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Abstract
A nonnegative integer sequence is k-graphic if it is the degree sequence of a k-uniform simple hypergraph. The problem of
deciding whether a given sequence π is 3-graphic has recently been proved to be NP-complete, after years of studies. Thus,
it acquires primary relevance to detect classes of degree sequences whose graphicality can be tested in polynomial time in
order to restrict the NP-hard core of the problem and design algorithms that can also be useful in different research areas.
Several necessary and few sufficient conditions for π to be k-graphic, with k ≥ 3, appear in the literature. Frosini et al. defined
a polynomial time algorithm to reconstruct k-uniform hypergraphs having regular or almost regular degree sequences. Our
study fits in this research line providing a combinatorial characterization of span-two sequences, i.e., sequences of the form
π = (d, . . . , d, d − 1, . . . , d − 1, d − 2, . . . , d − 2), d ≥ 2, which are degree sequences of some 3-uniform hypergraphs.
Then, we define a polynomial time algorithm to reconstruct one of the related 3-uniform hypergraphs. Our results are likely
to be easily generalized to k ≥ 4 and to other families of degree sequences having simple characterization, such as gap-free
sequences.
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1 Introduction

The degree sequence of a simple hypergraph is the list
of its vertex degrees, usually arranged in non-increasing
order. Given a nonnegative integer sequence π , the pos-
sibility of an efficient test for the existence of a simple
hypergraph having degree sequence π remained unsolved
for many years (see [1,4]). The degree sequence of a simple
k-uniform hypergraph, say k-hypergraph, is said k-graphic,
briefly k-sequence. Note that very little can be said about the
uniqueness of the hypergraphs related to a degree sequence.
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In general, 2-sequences do not guarantee such uniqueness
but in particular cases. Similarly, the same happens when the
degree sequence is regular and almost regular.

The characterization of 2-sequences, i.e., the degree
sequences of graphs, was solved by Erdős-Gallai in [7].

Relying on this result, several polynomial time algorithms
have been defined to reconstruct the incidence matrix of one
of the related graphs.

Assuming that P �= NP, if k ≥ 3 an effective characteriza-
tion does not exist even for the simplest case of 3-hypergraphs
(see Deza et al. [6]).

However, necessary and sufficient conditions to detect the
k-graphicality of an integer sequence π , with k ≥ 3, can
be found in the literature, and they mainly rely on a result
by Dewdney [5], based on a recursive decomposition of π .
This characterization does not yield to an efficient algorithm
and the question to determine a more practical character-
ization remained open. Basing on these results, in [2] the
authors presented some general sufficient and testable con-
ditions for k-graphicality when k ≥ 3. Brlek et al. in [4]
defined a P-time reconstruction algorithm for the case of
regular k-sequences. Later this result was extended to almost
regular k-sequences (see [9]). A remarkable fact is that in
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both cases, all the k-sequences satisfy a simple necessary
and sufficient condition. In our study, we investigate span-
two 3-sequences, i.e., degree sequences where the difference
between their maximal and minimal entry is two, and we
prove that these conditions are not sufficient any more.

This result allows to further restrict the hard core of the
reconstruction problem on 3-uniform hypergraphs, and it
moves in the direction of inspecting the potential of recon-
struction heuristics that base on the maximum span among
the nodes’ degrees. We recall that, similarly to what happens
to graphs, techniques for random hypergraphs generation, as
well as the small world or the scale free properties tend to
condense the degree values inside small integers’ intervals.

Here, we provide evidence that moving from regular or
almost regular sequences to span-two sequences is critical
for the reconstruction of one of the related 3-hypergraphs.

Then, we solve the related reconstruction problem, i.e.,
we define a polynomial time algorithm to reconstruct the
incidence matrix of a 3-hypergraph having a span-two 3-
sequence.

To this aim, we first identify a family of span-two 3-
sequences that we call basic sequences and that are used as
primitive sub-matrices, say blocks, of the incidence matrix
of the hypergraph. At one time, we point out few span-two
sequences that are not 3-sequences. Finally, we show how to
successfully complete the reconstruction of the hypergraph
by vertically concatenating a basic sequence block and some
blocks obtained by using as edges the cyclic shifts of 3-dense
Lyndon words.

So, in the next section, we give the definitions useful for
our study, we point out some relevant previous results and we
introduce the reconstruction problem. Section 3 is devoted to
the consistency problem concerning 3-hypergraphs having
span-two 3-sequences. Then, in Sect. 4, the combinato-
rial characterization of basic sequences is given, and then
reconstruction problem is solved, via a polynomial time
algorithm. Then, we show the characterization of span-two
degree sequences of a 3-uniform hypergraph. We conclude
the article pointing out some open problems concerning the
characterization of other families of degree sequences, in
Sect. 5.

An advantage of our approach based on combinatorics on
words is that all the results are likely to be easily extendable
to k ≥ 4 and to other families of degree sequences having
simple characterization, such as gap-free sequences.

This paper is an extended version of [8] presented at
the International Conference on Discrete Geometry and
Mathematical Morphology (DGMM), May 24-27, 2021,
Uppsala (Sweden). The structure is the same, and the same
tools are used. The novelty is that in the conference paper
only step-two sequences, i.e., of the form (dk, (d − 2)m)

(k,m > 0) have been studied. Now, we extend step-two
sequences to span-two sequences. The problem for the span-

two sequences is technically more challenging than for
span-two sequences, and we find this being a sufficient addi-
tional contribution to be published in a journal paper.

2 Definitions, Previous Results and
Introduction of the Problem

A hypergraph H is defined as a couple (V , E), where
V = (v1, . . . , vn) is a finite set of n vertices, and E is
the set of hyperedges, i.e., a collection of subsets of V ,
{e1, e2, . . . , em} where each ei is non-empty (see [1]). A
hypergraph is simple if it is loopless, i.e., there are no single-
tons among its hyperedges, and without parallel hyperedges,
i.e., e � e′ for any pair e, e′ ∈ E . Moreover, a hypergraph
is said to be k-uniform, briefly k-hypergraph, if each hyper-
edge has cardinality k. The degree of a vertex v ∈ V is
the number of hyperedges e ∈ E such that v ∈ e. The
degree sequence of H is the list of its vertex degrees, usu-
ally written in non-increasing order, asπ = (d1, d2, . . . , dn),
d1 ≥ d2 ≥ · · · ≥ dn . Let us denote by σ(π) the sum of the
elements of π . When H is k−uniform, the sequence π is
called k-graphic. Notice that the case k = 2 corresponds to
graphs.

In this context, we consider the problem of charac-
terizing 3-sequences and reconstruct one of the related
3-hypergraphs. We recall that each hypergraph H = (V , E),
where |V | = n, |E | = m, can be represented through its
incidence matrix, i.e., the m × n binary matrix A = (ai, j ),
with i = 1 . . .m, j = 1 . . . n, such that ai, j = 1 if and
only if the vertex v j belongs to the hyperedge ei . Thus,∑m

i=1 = ai j = d j is the degree of the vertex v j , and when H
is k-uniform we have

∑n
j=1 ai j = k for each hyperedge ei .

So, our study focuses on the characterization of a subset of
3-sequences and the reconstruction of the incidence matrix
of their related 3-hypergraphs.

We underline that if a matrix A is the incidencematrix of a
hypergraph H , then its rows’ and columns’ sums correspond
to the sequence of the cardinalities of the elements of E and
to the degree sequence π , respectively.

Frosini et al. in [9] give a necessary and sufficient condi-
tion to test d-regular or almost d-regular k-sequences, i.e., the
cases π = (d, . . . , d) or π = (d, . . . , d, d − 1, . . . , d − 1),
respectively.

Theorem 1 A sequence π = (d, . . . , d) (resp. π =
(d, . . . , d, d − 1, . . . , d − 1), is the degree sequence of a
k-hypergraph H = (V , E), with |V | = n and |E | = m, if
and only if

1. mk = nd (this implies σ(π) ≡k 0);
2. k ≤ n, d ≤ m;
3. d ≤ k

n

(n
k

)
.
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Moreover, given a regular or almost regular integer
sequence satisfying the conditions of Theorem 1, they define
a P-time algorithm to compute one of the associated k-
hypergraphs by reconstructing its incidence matrix. Such
algorithm relies on the notion of Lyndon words and neck-
laces of fixed density (that we recall hereafter) and uses an
already known algorithm for their efficient generation.

A sequence π is said to have span h if d1 − dn = h. With
h = 0 we have regular sequence, while with h = 1 we have
quasi-regular sequences. Moreover, π is said to be gap-free
if di − di+1 ≤ 1, for all i = 1, . . . , n − 1.

In this paper we investigate 3-sequences having span
two (or span-two sequences), i.e., sequences of the form
π = (dg, (d−1)h, (d−2)p), where the exponential notation
xi indicates the entry x is repeated i times. Then, we show
that their characterization and the reconstruction of (one of)
the related 3-hypergraphs cannot be obtained as a simple
generalization of the results in [8,9].

2.1 Necklaces and LyndonWords

Here, we recall a couple of standard notions of combinatorics
of words that will be useful in the sequel. Indeed, we consider
each row of a matrix as a binary word, and we group them
into equivalence classes according to their cyclic shifts. We
consider each row of a binary matrix as a binary finite word
w ∈ {0, 1}∗, w = w1 . . . wn , whose length n is the number
of columns of the matrix. Given i ∈ {0, . . . , n − 1} the i th
cyclic shift of w is the word si (w) = wi+1 . . . wnw1 . . . wi ,
so that s0(w) = w. We note that applying a cyclic shift to
w, we obtain a different word, unless the cases w = (1)n or
w = (0)n , of the same length, and having the same number
of 1-elements inside. Note that the words repeat after at most
n shifts.

Following the notation in [11], the binary necklace (briefly
necklace) of a binary word w is the equivalence class of
all its cyclic shifts. We identify a necklace with the lexico-
graphically least representative w in its equivalence class,
denoted by [w]. The set of all (the words representative of)
the necklaces with length n is denoted N (n). For example,
N (4) = {0000, 0001, 0011, 0101, 0111, 1111}. An impor-
tant class of necklaces are those that are aperiodic. An
aperiodic necklace (i.e., one with period greater than or equal
to n) is called a Lyndon word. If w is a Lyndon word, then it
cannot be expressed as a power of one if its proper sub-words.
Let L(n) denote the set of all Lyndon words with length n.
For example, L(4) = {0001, 0011, 0111}. It holds the prop-
erty that a word w of length n is a Lyndon word if and only
if its necklace has n different elements. We denote fixed-
density necklaces and Lyndon words in a similar manner by
adding the parameter h to represent the density of the word.
Thus, the set of necklaces with density h is represented by
N (n, h), and the set of Lyndon words with density h is rep-

Fig. 1 The matrix M(0111). Note that all its columns’ and rows’ sums
equal 3. Since all its rows are different, then it is the incidence matrix
of a 3-hypergraph

resented by L(n, h). For example, N (4, 2) = {0011, 0101},
and L(4, 2) = {0011}.

It is known fromGilbert et al. [10] that the number of fixed
density necklaces and Lyndon words is

N (n, h) = 1

n

∑

j | gcd(n,h)

φ( j)

(
n| j
h| j

)

,

L(n, h) = 1

n

∑

j | gcd(n,h)

μ( j)

(
n| j
h| j

)

,

respectively, where the symbols φ and μ refer to Euler and
Möbius functions. We will be interested in Lyndon words
with density 3. In particular, we enlighten the connection
between these objects and our problem, denoting by M(w)

the matrix obtained by vertically concatenate all the different
cyclic shifts of awordw. For example,M(0111) is thematrix
depicted in Fig. 1.

Since the cardinality of [w] (i.e., the number of rows of
M(w)), where w is a word of length n and density h, is a
divisor of n, the following trivially holds:

Proposition 1 If w is a Lyndon word of length n and den-
sity h, then the cardinality of [w] is equal to n. The rows’
and columns’ sums of M(w) are all equal to h and it is the
incidence matrix of a h-hypergraph.

3 The Characterization of 3-Sequences
Having Span-Two

Given a generic 3-sequence π = (d1, . . . , dn), we define the
complement of π , denoted by π , the vector π = (dmax −
d1, . . . , dmax − dn), where, according to Theorem 1, 3.,
dmax = 3

n · (n
3

)
. A direct consequence of the definition of

complement of a degree sequence is the following proposi-
tion:

Proposition 2 A degree sequence π is 3-graphic if and only
if its complement is 3-graphic.

Proof Since π is 3-graphic, then there exists an incidence
matrix M associated with π . Given the incidence matrix Mn

associated with the regular vector (dmax, dmax, . . . , dmax) of
length n, the reconstructed 3-hypergraph is regular and it
is trivially unique since it contains all the possible different
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rows. We remove all the rows of the submatrix M , and we
obtain the incidencematrix of a 3-hypergraph associatedwith
the mirror image of the vector π (i.e., the vector π read
from right to left). By flipping horizontally the columns of
the obtained matrix, we find the incidence matrix of a 3-
hypergraph having π as degree sequence. Hence, π is 3-
graphic. 	

Example 1 Assuming that π = (3, 3, 1, 1, 1) is 3−graphic,
we get that also its complement π = (5, 5, 5, 3, 3) is
3−graphic.

In this paper, we characterize the 3-sequences having span
two, i.e., of the form

π = (dg, (d − 1)h, (d − 2)p), with g > 0, h, p > 0.

With h = 0 we have the step-two degree sequences π =
(dg, (d − 2)p) (also investigated in [8]).

Let us denote by P , the set of all span-two sequences
whose maximum value satisfies the three conditions of The-
orem 1. Clearly, span-two 3-sequences are included in P .

We consider the reconstruction problem for span-two
sequences of P of length n, starting with the smallest value
of n. There are no 3-hypergraphs having span-two degree
sequences of length n ≤ 4, indeed an easy exhaustive
check reveals it. Concerning span-two sequences inP , whose
length is n ≥ 5, we prove the following result:

Proposition 3 Every span-two sequence of the form:

(i) π = (23, 0p), with p ≥ 2;
(ii) π ′ = (2, 1, 0p), with p ≥ 2;

is not a 3-graphic sequence.

Proof The instance π = (23, 0p) admits a unique matrix
which cannot be the incidencematrix of a hypergraph, since it
would need twoequal rows.Therefore, the only 3-hypergraph
that satisfies the degree sequence π the one with two equal
hyperedges and this goes against the hypothesis that the
hypergraph is simple. Concerning π ′ = (2, 1, 0p), there is
no matrix giving it, since we are dealing with 3-hypergraphs.

	

Let us denote by N the set of sequences of type (i) or

(i i), and their complements. Let us call basic sequences the
integer sequences (dg, (d − 1)h, (d − 2)p) ∈ P\N , with
2 ≤ d ≤ 4, and the sequences (53, 3p), (5, 4, 3p+1), with
p ≥ 3. These sequences are called basic since their entries
haveminimal value, and so they constitute the final sequences
to be reconstructed in the recursive reconstruction strategy
that we are going to define. Their reconstruction (described
in Theorem 2) needs to be treated separately from the other

sequences in P . For instance, with n = 5 we have the fol-
lowing basic sequences:

(2, 2, 1, 1, 0), (3, 3, 1, 1, 1), (3, 2, 2, 1, 1), (3, 3, 3, 2, 1),
(4, 2, 2, 2, 2), (4, 4, 4, 4, 2), (4, 3, 3, 3, 2), (4, 4, 3, 2, 2).

We observe that, according to the definition, the sequence
(5, 5, 5, 3, 3) (resp. (5, 4, 3, 3, 3)) is not a basic sequence.
Indeed, it is the complement of (3, 3, 1, 1, 1)
(resp. (3, 3, 3, 2, 1)).

Let us recall the following (standard) partial order on inte-
ger sequences π and π ′ having the same length n: we say
that π � π ′ if and only if for each 1 ≤ i ≤ n, it holds
π(i) ≤ π ′(i).

We underline that the following theorem extends Propo-
sition 2 of [8].

Theorem 2 Each basic sequence is 3-graphic and it can be
reconstructed using the shifts of three Lyndon words at most.

Proof We obtain the result by defining, for each type of basic
sequence π , a class of 3-hypergraphs satisfying it. We con-
sider separately the cases of the basic sequences:

1. (2g, 1h, 0p), with g > 0, h ≥ 0, p > 0 and such that
g + h + p > 4, and |g − h| ≡3 0;

2. (3g, 2h, 1p), with g > 0, h ≥ 0, p > 0 and such that
g + h + p > 4, and |p − h| ≡3 0;

3. (4g, 3h, 2p), with g > 0, h ≥ 0, p > 0 and such that
g + h + p > 4, and |g − p| ≡3 0;

4. (53, 3p), (5, 4, 3p
′
) with p ≥ 3, p′ ≥ 2.

Let us study the 4 cases separately.

1. Let us define the following algorithm:

Algorithm 1 CompBasic
1: Input: an integer sequence π of length n.
2: Output: An integer matrix M having column sums π .

3: n = g + h + p; w = (13, 0n−3); M = ∅;
4: let πM be the column sums vector of M ;
5: for i = 1 : n − 3 do
6: M ′ = M 
 si−1(w); % 
 being the vertical concatenation of

two matrices;
7: % si−1(w) being the (i − 1)th cyclic

shift of w;
8: if πM ′ � π then
9: M = M ′;
10: end if
11: end for
12: return M = M 
 (π\πM ).
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We proceed in proving,

Property 1 Let π = (2g, 1h, 0p), with g > 0, h, p > 0, and
σ(π) ≡3 0 (the sum of the elements of π being a multiple
of three). The run of CompBasic(π) returns the incidence
matrix M of a 3-hypergraph having degree sequence π .

Proof We start by observing that on input π = (2g, 1h, 0p),
at each run i of the for-loop, with i > 1, the sequence πM (2 :
n) is weakly decreasing. This statement can be proved by
induction:

Base: when i = 2, it holds πM = (1, 2, 2, 1, 0n−4);
Step: by inductive hypothesis we have that the sequence
πM is weakly decreasing up to the i th iteration of the
for-loop. Iteration i + 1 acts on the following possible
configurations (position i + 1 of πM ′ is underlined):

(i) πM = (1, 2, . . . , 2, x, 0n−i−2),with x ∈ {0, 1, 2}.
The vertical concatenation M ′ = M 
 si (w) pro-
duces πM ′ = (1, 2, . . . , 3, x + 1, 1, 0n−i−3) � π , so
no updates are produced on M and πM maintains the
weakly decreasing property;
(i i) πM = (1, 2, . . . , 1, x, 0n−i−2), with x ∈ {0, 1}.
The vertical concatenation M ′ = M 
 si (w) pro-
duces πM ′ = (1, 2, . . . , 2, x + 1, 1, 0n−i−3), that,
according to the upper bound imposed by π , can
be accepted, updating the matrix M and still pre-
serving the weakly decreasing property. Note that,
if M ′ is not accepted, then π(i + 2) = x , and so
π(i + 1) = πM ′(i + 1) + 1. Consequently, i + 1 is a
position where π and πM ′ differs;
(i i i) πM = (1, 2, . . . , 0, 0, 0n−i−2). The verti-
cal concatenation M ′ = M 
 si (w) produces
πM ′ = (1, 2, . . . , 1, 1, 1, 0n−i−3), that, according to
the upper bound imposed by π , can be accepted,
updating thematrixM and still preserving theweakly
decreasing property.

Finally, we observe that, at the end of the for-loop, πM

and π does not differ on three consecutive elements i , i + 1,
i + 2: if so, the i th iteration of the for-loop would have filled
the gap.

As a consequence of the two above properties, it holds
that at the end of the for-loop πM and π may differ on the
positions {1, g, n−1, n}. Since, by construction, the number
of positions where they can differ is a multiple of three, then
it can be zero or three only. So, the final row π\πM added
to M is either void or has three elements 1, so the output of
CompBasic(π ) is the incidence matrix of a 3-hypergraph as
desired. 	


An application of Algorithm 1 for the reconstruction of
sequences of type (2g, 1h, 0p) is shown in Fig. 2:

Fig. 2 An application of Algorithm 3 for the reconstruction of
sequences of type (2g, 1h, 0p)

2. Now we consider a sequence π = (3g, 2h, 1p), with
g > 0, h ≥ 0, p > 0 and such that g + h + p > 4,
and |p − h| ≡3 0. Let us define CompBasic2 to be the
variant of CompBasic where line 3 is updated with the
following lines to initialize the matrix M

3.1: n = g + h + p;w = (13, 0n−3);
3.2: if g = 1 then;
3.3: M = (1, 0n−3, 1, 1);
3.4: else
3.5: M = (1, 1, 0n−3, 0, 1);
3.6: end if

Again, we proceed in proving

Property 2 Let π = (3g, 2h, 1p), with g > 0, h, p > 0, and
σ(π) ≡3 0. The run ofCompBasic2(π) returns the incidence
matrix M of a 3-hypergraph having degree sequence π .

Proof Also in this case, on input π = (3g, 2h, 1p), at each
run i of the for-loop, with i > 1, the sequence πM (2 : n−2)
is weakly decreasing.

This statement can be proved by induction:

Base: when i = 2, it holds either πM = (2, 15, 0n−6) or
πM = (2, 2, 14, 0n−6) or πM = (2, 3, 2, 1, 0n−4);
Step: by inductive hypothesis we have that the sequence
πM is weakly decreasing up to the i th iteration of the
for-loop. Iteration i + 1 acts on the following possible
configurations (position i + 1 of πM ′ is underlined):

i) πM = (2, 3, . . . , 3, 2, 1, 0n−i−4, 1, 1). The verti-
cal concatenation M ′ = M 
 si (w) produces πM ′ =
(2, 3, . . . , 3, 2, 1, 0n−i−5, 1, 1) that, according to the
upper bound imposed byπ , can be accepted, updating
the matrix M and still preserving the weakly decreas-
ing property;
i i) πM = (2, 3, . . . , 3, 1, x, 0n−i−4, 1, 1), with x ∈
{1, 0}. By construction, this case cannot be obtained;
i i i) the remaining cases, where the element πM (i) <

3, has been already considered in Property 1.

To reach the hypothesis, we observe that, at the end of
the for-loop, πM and π does not differ on three consecutive
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(a) (b) (c)

(e)(d)

Fig. 3 The application of CompBasic2 to the sequences of type
(3g, 2h, 1p) with parameters a: g = 1, h = 0, p = 6; b: g = 2,
h = 0, p = 6; c: g = 1, h = 1, and p = 7; d: g = 3, h = 3, p = 3; e:
g = 1, h = 5, p = 2

elements i , i + 1, i + 2: If so, the i th iteration of the for-loop
would have fill the gap.

As a consequence of the two above properties, it holds
that at the end of the for-loop πM and π may differ either
in the positions {1, g + h, n − 2, n − 1} or in the positions
{1, g + h, n − 3, n − 2}, according to the value g = 1 or
g > 1, respectively. Since, by construction, the number of
positions where they can differ is a multiple of three, then
it can be zero or three only. So, the final row π\πM added
to M is either void or has three elements 1, so the output of
CompBasic(π ) is the incidence matrix of a 3-hypergraph as
desired. 	


Some runs of CompBasic2 for the reconstruction of
sequences of type (3g, 2h, 1p), with different values of the
parameters g, h and p, are shown in Fig. 3:

3. Now,weconsider the class of sequencesπ = (4g, 3h, 2p),
with g > 0, h ≥ 0, p > 0 and such that n = g+h+ p ≥
6, and |g− p| ≡3 0. Let us define the variantCompBasic3
ofCompBasicwhere the following changes are provided:
Let M be a m × n matrix and r an n length vector, we
indicate by M\r the matrix obtained by deleting row r
from M , if present

5: for i = 1 : n do
12.1: if (π\πM ) = {(2, 1, 0n−4), (2, 0n−2, 1), (2, 2, 1,

1, 0n−4)}
12.2: M = (M\sn−4(w)) or M = (M\sn−3(w));
12.3: end if
12.4: if Check (M);
12.5: return Special (M)

12.6: else
12.7: returnM = M 
 RecMin(π\πM );

12.8: end if

The proceduresCheck (M) and Special(M) deal with few
special cases that arise after the partial reconstruction of M
in the for loop starting in line 5. We describe in words their
simple behaviors: Check (M) returns 1 if π ′ = (π\πM ) is
one of the vectors

{π1 = (2, 0n−1, 1), π2 = (2, 1, 0n−1), π3

= (2, 2, 1, 1, 0n−4)}.

Those cases are treated apart by the procedure Special(M):
It removes from M the rows

(0, 13, 0n−4), (02, 13, 0n−5), (03, 13, 0n−6)

in π1, π2, and π3, respectively. The vector π ′ is updated
accordingly.

Such a row deletion is always possible when the lengths of
π1 and π2 are greater than six, and the length of π3 is greater
than seven, as witnessed by Fig. 4.

Then, Special returns a matrix A satisfying the updated π ′
and involving two Lyndon words different from (13, 0n). All
the possible cases are shown in Fig. 4. Finally, the matrix A
is vertically concatenated with M to obtain the final output
of CompBasic3(π).

So, the procedure RecMin acts on the remaining vectors
π ′ = (π\πM ), i.e., whose elements are in {0, 1, 2}, all but
the last one in decreasing order, σ(π ′) ≡3 0, σ(π ′) > 3, the
element 2 occurs two times at most and they are different
from π3. We denote this class by C.

Algorithm 2 RecMin
1: Input: an integer sequence π ′ ∈ C.
2: Output: A binary matrix A having column sums π ′.

3: n = length(π ′); m = σ(π ′)
3 ; A(1 : m, 1 : n) = 0;

4: A(1, i) = 1; A(1, j) = 1; A(1, j) = 1; where i , j , k are the indexes
in π ′ of the element(s) 2 and the greatest index(s) of the element(s)
1, if at least one element 2 is present in π ′;

5: let imax be the maximum index of the elements 1 in π ′\πA
6: for j = 1 : imax

3 do
7: A( j+1, j) = 1; A( j+1, j+ imax

3 ) = 1; A( j+1, j+2 imax
3 ) = 1;

8: end for
9: return A.

We prove

Property 3 Let π = (4g, 3h, 2p), with g > 0, h ≥ 0, p > 0
and such that n = g + h + p ≥ 6, and |g − p| ≡3 0. The
run of CompBasic3 (π) returns the incidence matrix M of a
3-hypergraph having degree sequence π .

Proof Since the use of the shifts ofw = (13, 0n−3) in M pre-
vents each column sum to overcame 3, from Proposition 2,
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Fig. 4 Three vectors π , i.e., {(4, 27), (4, 32, 24), (44, 24)} that orig-
inate the cases π1, π2, and π3. The procedure Special acts on them
first deleting from the correspondent matrices Mi , i = 1, . . . , 3 the
rows whose elements are underlined. Then, the updated vectors π1, π2,

and π3 are obtained and reconstructed by the matrices A1, A2, and
A3, respectively. The upper and the lower parts of the matrices have
to be vertically arranged to obtain the incidence matrices of three 3-
hypergraphs. Each solution contains three Lyndon words at most

we obtain that the for loop starting in line 5 produces aweakly
decreasing sub-sequence πM (3 : n). Furthermore, since no
elements 1 are present in π , then πM (g + 1 : n − 1) = π

(recall, yet from Proposition 2 that one of the three positions
where πM and π may differ is where the sequence of ele-
ments 2 in π ends, changing into the sequence of elements
1. No differences are present when the sequence of elements
3 changes into that of elements 2).

Since π(n) = 2, the extension of the for loop variable i in
line 5 until n adds to M either the row (1, 1, 0n−3, 1) or the
row (1, 0n−3, 1, 1) or both, according to p ≡3 1, p ≡3 2 or
p ≡3 0 (see Fig. 4 for some examples).

An easy check reveals that for all the three of the above
additions the sequence π ′(1 : n− 1) = π(1 : n− 1)\πM (1 :
n−1) is weakly decreasing, but for the case π = (4, 23k+1),
with k ≥ 2, where π ′ = (2, 03k, 1). Furthermore, by con-
struction, π ′ may contain at most two elements 2 starting
from its first position, and it holds σ(π ′) ≡3 0.

So, if π ′ turns out to be π1, π2 or π3, then Special (M)

successfully completes the reconstruction of a matrix M that
is the incidence matrix of a 3-hypergraph and it uses three
Lyndon words at most. Otherwise π\πM is a sequence in
C, so RecMin creates a new matrix A by adding (line 4 of
RecMin) a first row that allows, by construction, π ′\πA to
be a zero vector, but for a single sequence of elements 1
of length greater than three. Then, RecMin completes the
reconstruction of A by adding rows that are shifts of the same
Lyndonword (lines 6−8 inRecMin). So, also in this case, the
final output of RecBasic3 (π), i.e., the vertical concatenation
ofM and A, produces the incidencematrix of a 3-hypergraph
by using three Lyndon words at most. 	


4. The following cases end our analysis: (53, 3p), (5, 4, 3p
′
)

with p ≥ 3, p′ ≥ 2.

Fig. 5 The reconstruction of π = (5, 5, 5, 3, 3, 3) on the left, and
π = (5, 4, 3, 3, 3, 3, 3) on the right

(1) Concerning π = (53, 3p), p ≥ 3, the 3-hypergraph
can be reconstructed using the matrix obtained from
all cyclic shifts of the word 130n−3, except 0n−313.
Now, we have to reconstruct the matrix associated
with the sequence (23, 0n−6, 13). This can be done
using the Lyndon words 110n−5102, 0110n−510, and
1010n−41. So, we need three Lyndon words, except
for the case where π = (53, 33), where two Lyndon
words are needed. See Fig. 5 (left).

(2) Concerning the case π = (5, 4, 3p
′
), p′ ≥ 2, the

hypergraph can be reconstructed using the matrix
obtained from all cyclic shifts of the word 130n−3,
except 0n−313. Now, we have to reconstruct the
matrix associated with the sequence (2, 1, 0n−6, 13).
This can be done using the Lyndon word 110p

′−210,
and its shift 10p

′−2101. See Fig. 5, (right).

All the basic sequences have been considered, and for
each of them, we have provided a reconstruction strategy
that involves three Lyndon words at most, so reaching the
thesis. 	


Observe that the reconstruction of a basic sequence
requires two Lyndon words at most, except for the cases:
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(i) (43g
′
, 23p

′
) (with minimal length seven);

(ii) (4g, 3h, 2p) (with minimal length five);
(iii) (53, 3p), p > 3 (with minimal length seven).

We point out that the sequences of length 5 are: (4, 3, 3, 3, 2),
(4, 4, 3, 2, 2), and those of length 6 are: (4, 4, 3, 3, 2, 2),
(4, 4, 4, 4, 3, 2), (4, 3, 2, 2, 2, 2), (4, 3, 3, 3, 3, 2). These six
sequences can be reconstructed with two Lyndon words, as
special cases of Theorem 2:

So we can state the following:

Corollary 1 Each basic sequence having length less than
seven can be reconstructed using two Lyndon words at most.

The procedure that reconstructs the incidencematrix asso-
ciated with a basic element π and that relies on the proof of
Theorem 2 is denoted by RecBasic(π ).

4 Reconstructing a 3-Hypergraph from an
Element ofP

We recall that Sawada et al. [11] presented a constant
amortized time (CAT) algorithm FastFixedContent for the
exhaustive generation of necklaces N (n, h) of fixed length
and density. Moreover, Sawada [12] shows that a slight mod-
ification of it, here denotedGenLyndon(n, h), can be used for
the CAT generation of the Lyndon words L(n, h). This latter
constructs a generating tree of the words, and since the tree
has height h, the computational cost of generating k words
of L(n, h) is O(k · h · n).

Let us put together the previous algorithms and define
the procedure RecP(π ) to reconstruct the 3-hypergraph of a
span-two degree sequence π , if it exists. The pseudo-code of
the procedure is provided:

Algorithm 3 RecP(π )
Input: The sequence π = (dg, (d − 1)h, (d − 2)p) ∈ P\N of length
n ≥ 5.
Output: An incidence matrix M of a 3−hypergraph whose degree
sequence is π .
We solve RecP(π ’), where π ′ is the minimum between π and π in the
lexicographical order.
Step 1: We initialize f = 0, and the vector D = π ′.
Step 2: While D is not a basic sequence, do D = D − (3n) and f =
f + 1.
Step 3: B = RecBasic(D), using the Lyndon words �1, . . . , �r , where
r = 2 or 3 depending on D.
If f + r > L(n, 3), then give Failure.
Step 4: By applying GenLyndon(n, 3), generate the sequence of Lyn-
don words, and let w1, . . . , wq , be the set of these Lyndon words after
removing �1, . . . , �r .
Step 5: Using w1, . . . w f , we generate the matrix of the necklaces
M = M(w1) 
 . . . 
 M(w f ). Return M = M 
 B.

Theorem 3 Any sequence π ∈ P\N can be reconstructed
by RecP.

Proof The proof consists in showing that, for any π ∈ P\N
of length n > 4 there is a sufficient number of Lyndon words
required by RecP (π).

We need to consider the cases n = 5 and n = 6 sepa-
rately. Concerning these two cases, we know from Corollary
1 that all basic sequences can be reconstructed using at most
two Lyndon words, so we will just need to prove that all
the sequences π ∈ P\N which are not basic can be recon-
structed.

(1) For n = 5, we have dmax = 6 and L(5, 3) = 2. There
are only four sequences in P\N : π1 = (32, 13) and its
complement π1 = (53, 32), and π2 = (4, 24) and its
complementπ2 = (44, 2).π1 andπ2 are basic sequences,
and they can be reconstructed with two Lyndon words,
so also their complements can be reconstructed.

(2) For n = 6, we have dmax = 10 and L(6, 3) = 3. Any
sequence π = (dg, (d − 1)h, (d − 2)p) with d ≤ dmax,
such that π ≤ π has d ≤ 7. The cases d = 2, 3, and 4
concerns basic sequences, otherwise it holds d ≤ 7, so
π − (3n) is a basic sequence, then three Lyndon words
are sufficient for the reconstruction.

Now, let π ∈ P be a generic sequence of length n > 6,
such that π is less than π in the lexicographic order, and
denote by l(B) the number of words needed to reconstruct
the basic sequence B = B(π) associatedwithπ . The number
of Lyndon words of length n and density 3 is:

L(n, 3) =
⎧
⎨

⎩

1
n

(n
3

)
if n is not a multiple of 3,

1
n [(n3

) − n
3 ] otherwise.

We show that the inequality of Step 3 of RecP is always
satisfied on input π , i.e., there are enough Lyndon words to
reconstruct 3-hypergraph related to π . Precisely, a simple
computation shows that the following inequality holds:

� dmax
2 · 3

n

(n
3

)� − dB
3

+ l(B) ≤ L(n, 3)

where:

– � dmax
2 · 3

n

(n
3

)� is the maximal degree of a span-two degree
sequence of length n in P\N up to complement;

– dB is the greatest degree of a basic sequence (hence either
dB = 2, or dB = 3, or dB = 4, or dB = 5).

From the previous inequality we get:
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Fig. 6 The reconstruction of the
sequences of length 5

– if n is a multiple of 3:

6l(B) − 2dB ≤ (n − 1)(n − 2)

2

that is always satisfied starting from dB = 4 and n = 7
on.

– if n is not a multiple of 3, we get:

6l(B) − 2dB + 2 ≤ (n − 1)(n − 2)

2
.

Again the inequality is always satisfied starting from
dB = 4 and n = 9 on.

	

Remark 1 Observe that Failure occurs if the number of Lyn-
don words of L(n, 3) is not sufficient to reconstruct the
matrix, and the above statement prevents this to occur.

Remark 2 Theorem 3 clarifies the insertion of π = (53, 3p)
and π = (5, 4, 3p+1), with p ≥ 3 among the basic
sequences: the action of RecP on them removes a block (3n),
and produces the sequences (23, 0p) and (2, 1, 0p+1), which
are not the degree sequences of a 3-hypergraph, as stated in
Proposition 3.

The next theorem is an immediate consequence of Theo-
rem 3 and Remark 2.

Theorem 4 A sequence π ∈ P\N is 3-graphic if and only if
π can be reconstructed using the Algorithm RecP.

The validity of RecP(π ) is a simple consequence of Theo-
rem4.Clearly, the obtainedmatrix is the incidencematrix of a
3-hypergraph having degree sequenceπ , indeed by construc-
tion, all the rows are distinct.Moreover, the algorithm always
terminates since, at each iteration, it adds as many rows as
possible to the final solution. Concerning the complexity
analysis, we need to generate O(m) different Lyndon words
and shifts each of them O(n) times. Thus, since the algorithm
GenLyndon(n,3) requires O( f · h · n), that is O(3 · f · n)

steps to generate f words of L(n, 3), the whole process takes
polynomial time.

As a consequence of Theorem 4 we have a simple char-
acterization of the span-two sequences which are 3-graphic.

Fig. 7 On the left, the matrix B = RecBasic((75, 52)); on the right the
reconstruction of π = (75, 52)

Corollary 2 The span-two 3-graphic sequences are exactly
all the sequences in P\N .

4.1 Two Examples of Application of RecP(�)

We illustrate the action of RecP with two examples, the sec-
ond one involving a gap-free sequence.

Example 2 Let us consider the span-two sequence π =
(75, 52) having length n = 7, dmax = 15. Moreover,
L(7, 3) = 5 and, in particular, by applyingGenLyndon(7, 3)
we compute the Lyndon words �1 = 1110000, �2 =
1101000, �3 = 1010100, �4 = 1100100, �5 = 1100010.

– In Step 1, we initialize f = 0, and D = min{(75, 52),
(102, 85)} = (75, 52).

– From Step 2, we get the basic sequence D = (75, 52) −
(37) = (45, 22), and f = 1.

– In Step 3, we apply the procedure B =RecBasic(D),
using the Lyndon words �1, �2, �3. See Fig. 7, (left).

Then r = 3. Since f + r = 4 < L(7, 3) = 5, RecP does
not give Failure.

From Step 4, removing �1, �2, �3 from the set of all avail-
able Lyndon words, we get �4 and �5.
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Fig. 8 On the left, the matrix B = RecBasic((8, 7, 65)); on the right
the reconstruction of π = (8, 7, 65)

In Step 5, to reconstruct (37), we use, for example, all
the cyclic shifts of �5. Thus, vertically concatenating the
obtained matrices, we get the solution depicted in Fig. 7
(right).

Example 3 Let us consider the span-two sequence π =
(8, 7, 65) having length n = 7, again dmax = 15 and we
have the five Lyndon words �1, �2, �3, �4, �5.

– In Step 1, we initialize f = 0, and D = min{(8, 7, 65),
(95, 8, 7)} = (8, 7, 65).

– From Step 2, we get the basic sequence D = (8, 7, 65)−
(37) = (5, 4, 35), and f = 1.

– In Step 3, we apply the procedure B =RecBasic(D),
using the Lyndon words �1, �2. See Fig. 8 (left).

Then r = 2. Since f + r = 3 < L(7, 3) = 5, RecP does not
give Failure.

– From Step 4, removing �1, �2, we get �3, �4 and �5.
– In Step 5, to reconstruct (37), we use, for example, all the
cyclic shifts of �5. Thus, vertically arrange the obtained
matrices, we get the matrix depicted in Fig. 8 (right).

5 Future Developments and Conclusions

In this paper we defined a polynomial time algorithm that
reconstructs the incidence matrix of a 3-uniform hypergraph,
when such a hypergraph exists, from its degree sequence in
case it is a span-two sequence.

The novelty of our approach concerns the use of notions
from combinatorics on words, in particular Lyndon words,

to enhance the reconstruction strategy. The main result con-
cerns the characterization of span-two sequences which are
3-graphic, and states that actually, very few sequences among
those satisfying the conditions (1), (2), and (3) of Theorem
1 are not 3-graphic, i.e., those belonging to the set N .
Degree sequences having span h > 2: we believe that an
analogous rather simple characterization of sequences which
are not 3-graphic cannot be obtained also for generic span-h
sequences, h > 2. For instance, with h = 3, the set N3 of
span-three sequences satisfying the conditions 1., 2., and 3.
of Theorem 1 that are not 3-graphic contains:

(3, 13, 0), (4, 15), (4, 2, 13), (4, 2, 12),

(4, 3, 3, 1, 1), (4, 2, 12), (43, 2, 1)

and

(3, 2, 1, 0p), (32, 2, 1, 0p), (3r , 0p) with

p ≥ 1, and r = 1, 2, 3,

and their complements.Again,we stress that fewnonzero ele-
ments of the sequences prevent them frombeing3-sequences.
Therefore, if the number of nonzero elements overcomes 6,
there exists only 10 sequences in N3.

Unfortunately, it seems that this characterization does not
immediately lead to an algorithm for the reconstruction of
3-sequences having span h, when h > 2. This is due to the
fact that the characterization of basic sequences for h > 2
is quite hard, and so it is the formulation of an analogous of
Theorem 2. To better realize this statement, we investigate
the case h = 3. An exhaustive search computes the following
the span-3 basic sequences whose sums are multiple of three:

� (3p, 2q , 1r , 0s): having length greater than five, and
p, s ≥ 1, q, r ≥ 0;
� (4p, 3q , 2r , 1s) and (5p, 4q , 3r , 2s): with p, s ≥ 1,
q, r ≥ 0 and length greater than five;
� (6, 6, 3q): with q ≥ 4;
� (6, 6, 6, 3q): with q ≥ 3;
� (6, 5, 4, 3s) and (6, 6, 5, 4, 3s): with s > 1.
� (7, 43q+2): with q ≥ 1;

excluding the sequences in N3.
If we want to use a reconstruction strategy similar to that

in RecP, it is necessary to provide a statement analogous
to that of Theorem 2, i.e., we have to prove that any basic
sequence can be reconstructed using a number of Lyndon
words bounded by a constant.

This task turns out to be extremely hard when the relations
between the run lengths of the entries in the sequences assume
the form of a linear Diophantine equation with more than
two variables, as for the gap-free sequences. As an example,
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concerning the sequences (4p, 3q , 2r , 1s), the coefficients
p, s ≥ 1, r ≥ 0 have to satisfy the equation 4p+2r+s = 3z,
whose solutions lie on 3D hyper-planes.

It is worth mentioning that, in the specific case of gap-free
sequences, some different approaches (see [2,3,9]) may help
the reconstruction in the case of span h > 2. Again, these
ad hoc strategies do not admit a generalization as the degree
sequences span increases, underlining the non-polynomiality
of the general characterization problem.
Strategy failure. The strategy used in the definition of
RecP roughly consists in removing blocks of (3n) from the
sequence π in input, until we reach a basic sequence, i.e.,
a sequence from which we cannot remove any other block.
Then, we prove that this basic sequence can be reconstructed
using a minimal number of Lyndon words and that the over-
all number of Lyndon words which are needed is less than
or equal to L(n, 3). We would like to provide an example of
the failure of this strategy.

Example 4 Let us consider the sequence π = (13, 11, 9, 8,
8, 7, 6) of length n = 7. In this case, dmax = 21, L(7, 3) = 7,
and the words are listed in example 3.

The sequence is 3-graphic, indeed one possible 3
-hypergraph solution has the incidence matrix in Fig. 9
(observe that it contains all the 7 Lyndon words). A gen-
eralization of our algorithm would work as follows:

(1) The complement of π is (15, 14, 13, 13, 12, 10, 7) so we
reconstruct π ;

(2) We use two Lyndon words to remove two blocks (37)
obtaining π ′ = (7, 5, 3, 2, 2, 1, 1, 0), which is a basic
sequence;

(3) The sequenceπ ′ can only be reconstructed using six Lyn-
don words, as follows:

So, the application of our algorithm would require eight
Lyndon words, so giving failure as output, whilst π can be
actually reconstructed.

k-uniform hypergraphs.The algorithmRecPwehave defined
is tuned for 3-uniform hypergraphs. A possible direction for
further research follows its generalization to obtain a poly-
nomial algorithm for the reconstruction of generic k-uniform
hypergraphs having a step-two degree sequence. We recall
that the identification of the degree sequences of k-uniform
hypergraphs, k ≥ 3, is an NP-hard problem. Therefore, the
proposed studies aim at limiting its NP-hard core, being fully
aware of the impossibility of a good general characterization.
However, finding a compact nice looking characterization
would be of great interest in order to design algorithms for
real-life applications.

Funding Open access funding provided by Universitá degli Studi di
Siena within the CRUI-CARE Agreement.

Fig. 9 The reconstruction of the incidence matrices of two 3-
hypergraphs having degree sequences π = (13, 11, 9, 8, 8, 7, 6) and
π ′(7, 5, 3, 2, 2, 1, 1, 0)
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