mean squared error estimator, underestimation seems
to be prevalent. Nevertheless, its tendency to be conservative is more apparent as
the spatial grain decreases. Indeed, the number of pixels in which the ratio between
the expectation of the bootstrap root mean squared error estimator and the true root
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Table 1 Minima, means and maxima of the absolute bias (AB), root mean squared errors (RMSE)
and its ratio with the expectation of bootstrap root mean squared error (RAT) achieved for the three
populations considered in the simulation study.

AB RMSE RAT
POP MIN MEAN MAX MIN MEAN MAX MIN MEAN MAX
POP1 0.381 27.400 86.010 28.86 58.59 133.80 0.348 0.652 0.919
POP2 0.038 22.770 81.215 12.93 35.99 92.29 0.221 0.592 1.100
POP3 0.003 14.243 65.035 6.00 23.43 73.88 0.263 0.730 1.809

mean squared error is greater than 1 increases as the spatial grain decreases. It is
probable that with a thinner partition conservativeness over the whole area can be
achieved.

4 Case study

The proposed mapping strategy was applied to provide the map of densities of wood
volume in the forest estate of Rincine (Central Italy), an area partitioned into square
cells of 23 x 23m?2. For each cell, the values of several auxiliary variables were
available. For sampling purposes, the area was partitioned into 50 blocks of cells
and, following OPSS, one cell was randomly selected within each block, determin-
ing a sample of 50 units. The wood volume of each tree in the selected cells was
reckoned to achieve the wood volume density by three size classes: small, medium
and large trees.

For each class, variable selection was performed using the procedure adopted in
the simulation. Mapping was performed for each size class harmonizing the total of
the interpolated values with the regression estimates of the total over the whole sur-
vey area. Subsequently, the three estimated maps were taken as pseudo-populations

Popt
Pop2

% simulation runs

Pop3

% simulation runs

34567

8 8 10111213141516 17 1819 20

234 5 4 8 9 10 2
number of selacted vanables
s " selected smoothing parameter value

Fig. 1 For each of the three considered populations a) frequencies (expressed as percentage of
the number of simulation runs) of the number of variables adopted in the predicting model; b)
frequencies (expressed as percentage of the number of simulation runs) of the selected smoothing
parameter.
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from which 10,000 bootstrap samples were selected by the OPSS scheme adopted
to select the original sample. From each bootstrap sample, the three bootstrap
maps were achieved for each class repeating the usual steps and the total map was
achieved by sum. Then, bootstrap root mean squared errors were computed for each
of the four maps. Bootstrap samples were also adopted to achieve the bootstrap
root mean squared error of the regression estimator, incorporating uncertainty de-
termined from the variable selection.

The maps of estimated densities within cells show a relevant level of uncertainty
for small trees that decreases for medium trees and becomes satisfactory for large
trees and for the total. High uncertainty for small trees is mainly due to the high
variability in the number of small trees (many of which from scattered forest natural
regeneration) within the selected cells, with many cells with 0 small trees and few
with more than 150 trees. Consequently, as expected (see e.g. [6]), the precision is
deteriorated by the highly clustered spatial pattern.

In order to highlight the improvement when exploiting auxiliary sources of in-
formation, those maps were compared to those obtained using the sole spatial in-
formation and selecting the value of the smoothing parameter from data as in [5].
From this comparison it is evident that the proposed mapping strategy reduces the
excessive smoothing produced by IDW interpolation based on the sole spatial infor-
mation.

5 Final remarks

Despite being data-driven, the proposed mapping strategy is based on several sub-
jective choices, such as the choice of the linear model for performing regression
and the choice of the criterion for implementing the leave-one-out cross-validation.
However, it should be also noticed that these choices only impact on the sample
statistics adopted for mapping, while the precision of the map is objectively deter-
mined by the sampling scheme used for selecting the units partitioning the study
area.

A further issue is that two-phase sampling schemes are usually adopted in forest
inventories, whereas one-phase OPSS was here proposed. However, [4] proved the
consistency of the IDW interpolator if the two-phase scheme continues to provide
spatially balanced samples. As consequence, the procedure can be applied also in
two-phase large-scale forest inventories.

The proposed design-based, data-driven strategy for mapping forest resources
exploiting auxiliary variables, guides the user from the preliminary choice of the
assisting model to the final map and the estimation of its precision, through model
selection, exploitation of selected covariates for mapping, choice of the smoothing
parameter for IDW interpolation, harmonization with traditional estimates of totals
and bootstrap resampling from the estimated map. Moreover, this strategy seems to
be suitable also for mapping environmental attributes besides forestry.
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