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INTRODUCTION

S
TELLAR clusters are among themost studied celestial objects in the cosmos.

They represent crucial laboratories forunderstandingawide rangeofprob-

lems in different subtopics of astrophysics. As they include a vast num-

ber of stars with masses spanning a broad interval, star clusters are, for in-

stance, essential in the studies of the stellar Initial Mass Function (Bastian et al., 2010a).

In general, all cluster members are born simultaneously and share common primordial

properties since they are the offspring of the same progenitor molecular cloud. This

makes star clusters an excellent subject for studies of stellar evolution (Kalirai & Richer,

2010). Some stellar clusters are also gravitationally bound systems, i. e. are held together

by themutual gravitational attraction of theirmembers. From this point of view, they are

the perfect target for studies on stellar dynamics (Vesperini, 2010).

Stellar clusters are fundamental building blocks of galaxies. The analysis of the spa-

tial distribution in the host galaxy of different types of clusters has often beenused to de-

termine the galactic structure. One example is the distribution of globular clusters in the

Milky Way, which has allowed the estimation of the Milky Way size (Shapley, 1918), the

determination of the Galactic Center, and has established the existence of the galactic

halo (Bica et al., 2006). Or similarly, the distribution of young clusters in external galax-

ies, which is employed to trace star forming regions and the spiral structure in galactic

disks (Adamo et al., 2020).

Stellar clusters are also vital for understanding the star formation mechanism. In-

deed, a relevant fraction of stars is born in clustered environments, as demonstrated

by Lada & Lada (2003), who showed that the contribution to the local star formation

rate from the population of young embedded clusters is similar to that obtained from

őeld stars. This is even more true for massive stars, as almost ∼70% of O-type stars are

observed in clusters or associations (Gies, 1987; Parker & Goodwin, 2007), and at least

∼50% of the remaining stars are identiőed as runaways (de Wit et al., 2005). More ac-

curate estimates seem to lower the percentage of massive stars born outside a cluster to

∼4% (de Wit et al., 2005).
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CHAPTER 0

Last but not least, stellar clusters play a prominent role in high-energy astrophysics.

For a long time, the interest in star clusters by the high-energy astrophysics community

was mainly due to the unusual abundance of extreme objects, often referred to as lusus

naturæ1 or stellar exotica. Indeed, globular clusters, because of their old age and rela-

tively homogeneous population, and isolation from their parent galaxies, are known to

be rich in unusual extreme objects, such as X-rays binaries (Heinke, 2010), pulsars (Ran-

som, 2008), black holes (Maccarone et al., 2007), etc. However, in recent decades, star

clusters, or to bemore accurate, youngmassive star clusters (YMSC), have found them-

selves at the center of attention not so much as a possible cradle for a future genera-

tion of lusis naturæ, but rather as objects capable of producing and accelerating cosmic

rays (CRs). Massive OB-type stars are known to launch powerful winds (Abbott, 1979;

Cassinelli, 1979; Kudritzki & Puls, 2000), and the presence of tens (if not hundreds or, in

themost extreme and rare cases, thousands) of massive stars crammed into a small vol-

ume can generate favorable conditions for boosting particles to very high-energies. Sev-

eral CR production mechanisms have been proposed through the years, such as for ex-

ample, acceleration at the wind termination shock of singlemassive stars (Casse & Paul,

1980; Cesarsky & Montmerle, 1983) or acceleration by wind-wind interaction (Klepach

et al., 2000; Reimer et al., 2006). In the case of compact clusters, the winds from indi-

vidual stars may end up combining, somehow creating a collective cluster wind. In this

scenario, particle acceleration may occur at the cluster wind termination shock (Mor-

lino et al., 2021). As the shock generated by the winds from the stars or by the collective

cluster wind interacts with density inhomogeneities of different scales, broad spectra

of magnetohydrodynamic ŕuctuations are generated. In these systems then, second-

order Fermi acceleration within the turbulent plasma becomes also a possible efficient

mechanism of particle acceleration (Bykov et al., 2020). Finally, in the case of YMSCs

older than∼ 5− 10Myr, the most massive stars gradually leave the main sequence and

rapidly move to their őnal evolutionary stage. At this point, those stars begin to explode

as supernovae, leaving behind supernova remnants (SNRs). In such aged systems, CR

acceleration is achieved thanks to the multiple interactions between SNR shocks and

stellar winds (Bykov & Toptygin, 2001), with a gradual decrease in time of the contribu-

tion to the process from the stars’ winds (Vieu et al., 2022). The possibility that YMSCs

can actually accelerate particles is a fact of extreme relevance in the general panorama

of high-energy astrophysics, especially in connection with the problem of the origin of

CRs. At present, it is well proven, based both on theoretical arguments (Blandford &

Eichler, 1987; Berezhko & Krymskĭi, 1988) and empirical observations (Koyama et al.,

1995; Reynolds, 2008; Helder et al., 2012), that SNRs are a class of sources able to pro-

duce CRs. Nevertheless, the population of SNRs alone has difficulties accounting for

1lusus naturæ is Latin for freaks of nature, mutants, or monsters
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all the observed properties of galactic CRs. More precisely, a single population of SNRs

struggles to reproduce two distinct things: the observed CR composition at Earth and

the so-called knee feature in the CR spectrum. Measurements of CR composition seem

to point to an excess in the ratio of some isotopes, such as for example, the 22Ne to 20Ne

ratio, which is found 5.3± 0.3 times higher than the solar value (Wiedenbeck & Greiner,

1981; Binns et al., 2008). YMSCs can easily explain this excess, as these anomalous ratios

can result from the winds of Wolf-Rayet and massive stars (Gupta et al., 2020).

On a very general ground, the observed CR spectrum at the Earth between ∼ 1012-

− 1018 eV can be adequately described by a broken power law (Workman et al., 2022).

The change in the slope, referred to, in the literature, as the knee, appears to be located

at ∼ 3 × 1015 eV and has been interpreted as the maximum energy reachable by the

population of galactic CR accelerators (Blasi, 2013; Amato, 2014). Celestial objects able

to produce particles up to these energies are commonly called PeVatrons. From both

the theoretical and observational (Aharonian et al., 2019) point of view, SNRs struggle

to accelerate CRs up to such energies, unless under speciőc conditions involving ex-

treme energy releases, at least assuming that the needed magnetic őeld ampliőcation

is well understood (Bell et al., 2013; Cardillo et al., 2015). On the contrary, YMSCs seem

to be promising PeVatron candidates, as suggested by theoretical considerations (Mor-

lino et al., 2021) and tentative observational hints (Cao et al., 2021). The answer to the

century-old enigma about the origin of galactic CRs could therefore lie in having mul-

tiple populations of galactic accelerators: SNRs could account for the bulk of the ob-

served CRs, while particle acceleration associated with the powerful winds of YMSCs

could provide the highest-energy particles. This would in parallel explain the unusual

abundances of some elements. But how to conőrm or eventually reject this scenario? It

is widely known that it is impossible to probe the properties of a given galactic acceler-

ator by observations of CRs at Earth alone. In fact, the propagation of charged particles

below a few 1018 eV in the Galaxy is diffusive because of the scattering with the inter-

stellar magnetic őeld ŕuctuations (Strong et al., 2007; Amato & Blasi, 2018). The infor-

mation on the position of the CR sources is totally lost during the propagation process.

For this reason, the search for CR sources must rely on somewhat indirect investigation

methods based on the interaction between CRs and the interstellar matter (ISM) and

radiation őeld. In practice, one can exploit observations of non-thermal radiation: in

this sense γ-ray emission has a privileged role as it directly traces the presence of high-

energy and very-high-energy particles (Tibaldo et al., 2021). Another promising strategy

is to search for indications of a high ionization rate induced by energetic particles in

dense clouds close to the accelerator (Gabici &Montmerle, 2015). In summary, in order

to assess whether YMSCs are eventually playing a primary role in the origin of galactic

CRs, γ-ray observations and comprehensive studies of the environment close to these
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objects are of extreme importance.

In this thesis, we investigate the observational properties of YMSCs as very-high-

energy sources under the assumption that CR production occurs at the cluster wind

termination shock. In particular we will assume CR acceleration and propagation as

described by themodel ofMorlino et al. (2021) and derive different observational signa-

tures that can help constrain the model and test the efficiency of clusters as CR acceler-

ators. The entire work is divided into three distinct parts.

First, wewill try to assess whether and towhat extent the employedmodel of particle

acceleration can effectively reproduce the observed γ-ray emission from a given YMSC.

To this purpose, we will focus on the scientiőc case of Cygnus OB2. This is one of the

most iconic cases when discussing YMSCs as CR sources since several experiments have

detected diffuse γ-ray emission in both the high-energy (Ackermann et al., 2011a) and

very-high-energy (Bartoli et al., 2014a; Abeysekara et al., 2021a) bands towards its posi-

tion. Moreover, the detection of a 1.4 PeV photon from the same region (Cao et al., 2021)

makes it one of the most promising PeVatron candidates in the Galaxy.

In the second part of the thesis, we will rather focus on YMSCs as a population of γ-

ray sources. If YMSCs are indeed particle accelerators, then it is natural to think of them

also as γ-ray emitters. In view of the new and upcoming facilities for γ-ray observations

such as the Cherenkov Telescope Array (Cherenkov Telescope Array Consortium et al.,

2019), the Astri Mini Array (D’Aì et al., 2022; Vercellone et al., 2022), and the Southern

Wide-őeld Gamma-ray Observatory (Bakalová, 2022), simulating the emission from a

synthetic population of galactic YMSCs becomes of fundamental importance. In fact,

the comparison between the number of expected versus detected YMSCs can be used to

discriminate the capabilities of these sources as particle accelerators and their contri-

bution to the galactic CR sea. Moreover, as we will see, the γ-ray emission frommost of

these objects is predicted to be extended andpotentially difficult to disentangle from the

diffuse. Consequently, YMSCs could also signiőcantly contribute to the galactic diffuse

γ-ray emission, and the estimation of this contribution is of particular importance for

all those studies that require a solid modelization of the galactic background emission,

such as, for instance, the search for dark matter in the Galactic Center.

In the third and őnal part of the work, we will focus on the low- energy CRs and their

impact on the ISM surrounding the stellar clusters. In addition to highly-energetic par-

ticles, YMSCs are expected to produce also a (largely more conspicuous) population of

CRs with energies below 1 GeV. Differently from the cluster starlight, these particles are

capableofpenetratingdeep in thecoreof thedensemolecular clouds that are commonly

found in the neighborhood of YMSCs, ionizing the cold neutral medium of which the

clouds aremade. The general aimwill then be to evaluate the ionization rate of amolec-

ular cloud located close to a YMSC. This type of investigation is of particular interest for
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two main reasons. First, the measurement of the ionization rate can be employed as

a test to trace the presence of freshly accelerated CRs. This information can be subse-

quently combinedwith independentγ-rayobservations tohave a self-consistentpicture

of the CR distribution around the stellar cluster. Secondly, depending on howmuch the

ionization rate is different from the Spitzer value (Spitzer & Tomasko, 1968), low-energy

CRs could be an additional feedback channel for YMSCs to regulate the star formation

process in their environment.

The following manuscript is divided into őve main chapters. In the őrst chapter, we

give a general review of YMSCs and their main properties, followed by a discussion of

their role as particle accelerators. We will review themain accelerationmodels in stellar

clusters and the indirect techniques to observe CRs at the sources. The bulk of the work

is then presented in chapters two, three, and four, wherewe analyze the scientiőc case of

CygnusOB2, the emission froma synthetic populationof YMSCs, and the estimate of the

ionization rate in clouds close to a stellar cluster. Finally in chapter őve, we summarize

and discuss the conclusions of the work.
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CHAPTER 1

YOUNGMASSIVE STAR CLUSTERS AS

VERY-HIGH-ENERGY SOURCES

A
S primary players in different őelds of astrophysics, from stellar physics to

physics and astronomy of star formation, and recently also in the high-

energy astrophysics őeld, theproperties of stellar clusters havebeenwidely

investigated. In this chapter, we provide an overviewof these objects, start-

ing from their classiőcation based on fundamental characteristics, and then brieŕy re-

viewing their evolutionary path. Afterward, we describe their capabilities in shaping the

ISM around them. We then concentrate on stellar clusters as CR accelerators, giving

a comprehensive summary of the most widely considered acceleration mechanism in

these systems.

1.1 What is a stellar cluster?

When it comes to deőning a star cluster, several criteria can be given (Krumholz et al.,

2019), and unfortunately, there is no single deőnition that can be used universally. It

follows that the deőnition of a star cluster has a certain degree of arbitrariness, and it

may change from author to author, directlymarking their research case. Among the sev-

eral proposed formulae, one of the most widespread is the one given by Lada & Lada

(2003), who deőne a stellar cluster as a group of stars with a mass density large enough

(ρ⋆ ≳ 1M⊙pc
−3) to withstand tidal disruption in Solar Neighborhood conditions and,

in parallel, to have enough members to avoid kinematical evaporation for at least 100

Myr. Another possible criterion is the one proposed by Portegies Zwart et al. (2010), who

deőne a star cluster as a group of stars that are gravitationally bound to one another. Ac-

cording to the virial theorem, a system of stars with density ρ⋆ and size r is considered

1



CHAPTER 1

to be gravitationally bound if the velocity dispersion σ is such that σ ≲ r
√
Gρ⋆. The pre-

scription suggested by Lada & Lada (2003) is somewhat more general as it also includes

unboundclusters, andas far as thepresentwork is concerned, it is perhaps themost suit-

able. In fact, let us now think for amoment in termsof the involved timescales. Aswewill

justify in the next sections, for the aim of this thesis, we are interested in those clusters

that are young enough so that the pollution by supernova (SN) explosions is relatively

low. Thismeans thatwe are interested in clusters younger than∼10Myr, a timescale that

is close to the lifetime of a star with mass 20M⊙. As the number of stars more massive

than 20M⊙ is relatively low1 on average, clusters younger than∼10Myr are expected to

havewitnessed fewSNexplosions. The time required for anunbound system todisperse

is the crossing time, deőned as tcr = r/σ ∼ 1/
√
Gρ⋆. Considering the threshold in ρ⋆ set

by Lada & Lada (2003), the crossing time is tcr ∼ 10Myr. It follows that unbound clus-

ters must also be considered, as they survive long enough to potentially contribute to

CR acceleration. In addition to the threshold in the stellar density, the deőnition of Lada

& Lada (2003) includes also a condition on theminimum number of stars in the cluster,

due to the requirement of having a kinematic evaporation time less than 100 Myr. For

a cluster withN members, the relaxation time is τrelax ≈ (0.1N/ lnN)tcr (Lada & Lada,

2003), and the evaporation can be calculated as τev ≈ 100τrelax. Again, even for clus-

ters with a relatively small number of members, the evaporation timescale is well above

our threshold of 10 Myr. To sum up, we can safely use Lada & Lada (2003) deőnition of

star clusters, with the clariőcation that, during ourwork, wewill focus speciőcally on the

subcategory of young clusters (age less than 10 Myr).

Yet, youth is not the only parameter we require. As the presence of massive stars is a

fundamental ingredient forCRacceleration, we alsoneed to consider only those clusters

with a signiőcant number of massive stars. Unfortunately, it is not straightforward to

formally express this condition. Once the stars initial mass function is known (Salpeter,

1955; Kroupa, 2001), the number of massive stars clearly depends on the cluster mass.

In this way, the condition can be shifted to a lower limit cut on the star cluster mass. Let

us now, for the moment, őx this threshold to 103 M⊙, we will then justify a posteriori in

ğ 3.2.4 that this limit is reasonable.

1This statement is somewhat tricky, as the population of stars is potentially correlated with the mass
of the stellar cluster, see ğ 3.1.1
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1.2 The evolutionary path of a young massive star clus-

ter

The evolutionary path of a stellar cluster can change drastically from one case to an-

other. Clusters that are not gravitationally bound are expected to disperse in a few cross-

ing times. Even for bound clusters, their long-term fate is not straightforward, as the

complex inner stellar dynamics may induce kinematic evaporation on timescales of a

few hundred Myr. Despite this, the early evolutionary stages of the various types of star

clusters should, on average, be quite similar. On a very general ground, we can divide

the initial phases of stellar clusters evolution into two main parts: a őrst initial stage,

where the cluster members are forming as a result of the collapse of dense gas clumps

in giant molecular clouds, and a second phase, when the őrst stars light up, generating

stellar feedback on the surrounding gas and stopping the star formation process. In the

case ofmassive star clusters, during the second stage, the presence of a signiőcant num-

ber of massive stars with their powerful winds can produce large bubbles őlled with hot

shocked wind material. In the next two subsections we will describe separately these

two evolutionary stages.

1.2.1 The birth of a stellar cluster

Star clusters are known to form within massive large complexes of cold molecular gas

(Fig. 1.1a), usually called giant molecular clouds (GMCs). The gas within a GMC is not

uniformly distributed. On the contrary, GMCs are characterized by having a self-similar

structure over a wide range of scales down to individual protostellar cores, which are

aggregated into cluster-forming dense gas clumps (Williams et al., 2000; McKee & Os-

triker, 2007) with typical sizes of 0.1− 2 pc andmasses ranging from a few solar masses

up to thousands of solarmasses (Lada & Lada, 2003). On average, less than∼ 10% of the

volume and mass of a GMC end up in the form of dense gas (> 10 cm−3). The clumps

where clusters are born are highly localized and occupy a small fraction (a few percent)

of the volume of a GMC. The mass distribution of these cluster-forming clumps is well

described by a power law with index ∼ −1.7 (Kramer et al., 1998). Interestingly, with

such index, it directly follows that most of the mass of the dense gas component of a

GMC is found in its most massive cores. Consequently, as the star formation process is

triggered only in dense gas regions, it is not surprising that a signiőcant fraction of stars

are born in a clustered environment, coherently with the mass distribution of the GMC

clumps.

As not the whole GMC is in form of dense gas, it follows that not the entire mass

of a GMC (Mgas) ends up into stars (Mstars). The parameter describing the fraction

3
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of gas converted into stars is the star formation efficiency (SFE), deőned as ϵSFE =

Mstars/(Mgas + Mstars), which is ϵSFE = 1 if all the gas ends up in the form of stars.

For the entire GMC, the ϵSFE is usually of the order of a few percent (Duerr et al., 1982).

The value increases up to∼ 30%when considering single cluster-forming clumps (Lada

& Lada, 2003). The implied low-efficiency at small scales indicates that, at some point,

there is something preventing the process of star formation fromproceeding (Krumholz

et al., 2019). This is thought to be related mainly to feedback processes associated with

the lighting-up of the őrst stars2, although some feedback may also arise from the out-

ŕowsof low-massprotostellar objects (Bally, 2016). As the stars enter themain sequence,

stellar feedback processes sweep away the gas, causing the cluster to emerge from its

cradle and begin the next evolutionary stage.

Before proceeding further, it is interesting to note the following: since the SFE is gen-

erally low, a signiőcant fraction of the mass is still in the form of dense gas, which will

be swept away when stellar feedback mechanisms kick in. So from the point of view

of stellar clusters, the gas expulsion can potentially be a destructive process3, as many

systems that were once gravitationally bound may őnd themselves deprived of most of

their mass.

Whether a cluster may survive or not from its birth as a bound system can be as-

sessed by comparing its dynamical crossing time with the timescale of gas expulsion

(τge), which ultimately depends on the dominant feedback process. If τge ≪ tcr, which

seems to be the case for massive star clusters, since OB-type massive stars produce the

strongest feedback (Krumholz et al., 2014), the cluster should disperse unless the SFE

is not at least as high as ∼ 50% (Wilking & Lada, 1983). However, this seems to be in

tension with observations.

The formationof clusters and the issueof infantmortality is still not fully understood.

The process is still under debate (see Lada & Lada (2003) and references therein for a

comprehensive review of the problem). Nevertheless, as stated in ğ 1.1, assuming that

unbound systems can last at least a few crossing times, they live long enough to possibly

contribute as CRs accelerators.
2For the sake of completeness, itmust bementioned that aminor contribution to the quenching of the

SFE can also be caused by the dynamical properties of the molecular clumps, i.e., if they are not bound
(Dobbs et al., 2011) or are highly turbulent (Krumholz &McKee, 2005).

3As some sort of cosmic joke, the death of unbound star clusters has been proposed as a mechanism
for the birth of the loose aggregations of massive stars known as OB associations. However, this picture
has lost relevance over the years due to the growing body of opposing evidence (see Wright et al. (2022)
and references therein for a well made review on the topic)
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(a) (b) (c)

Figure 1.1: Three different celestial objects representing different evolutionary stages of a
massive stellar cluster. (a) Herschel observations of the giant molecular cloud DR21 localized in
the Cygnus-X star-forming complex. (b) Hubble observations of the embedded cluster RCW 38.
The star cluster itself is invisible at the optical wavelength as it is still deep within its parental
cloud. (c) JWST observation of the YMSC 30 Doradus emerging from its GMC as it blows away

the surrounding gas.

1.2.2 Emerging from the cradle: creation of a wind bubble

As soon as stellar feedback kicks in, quickly bringing the star formation process to a halt,

the cluster is formally born. At the very beginning, the cluster is still embedded in the

dense gas of its parental clump, buried deep within the GMC. Objects in this evolution-

ary phase are often called embedded clusters (see Fig. 1.1b). The embedded phase is

usually short-lived as the feedback from the stars rapidly blows away the dense gaseous

envelope.

Stellar feedbackmay come in different ŕavors. Massive stars are known to produce a

signiőcant ŕux of ionizing photons. The presence of ionizing radiation directly heats the

surrounding gas up to 104 K. If not trapped, the heated gaswill ŕowout of the cluster in a

breeze called champagne ŕow. This process can effectively remove a certain amount of

gas (Williams & McKee, 1997). In parallel, the light from the same zero-age population

can also produce signiőcant direct radiation pressure on the surrounding gas. The emit-

ted power (the estimated luminosity tomass ratio is∼ 1100 L⊙ M
−1
⊙ ) is mostly in the UV

band, where the ISM is highly opaque. Depending on the density, thismechanism is one

of the most efficient gas removal processes (Fall et al., 2010). In the case of a very thick

envelope, the indirect radiation pressure provided by multiple cycles of absorption and

re-emission from the dust may also play an important role (Thompson et al., 2015).

Last but not least comes the feedback from the powerful winds of massive OB-type

stars. Hot stars with surface temperatures higher than a few 104 K are known to blow

fast winds with speeds up to several thousand km s−1 (Kudritzki & Puls, 2000). The en-

ergy injected through this channel can be considerably high, and slightly less or of the
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order of supernova explosions (Krause et al., 2013). As the stellar wind impacts the sur-

rounding gas, the wind material gets shocked and can reach temperatures as high as

107 K, entering a regime where radiation cooling becomes practically inefficient. This

leads to the formation of hot, expanding bubbles (Castor et al., 1975;Weaver et al., 1977)

that push away all the surrounding cold gas putting formally an end to the embedded

phase (see Fig. 1.1c). The physics of these bubble-like structures has been comprehen-

sively studied byWeaver et al. (1977), who have developed a simple analytical model for

their evolution. Although the model by Weaver et al. (1977) was originally intended for

bubbles generated by isolated massive stars, it can be fairly well applied to the case of

YMSCs if the cluster is compact enough (we will better state this condition soon) so that

the winds from the central starsmay combine together to form a collective cluster wind.

Understanding these structures is of vital importance for the scope of our work. In the

following, we will review the evolution of YMSC bubbles following the work of Weaver

et al. (1977).

1.2.3 Evolution of the wind bubble

In a general, ideal, situation, massive stars within the clusters start to blow fast winds as

soon as they enter the main sequence. The winds from the individual stars combine to

generate a spherically symmetric cluster wind with a speed vw. As a consequence of this

wind, the YMSC loses mass at a rate Ṁ . The mechanical wind luminosity Lw is:

Lw =
1

2
Ṁv2w . (1.1)

The collision of the supersonic, cold, cluster wind (region 1 in Fig. 1.2) with the sur-

rounding ism generates a shock that propagates in the latter (forward shock) and a re-

verse shock that propagates backward towards the origin of thewind. This reverse shock

becomes thewind termination shock (TS). Thewindmaterial is sloweddownandheated

up when crossing it, and a bubble of hot gas is formed (region 2 in Fig. 1.2). A contact

discontinuity separates the bubble of shocked windmaterial from the shocked ISM that

piles up on top of it (region 3 in Fig. 1.2).

The dynamical evolution of a wind bubble can be divided into: early, intermediate

and late stage, which differ primarily for the importance of losses. The early phase is

characterized by a fast adiabatic expansion of the bubble, during which radiative losses

do not affect the dynamics of any region. This is not true anymore during the intermedi-

ate stage, when radiative losses cause the contraction of the shell of shocked ISM, while

the region őlled with the hot shocked wind material continues to expand adiabatically.

Finally, in the late phase, non adiabatic losses begin to inŕuence the whole hot cavity.

6



CHAPTER 1

Figure 1.2: Sketch of the bubble structure generated by a YMSC.

Let us now summarize one by one each evolutionary stage.

Early stage of a wind bubble

The early stage of evolution is expected to last a short time (a few 104 yr), so, in general,

it is not particularly relevant in practical terms. Nevertheless, let us nowproceed in eval-

uating the system evolution. The expression of the FS position as a function of time can

be easily found through a dimensional analysis, and it is:

RFS(t) = AL1/5
w ρ

−1/5
0 t3/5 (1.2)

where A is a dimensionless constant to be determined. To obtain the evolution of the

size of the contact discontinuity (Rc), one needs to numerically integrate the equations

of continuity of mass and momentum for the warm shocked shell of ISM (region 3) un-

der the assumption of adiabatic expansion. The position ofRc is then set where the shell

density proőle drops to zero, that is Rc ≃ 0.86RFS(t). Obtaining the evolution of the

cold wind region boundary (RTS) is not straightforward, as while the outer shell has a

self similar evolution, this is not true for the region őlledwith hot shockedwindmaterial

(region 2). One possible way to obtain an analytical expression forRTS is to consider re-

gion 2 as almost isobaric. Under this assumption, which is indeed a good approximation
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(Weaver et al., 1977), it is possible to derive from the continuity equation and adiabatic

law the proőles of the velocity, density and pressure in region 2. The normalizations of

these proőels are obtained using the Rankine-Hugoniot relations for shocks (assuming

to known the wind speed). By imposing the regularity conditions at the contact discon-

tinuity, one őnds:

RTS(t) = 0.90A3/2Ṁ
3/10

ρ
−3/10
0 v1/10w t2/5 (1.3)

withA = 0.88. The early evolutionary stage lasts until the systemagebecomes compara-

ble to the cooling timescale of the outer shell, atwhich time the adiabatic approximation

cannot be used. The time at which this occurs is (Falle, 1975):

τshell collapse = 2.33× 103

(︄

Ṁ

M⊙yr−1

)︄0.32
(︃

v2w
km2s−2

)︃0.32
(︂ n0

cm−3

)︂−0.68

yr (1.4)

which for n0 = 1 cm−3 and in the case of an extreme YMSCwith Ṁ = 10−4M⊙yr
−1 and

vw = 3000 kms−1 is τshell collapse ≃ 2× 104 yr.

Intermediate stage of a wind bubble

As the outer shell cools, it contracts to form a thin, cold and dense, isobaric layer. Con-

sequently, in this phase,RFS ≃ Rc, and it is then reasonable to assume that the position

of the shell marks the total extent of the bubble, that we shall name asRb ≡ RFS ≃ Rc.

To obtain the evolution of the bubble size (the former forward shock), we can consider

the momentum equation for the outer shell:

d

dt

[︃

Ms
dRb

dt

]︃

= 4πR2
FSP2 (1.5)

where P2 is the pressure in the hot bubble (region 2) and Ms is the mass contained in

the swept-up shell, which isMs = (4/3)πρ0R
3
b . Eq. (1.5) tells us that the momentum of

the outer shell changes due to the work done by the expansion of the hot shocked wind

material. This induces a variation of the energy of the hot gas equal to:

dE2

dt
= Lw − 4πR2

bP2
dRb

dt
(1.6)

withE2 as the energy of the hot gas, deőned as:

E2 =
4

3
πR3

b

P

γg − 1
= 2πR3

bP (1.7)
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where in the last equality we have assumed the case of a monoatomic gas (γg = 5/3).

Finally, assuming that, similarly to the earlier stage, the forward shock radius can be

parametrized asRb ∝ tα, combining Eq. (1.5ś1.7) leads to:

Rb(t) =

(︃

250

308π

)︃1/5

L1/5
w ρ

−1/5
0 t3/5 (1.8)

P2(t) =
7

(3850π)2/5
L2/5
w ρ

3/5
0 t−4/5 . (1.9)

Interestingly, the expression of Eq. 1.8 is equal to that of Eq. 1.2, but with A = 0.76, as

a consequence of the contraction of the outer shell. Eq. 1.9 can be used to obtain an

estimation of the TS position during this intermediate stage, which can be calculated by

imposing the balance between the ram pressure of the wind and P2:

Ṁvw
4πR2

TS

=
7

(3850π)2/5
L2/5
w ρ

3/5
0 t−4/5 , (1.10)

which returns:

RTS(t) =

√︃

(3850π)2/5

28π
Ṁ

1/2
v1/2w L−1/5

w ρ
−3/10
0 t2/5 . (1.11)

Note that in Eq.1.6 the contribution of radiation losses is not included. The intermediate

stage is considered to last until radiation losses begin to be relevant, and the assumption

of adiabatic expansion ceases to be valid. To estimate the cooling timescale and then the

expected duration of the intermediate evolutionary phase, one needs to calculate the

shocked wind temperature, which is:

T2 =
P

kBn2

≃ 25.5×106
(︃

Lw

1037 erg s−1

)︃2/5
(︂ n0

10 cm−3

)︂3/5 (︂ n2

10−2 cm−3

)︂−1
(︃

t

1 Myr

)︃−4/5

K

(1.12)

where n2 is the density in the bubble. The expected temperature is of the order of a few

107 K. However, one needs to account also for the thermal ŕux due to the heat conduc-

tivity between the cold dense shell and the hot shocked plasma, which rapidly cools the

bubble temperature to lower values. The heat ŕux from the hot bubble is:

Q = κS
∂T

∂r
(1.13)
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where κS is the thermal conductivity for a fully ionized plasma (Spitzer, 1962):

κS = CT 5/2 ≃ 1.2× 1014
(︃

T

108 K

)︃5/2

erg s−1cm−1K−1 (1.14)

withC = 1.2×10−6 erg cm−1 s−1 K−7/2. In this way, the conduction timescale (tcond) can

be estimated as the ratio between the thermal energy and Q:

tcond =
1

2
n2kB

T2
Q
Rb ≃ 2× 103

(︂ n2

10−2 cm−3

)︂

(︃

T

107 K

)︃−5/2(︃
Rb

60 pc

)︃2

yr (1.15)

where we have approximated ∂T/∂r ≈ T2/Rb. This extremely short timescale indicates

that the plasma immediately cools to lower temperatures, transferring heat to the cold,

dense shell. Consequently, in a steady-state regime, temperatures reach values such

that the heat ŕow has the same order of magnitude as themechanical energy ŕow (Fm),

which can be written as:

Fm =
5

2
P2
dRb

dt
. (1.16)

Equating Eq.1.13 and Eq.1.14 with Eq.1.16 leads to the temperature expression:

T2 ≃
(︃

5P2R
2
b

2tC

)︃2/7

≃ 2.3× 106
(︃

Lw

1037 erg s−1

)︃8/35
(︂ n0

10 cm−3

)︂2/35
(︃

t

1 Myr

)︃−6/35

K

(1.17)

wherewe used again the approximation ∂T/∂r ≈ T/Rb and dRb/dt ≈ Rb/t, andwe also

made the dependencies of P2 andRb explicit using Eq. 1.9 and Eq. 1.8 respectively. Due

to heat conductivity, the temperature in the bubble is roughly one order of magnitude

less than what is expected from a shocked gas, as given by Eq. 1.12. With this tempera-

ture in mind, we can now estimate the radiative cooling timescales. A hot plasma with

temperatures ranging between ∼ 104 − 107 K loses energy as a consequence of colli-

sional excitation of bound electrons. In this regime, the power loss can be approximated

as (Draine, 2011):

dE

dV dt
≃ 1.1× 10−22n2

2

(︃

T

106 K

)︃−0.7

erg cm−3s−1 (1.18)

which leads to a radiative cooling timescale of

tcool =

(︃

3

2
n2kBT

)︃(︃

dE

dV dt

)︃−1

≃ 6
(︂ n2

0.01cm−3

)︂−1
(︃

T

106 K

)︃1.7

Myr . (1.19)

Considering an average temperature of a few 106 K, the radiative cooling should start to

be relevant after a few tens of Myrs.

10



CHAPTER 1

Before proceeding further, it is interesting to point out the following phenomenon.

As a direct result of the heat ŕux from the hot shockedwind region to the swept-up shell,

the coldmaterial evaporates into the bubble, carrying a signiőcant amount of mass that

increases the gas density. Following the same approach as Castor et al. (1975), a sim-

ple way to treat the evaporation process is to assume that the inward gas ŕux from the

shell to the hot cavity is approximated by a stationary plane parallel ŕow. If so, themass

evaporation rate from the shell (Ṁ s), assuming a constant pressure ŕow and neglecting

radiation losses, is well described by (Zel’Dovich & Pikel’Ner, 1969):

Ṁ s

4πR2
b

dH

dζ
=

d

dζ

(︃

κS
dT

dζ

)︃

(1.20)

where ζ = Rb − r, H is the speciőc enthalpy H = 5kBT/2µ, with µ = 0.62mp as the

meanmolecular weight, deőned as:

µ =

∑︁

j njAj
∑︁

nj + ne

(1.21)

where nj and Aj are the numerical density and the mass number of a given j-th ion re-

spectively, while ne is the electron density. The mass loss rate can be obtained by in-

tegrating Eq. 1.20 from ζ = 0 to ζ = Rb. However, to do so, one needs to know the

temperature proőle in the bubble. The expression reported in Eq. 1.17 can be roughly

considered as an average value in the cavity.

The calculation of the temperature proőle is a somewhat involved procedure, and

has been carried out byWeaver et al. (1977). The temperature has a non uniformproőle,

with an overall decreasing trend towards the cold shell:

T (ζ) = T2(1− ζ)2/5 (1.22)

where T2 is given by Eq. 1.17. Using the latter equation leads to the following expression

for the mass evaporation rate:

Ṁ s =
16πµ

25kB
κSRb , (1.23)

which can be further expanded by expressing the dependencies of κS andRb via Eq. 1.14

and Eq.1.8:

Ṁ s ≃ 2× 10−4

(︃

Lw

1037 erg s−1

)︃27/35(︃
ρ0

10mp cm−3

)︃−2/35(︃
t

1 Myr

)︃6/35

M⊙yr
−1 (1.24)

On average, the mass evaporation from the shell is signiőcantly larger than the cluster
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mass loss rate induced by stellar winds (see ğ 2.5.1).

Late stage of a wind bubble

As the contribution of radiation losses becomes relevant, the system deviates from the

adiabatic expansion solution. To understand the evolution in such a condition, one

needs tomodify Eqs. 1.5, 1.6 and 1.7 by including the contribution of radiation losses. In

addition, one must take into account the resulting decrease in volume of the hot bub-

ble caused by the expansion of the TS as a result of the lower pressure induced by the

decrease in temperature. The new sets of equations that must be solved are then:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

d
dt

[︁

Ms
dRb

dt

]︁

= 4πR2
b(P − P3)

dE
dt

= Lw − 4πR2
bP

dRb

dt
− Lrad

E = 2π(R3
b −R3

TS)P

(1.25)

where P3 is the pressure of the outer shell, and

Lrad =

∫︂ Rb

RTS

4πn2
2(r)Λ(T (r))r

2dr . (1.26)

In principle, the system can be solved numerically by calculatingLrad at every instant of

time, if the an expression for the temperature is provided (Weaver et al., 1977). However,

suchapproach is computationally expensive. A cheapalternative toőndanapproximate

description of the evolution is to parametrize the radiation losses as a constant fraction

ξrad of the wind luminosity:

Lrad = ξradLw . (1.27)

The new expressions for Rb and RTS are similar to the previous ones but with the wind

brightness value rescaled by a factor (1− ξrad).

At this point, however, the following should be noted: the wind bubble model de-

veloped byWeaver et al. (1977) was designed for structures generated by single massive

stars. In our case, in which we are dealing with YMSCs, the evolution of the bubble dur-

ing the őnal stage can be signiőcantlymodiőed by the occurrence of several other phys-

ical processes that take place on a shorter time scale. Since the late phase occurs after

a few tens of Myr, if not gravitationally bound, the star cluster could have dispersed be-

fore entering in the last evolutionary phase, given that the crossing time is of the order

of ∼ 10 Myr. Furthermore, after 10 Myr, a signiőcant number of massive stars should

have ended their life cycle, generating a high number of supernova explosions whose

feedback can severely alter the dynamic evolution of their surroundings.
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Limitations of the Weaver’s wind bubble model

Despite the simplicity and elegance with which it describes a complex phenomenon,

the prescription of Weaver et al. (1977) still remains extremely simpliőed model with

limitations that we are now going to brieŕy summarize.

First of all, the model was conceived for wind bubbles aroundmassive stars. Hence,

there is the underlying assumption that the central source injecting the wind is point-

like compared to the system overall size. This could not be the case for some YMSCs,

which means that the model is still valid if the cluster is compact enough compared to

the system size.

On a very general ground, the compactness condition can be translated into the re-

quirement for the existence of a collective wind from the cluster. This can be formalized

asRYMSC ≪ RTS , whereRYMSC is the size of the star cluster. After a more critical look,

instead of the radius of the cluster core, what reallymatters is the overall spatial distribu-

tion of the most massive stars. This is because the most massive stars are the ones that

contribute themost to thewindenergybudget, andarehence themainpillars sustaining

the TS structure.

In this regard, it is important to underline the phenomenon of mass segregation in

stellar clusters. Several observational piecesof evidence (Lada&Lada, 1991;Hillenbrand

& Hartmann, 1998; Elmegreen et al., 2000; Jiang et al., 2002) have shown that the initial

mass function of stars in a cluster is characterized by a spatial dependence described

by a power-law with an index that becomes harder towards the center of the cluster.

This effect seems to be related to the formation mechanism of stellar clusters (Lada &

Lada, 2003; Karam& Sills, 2022), and hence, particularly enhanced in young clusters. As

consequence, the most massive stars tend to sprout in a very compact space at the very

center of the stellar cluster. So, even if it is not guaranteed that a YMSC can generate a

collective wind, the compact spatial distribution of massive stars within a cluster favors

this scenario.

As for other limitations of the model of Weaver et al. (1977), it also does not account

for other types of feedback, such as for example direct radiation pressure. Indeed it has

been estimated that direct radiation pressure feedback can be as efficient as wind feed-

back (see Krumholz et al. (2019) and references therein). This fact could affect the dy-

namics of the shell.

An additional, and potentially signiőcant limitation, is the assumption of evolution

in a uniformly distributedmedium. While this could be true in the case of isolatedmas-

sive stars, it is likely not in the case of YMSCs, as they are surrounded by the structure of

the parent GMCwhich is highly non-uniform. The presence of low-density regions gen-

erated by the porosity of the GMC structure can induce severe leaks of the hot shocked
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gas from the bubble. This can dramatically reduce the pressure, thus stopping the ex-

pansion. Numerical simulations (Rogers & Pittard, 2013) and observations (Lopez et al.,

2014) seem to point out that, if the gas is not well conőned, gas leaks are a common

phenomenon.

In parallel to gas leaks, a further process that can seriously affect the evolution of

the bubble is the cooling produced by hot-cold gas mixing at the contact discontinuity

(Rosen et al., 2014). The mixing is induced by both turbulent motions at the interface

(Lancaster et al., 2021a), directly generated by the turbulent behavior of the GMC gas,

andby the rise of several instabilitymodes at the contact discontinuity, such as thin shell

(Vishniac, 1983) and Rayleight-Taylor-like instabilities (Bucciantini et al., 2004). As a di-

rect consequence of gas mixing, the density of the bubble increases. Eq. 1.19 shows that

the radiative cooling scales with n−1
2 , so a substantial growth in the density may induce

catastrophic radiative cooling. A secondary effect is that the instabilities at the contact

discontinuity cause the fragmentation of the shell (Lancaster et al., 2021b), which leads

to a considerable increase of the contact surface between the hot and cold gas. This

makes thermal conduction even more efficient and, simultaneously, boosts the mass

evaporation rate, causing the density of the bubble to increase further.

Lastly, the solution for the intermediate evolutionary stage given by Weaver et al.

(1977) is not self-consistent. In fact, Weaver et al. (1977) calculates the evolution of the

bubble boundary without accounting for the thermal energy losses due to the heat ex-

change with the cold shell. To obtain the correct solution, one needs to modify Eq. 1.6

in:
dE

dt
(r) = Lw − 4πR2

b

[︃

P
dRb

dt
+ κS

∂T (Rb)

∂r

]︃

(1.28)

As the temperature of the bubble decreases so does the pressure. As a consequence, the

size of the TS increases. In parallel, the expansion of the forward shock slows down, and

the bubble size becomes smaller. Obtaining a full solution in this situation becomes

challenging and non-trivial since now the energy equation has a radial dependence.

Nevertheless, similar to what has been done for radiative losses in the late evolution-

ary stage, the heat conduction can be approximated as a fraction of the overall wind

luminosity:

dE

dt
≃ Lw − 4πR2

b

(︃

P
dRb

dt
+ κS

T

Rb

)︃

= (1− ξth)Lw − 4πR2
bP
dRb

dt
(1.29)

which means that if 50% of the wind luminosity is lost due to thermal conduction, the

forward shock and TS sizes vary by∼ 15%.
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1.3 Cosmic Rays and the enigma of their origins: Young

Massive Star Clusters as Cosmic Ray factories?

Discoveredmore than a century ago by Victor Hess, Cosmic Rays (CRs) are charged par-

ticles mainly composed of nuclei (99%, of which 87% are protons, and 12% are alpha

particles with a smaller fraction of heavier nuclei) and aminor fraction of electrons and

antimatter. CRs are a fundamental component of the Cosmos, affecting the environ-

ment of galaxies. Indeed, the energy density associated with CRs in the Milky Way is

of the order of ∼ 1 eV cm−3 (Webber, 1998), which is similar to that of the interstel-

lar starlight radiation őeld ∼ 0.5 eV cm−3 (Mathis et al., 1983), to that of the average

(∼ 3 µG) galactic magnetic őeld (Webber, 1998), and to that of the cosmic microwave

background ∼ 0.26 eV cm−3 (Workman et al., 2022). CRs are often investigated from

the high-energy astrophysics prospective, but, as a matter of fact, they are also a vital

ingredient for the physics of the interstellar medium and of star formation.

Unquestionably, low-energy CRs are one of the main ingredients regulating star for-

mation in galaxies, providing a negative feedback. One can in this regard, try to evaluate

what is the star formation rate in the Milky Way in the assumption of the total absence

of regulating mechanisms. To do so, we can approximately estimate the star formation

rate as:

SFRMW ≃ MMW

τff
(1.30)

whereMMW ≈ 8 × 109 M⊙ is the Milky Way gas mass (Nakanishi & Sofue, 2016) and

τff is the free fall time describing the timescale for the collapse of a neutral cloud, which

can be written as (Spitzer, 1978):

τff =

√︄

3π

32GmpnC

, (1.31)

where nC is the numerical density of the cloud. If we assume an average density of nC =

10 cm−3, the free fall time is τff ≈ 16.3Myr and the star formation rate calculated using

Eq.1.30 is ≈ 500M⊙ yr−1, which is far from the observed value of SFRMW = 2.0 ± 0.7

M⊙ yr−1 (Elia et al., 2022).

Accounting for the CR-induced ionization can signiőcantly reduce the expected star

formation rate, as partially ionized clouds aremore stable against gravitational collapse.

This is because during gravitational collapse, the ionized component of a cloud remains

frozen to the cloud magnetic őeld, which opposes resistance to collapse-induced com-

pression. The neutral material is then slowed down thanks to the coupling generated by

neutral-ion scatteringwith the ionized component, which results in a lengthening of the
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collapse characteristic time scales4, making the star formation process less efficient.

The signiőcance of theCR role is due to their ability to penetrate deeply into the cores

of dense molecular clouds, providing ionization where other ionizing sources cannot.

This is the case, for example, for X-rays that are usually absorbed in the őrst layers of a

molecular cloud (McKee, 1989). Due to their ability to ionize, aswe shall see in ğA.2, low-

energy CRs also prove to be crucial in regulating astrochemical processes, indirectly in-

ducing the formationof complexmolecules in the interstellarmedium (Dalgarno, 2006).

Fromapure observational point of view, the spectrumofCRs observed at the Earth is

well described by a broken power law, starting from∼ 10GeV, with three breaks over al-

most 12 decades in energy (Fig. 1.3). Below 10GeV, the CR spectrum ismodiőed by solar

modulation, preventing the lowest energy component frompenetratingwithin the Solar

System (Gleeson & Axford, 1968; Potgieter, 2013). Precisemeasurement of the spectrum

at low energy wasmade possible by the Voyager 1 spacecraft only after exiting the helio-

sphere (Cummings et al., 2016).

At energies above 10GeV the spectrum is characterizedby a spectral index of∼ −2.7.

The őrst break appears at∼ 3× 1015 eV, where the spectrum steepens with the spectral

index becoming∼ −3.1, while the second break occurs instead at∼ 1018.5 eV, inducing

a hardening of the spectrum and bringing the index back to ∼ −2.7 (Workman et al.,

2022). The őrst and second breaks are respectively known as the knee and the ankle,

given the similarity of the overall spectrum to a human leg.

As far as the ankle is concerned, the general consensus is that this feature is caused

by the extragalactic CR population beginning to dominate the Galactic population (Bird

et al., 1994; Apel et al., 2013). Undoubtedly, if the highest energy CRs are protons of ex-

tragalactic origin, then, at energies above∼ 5× 1019 eV, the CR spectrum is expected to

be suppressed due to the pionphotoproductionmechanismwith the cosmicmicrowave

background. This effect is known as the GreisenśZatsepinśKuzmin limit (or GZK cutoff)

(Greisen, 1966). The existence of this cut-off has been shown by several ultra-high en-

ergy experiments (Abbasi et al., 2008; Verzi, 2019). Although it is still unclear whether

we are witnessing the GZK effect or rather observing the maximum energy achievable

by cosmic accelerators. The answer to this important question depends on the still un-

certain composition of CRs at the highest energies.

Of greater relevance to the topic of this thesis is the origin of the knee. The presence

of the knee has been attributed to themaximum energy reachable by galactic sources of

CRs. This idea arose from the evidence of a gradual change in the chemical composition

of CRs at energies above a few PeV. Above the knee, the fraction of heavy nuclei in CRs

appears to increase, and this trend seems to persist up to 1017 eV (Höorandel, 2006).

It follows that, in this scenario, the knee could result from the superposition of cutoffs

4This process is often named ambipolar diffusion (Draine, 2011)
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Figure 1.3: CR energy spectrum as observed at the Earth. The plot shows also for comparison
the spectra of the galactic diffuse γ-ray emission, the isotropic diffuse γ-ray background
(IGRB), and the neutrino/anti-neutrino ŕux. See Evoli (2020) and references therein.

in the spectra of different elements as the large majority of acceleration processes are

rigidity5 dependent, i.e. proportional to the particle electric charge (Blasi, 2013). This

means that if protons are accelerated in the sources to a maximum energy Ep,max ≈ 3-

− 5 × 1015 eV, then an iron nucleus will be accelerated to EFe,max = 26Ep,max ≈ 1 ×
1017 eV (assuming that during acceleration the iron nuclei are fully ionized, therefore

the unscreened charge is Z = 26).

Clearly, in order to understand the plausibility of this framework, it is necessary to

investigate the properties of the galactic CR sources. Since the őrst half of the 20th cen-

tury, supernova remnants (SNR) were suggested as possible candidates as galactic CR

accelerators. SNRs are the supersonic ejected material released after the supernova ex-

plosion of a massive star6. or of a white dwarf exceeding the Chandrasekhar limit. The

suggestion of SNRs as Galactic CR sources was őrstmade by Baade & Zwicky (1934), and

later motivated by Ginzburg & Syrovatskii (1963). The suggestion it is as robust as it is

elegant in its simplicity. Whatever the identity of the galactic accelerators, they must be

5The rigidity of a particle with charge Ze andmomentum p can be deőned asRg = pc/Ze
6Collapse supernovae (sometimes also classiőed as Type II or Type Ib and Ic following the old spectro-

scopic classiőcation), which occur for stars with masses higher than 8 M⊙ are though to account for 80%
of these explosions. In addition there are Type Ia SNe which arise when an accreting white dwarf exceeds
Chandrasekhar limit generating a thermonuclear explosion. See Vink (2012, 2020) and references therein
for comprehensive reviews on SNRs.
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able to sustain the observed CR luminosity, which is:

LCR =
UCRVMW

τconf
≈ 2.5× 1040erg s−1 (1.32)

where UCR ≈ 1 eV cm−3 is the galactic CR energy density, VMW is the Milky Way vol-

ume7, and τconf ≈ 20 Myr is the CR conőnement timescale in the Galaxy, which can

be estimated frommeasurements of the abundance ratio of unstable isotopes (Connell,

1998; Hams et al., 2004). In the case of SNRs, the kinetic energy of a supernova explosion

is of the order of ESN ≈ 1051 erg (Carroll & Ostlie, 1996). Assuming that the supernova

explosion rate in theMilkyWay is τSN = 1/50 yr−1, then thepower injectedby supernova

explosion is:

LSN =
ESN

τSN
≈ 6.3× 1041erg s−1. (1.33)

This implies that if a few percent of the power injected by supernova explosions goes in

CR acceleration, then, SNRs can easily account for the observed CR luminosity. But can

SNRs actually accelerate CRs to the knee energy?

The supersonicmotion of the ejecta produces a collisionless shock wave that propa-

gates in the ISM. Particle acceleration in collisionless shocks is believed to occur through

theőrst-order Fermimechanism (also known asDiffusive Shock Acceleration) (Blandford

& Ostriker, 1978; Drury, 1983). We can brieŕy summarize the process as follows. Let us

consider the shock as a discontinuity between two regions with different ŕow velocities,

we deőne these two velocities in the reference system of the shock as u1 and u2 < u1.

We shall refer to the region of unperturbed plasma with speed u1 as upstream, and the

region of shocked gas with speed u2 as downstream. Suppose now that particles, with

some velocity v in the rest frame of the shock, enter the upstream, and start to diffuse

through scattering with magnetic turbulence. The diffusion causes the particle velocity

distribution to rapidly become isotropic in the reference frame of the upstream. After

some time, some particles may be able to cross again the shock, entering the down-

stream. Again, particle will start to diffuse through scattering with magnetic turbulence

that is associated with the downstream plasma. On average, particles will see plasma on

the other side of the shockmoving in their direction with a speed∼ |u1 − u2|. Each time

the particles cross the shock, they will experience an electric őeld ∼ |u1 − u2|/c times

the magnetic őeld and gain energy. The process is analogous to that of collision with

moving wall, and collisions are all head-on, hence inducing a gain in energy.

It can be shown through that particles will on average increase their energy as∆E ∝
|u1−u2|E/c. Eventually, particles will return to the upstream side of the shock. The gain

7As a spiral galaxy, the Milky Way volume can be easily approximated as a thick disc with radius ∼15
kpc and height∼300 pc.
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occurs at every shock crossing, and several cycles of diffusion back and forth across the

shock will lead to a signiőcant increase in particle energy.

To estimate the maximum energy obtained in SNRs, one has to equate the accelera-

tion timescales (τacc) with the time for which the source is efficiently accelerating parti-

cles8. The acceleration time is clearly related to the timescale with which the upstream-

downstream-upstream cycle occurs (tcycle), and can be calculated as (Drury, 1983):

τacc =
tcycle
∆E/E

=
3

u1 − u2

(︃

D1

u1
+
D2

u2

)︃

≃ 8
D1

u2shock
(1.34)

where∆E/E is the average energy gain per cycle, ushock is the shock velocity, whileD1

andD2 are the diffusion coefficients in theupstreamanddownstream respectively. Gen-

erally, the diffusion coefficient can be deőned as:

D =
1

3
λmfpvp (1.35)

where λmfp is the mean free path and vp = βpc is the particle speed, parametrized as a

fractionβp of the light speed c. The diffusion ismediated by the scatteringwithmagnetic

őeld irregularities that have length scales comparable with the particle Larmor radius

(rL). In themost extreme case, when themagnetic irregularities δB are comparablewith

the averagemagnetic őeldB, one has λmfp = rL. This is usually called theBohm regime,

and the diffusion coefficient reads:

D(E) =
1

3
rL(E)βpc =

1

3

E

Ze0B
βpc (1.36)

where E and Ze are the particle energy and charge respectively, with e as the electron

elementary charge.

SNRscanefficiently accelerateparticlesduring the so-calledejecta-dominatedphase

(sometimes referred to as the free expansion phase), deőned as the evolutionary stage

for whichmost of the explosion kinetic energy is conőned in the freely expanding ejecta

(Vink, 2020)

ESN =
1

2
Meju

2
shock (1.37)

During this phase, the fast shock can easily reachCRs that are diffusing upstream, allow-

ingefficient acceleration. This canbeeasily seenconsidering that the shock radius scales

as Rshock ∝ t during the ejecta dominated phase, while the particle diffusion length is

proportional to ∝ t1/2. As the swept-up mass becomes comparable to the ejecta mass

8This statement is correct if the energy losses of particles are negligible, which is likely the case for
hadrons but typically is not for leptons. In the latter case, the comparisonmust be made with the Inverse
Compton or Synchrotron cooling time scales.
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(Mej = 4πρISMR
3
shock/3), the SNR evolution enters the Sedov-Taylor phase (Vink, 2020).

During this stage, the most energetic particles are not caught anymore by the expand-

ing shock (Rshock ∝ t2/5) and are thus free to escape in the upstream region, making the

acceleration mechanism no longer efficient. The time at which the Sedov-Taylor phase

starts can be estimated as:

τST =
Rshock

ushock
≃ 220

(︃

Mej

1 M⊙

)︃5/6(︃
ESN

1051 erg

)︃−1/2(︃
ρISM

1mp cm−3

)︃−1/3

yr. (1.38)

Finally, equating τST with τacc leads to the estimate of the maximum particle energy in

SNRs:

Emax,SNRs = 2.5× 1013Z

(︃

B

1 µG

)︃(︃

Mej

1 M⊙

)︃−1/6(︃
ESN

1051 erg

)︃1/2
(︂ nISM

1 cm−3

)︂−1/3

eV

(1.39)

In a standard situation, the maximum energy for a proton is expected to be about one

order of magnitude below the PeV. This means that, in order to consider SNRs as PeVa-

trons, a stronger magnetic őeld is required.

Several magnetic őeld ampliőcation processes have been proposed in the literature,

such as non-resonant (Bell, 2004) and resonant (Skilling, 1975) streaming instabilities,

ampliőcation driven by the dynamics of the shock impinging in density ŕuctuation of

turbulentmagnetizedplasma (Guoet al., 2012), andacoustic instabilities (Drury&Downes,

2012). However, even including the most efficient of these ampliőcation mechanisms,

the non-resonant streaming instability, a standard SNR can hardly accelerate particles

up to PeV energies, unless speciőc extreme situations with high velocity shocks expand-

ing in dense environments are considered (Cristofari, 2021). The difficulty of SNRs to

reach PeV energies makes the interpretation of these objects as a single population of

Galactic accelerators problematic, and prompts us to consider the possible presence of

an additional class of particle accelerators.

The maximum energy of CRs in SNRs is not the only issue related to these sources.

Measurements of the CR composition at the Earth have shown an excess in some iso-

topic ratios, such as the 22Ne to 20Ne ratio, which is found 5.3 ± 0.3 times higher than

the solar value (Wiedenbeck & Greiner, 1981; Binns et al., 2008). The 22Ne is copiously

produced by Wolf-Rayet (WR) stars (Prantzos et al., 1986; Maeder &Meynet, 1993), that

are the late evolutionary stage of very massive O-type stars (≳ 25M⊙) (Crowther, 2007).

This means that at least some fraction of CR sources must be located in environments

close to WR stars, which are very common in YMSCs. The presence of such overabun-

dance then can be considered as a strong clue that points to stellar clusters as possible

CR factories. Undoubtedly, if CR accelerationwere to occur in these objects, some of the
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wind material of a WR would end up in the galactic CR population, thus explaining the

observed excess. The enigma of the origin of CRs then shifts to the general question of

whether and howmuch YMSCs can actually contribute to the acceleration of CRs in the

galaxy. In the past years, different models for particle acceleration in YMSCs have been

proposed. We will summarize in the next subsections some of the most popular.

1.3.1 Accelerationmechanisms in the core of a YMSCs

In its core, a YMSCmay enclose a signiőcant number of massive stars, and each of them

can launch a fast wind that collides with the ambient medium and generates a TS. Par-

ticle acceleration occurs at the stellar wind TS following the diffusive shock acceleration

process. The őnal distribution of freshly accelerated CRs from the YMSC will then arise

as a combinationof injectedparticles fromdifferent stellar TSs: such a scenariohasbeen

investigated by Klepach et al. (2000).

Let us consider a system composed of several stellar wind cavities (Fig. 1.4). Each

of the stellar winds is assumed to be highly supersonic, with constant radial velocity u1.

The winds impact with the hot shocked material at a distance RTS . The time evolution

ofRTS is somewhat similar to that given by Eq.1.11, so it is slowly expanding in time and

can be considered as stationary. Following the classical theory of shocks, the gas velocity

downstream of the TS is:

u2 =
u1
R

(︃

r

RTS

)︃−2

(1.40)

where R is the TS compression ratio. We will further assume that the overall volume

occupied by the wind cavities is much less that the system volume, or equivalently, that

RTS is much smaller than the average distance d between the stars. Formally this con-

dition translates into requiring the őlling factorW = (RTS/d)
3 to beW ≪ 1.

On a very general ground, a CR distribution function fCR(r, t, p)must obey the fol-

lowing transport equation9

∂fCR

∂t
− ∇⃗D∇⃗fCR + u∇⃗fCR − p

3
∇⃗u∂fCR

∂p
= q (1.41)

wherep is theparticlemomentumand q is the source term,whichdescribes the injection

of freshly accelerated CRs that is assumed to be occurring at the wind TSs. Clearly, the

normalizationof fCR is determinedby the totalCRnumberdensitynCR = 4π
∫︁

p2fCRdp.

The CR distribution function (⟨fCR⟩) obtained in such a system will be an average over

several fCR calculated from a random distribution of winds. In order to estimate the CR

9This is not the complete transport equation, as some terms are neglected, such as for example, po-
tential energy losses andmomentum diffusion, see ğ 1.3.2.
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Figure 1.4: System sketch for the multiple TS acceleration mechanism investigated by Klepach
et al. (2000).

distribution,weneed to solve for ⟨fCR⟩. Theequation forCR injectedat a single spherical
wind TS, can be written as:

∂fCR

∂t
− 1

r2
∂

∂r
r2D

∂fCR

∂r
+ u

∂fCR

∂r
− r2

3

d(r2u)

dr
p
∂fCR

∂p
= Qδ(r −RTS) (1.42)

whereQ(p) is the injection term for a single wind TS. The diffusion coefficient is likely to

bedifferent in theupstream (D1) and thedownstream (D2). Klepach et al. (2000) assume

the upstreamdiffusion coefficient to scale asD1r/RTS , and thatD2 is spatially constant.

Klepach et al. (2000) additionally assume that bothD1 andD2 are energy independent.

Note that sinceW ≪ 1, one will have fCR ≃ ⟨fCR⟩ for r ≫ RTS . To proceed, it is useful

to deőne the following transformations:

Φ(s, r, t) =

∫︂ ∞

0

ps−1fCR(p, r, t)dp (1.43)

Ψ(s, t) =

∫︂ ∞

0

ps−1Q(p, t)dp (1.44)

X(s, r, t) =

∫︂ ∞

0

ps−1q(p, r, t)dp, (1.45)

and to rewrite Eq. 1.41 accordingly:

∂Ψ

∂t
−∇D∇Ψ+ u∇Ψ+ s

∇u
3

Ψ = X. (1.46)
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In principle, the equation for ⟨fCR⟩ can be obtained by averaging Eq. 1.46 over the entire
systemvolumeand thenperform the inverse transformation. Both the averaging and in-

verse transformare lengthy, nontrivial calculations, and the derivation of fCRmay result

cumbersome. We here summarize the őnal outcome under the following assumptions:

(1) The gas motion is incompressible downstream of the wind TSs, and in addition, the

shocked gas is able to diffuse far away from the TS and to őll the cluster volume such that

⟨∇ · u⟩ = 3Wu/RRTS . (2) The solution is calculated assuming a steady state regime

(∂fCR/∂t = 0). (3) Repeated acceleration cycles due to crossing of different TSs may

occur. This requires that the particles mean free path must be larger than the TS size:

g1 = RTSu1/D1 ≪ 1 and g2 = RTSu1/RD2 ≪ 1. (4) CRs escape from the cluster

boundary with a leakage timescale Tl. Under these assumptions, the average CR distri-

bution function is:

⟨fCR(p)⟩ =
3RQ0

u1(R− 1)[1 + (tacc/Tl)(1 +G−1)−1]

(︃

p

p0

)︃−S

(1.47)

whereQ0 is the injection rate at momentum p0, tacc = RRTS/3Wu1 is the acceleration

timescale, and

S =
3R

R− 1

⎧

⎨

⎩

1 +
tacc

RTl
[︂

1 +G
(︂

1 + tacc
Tl

)︂]︂

⎫

⎬

⎭

(1.48)

G = eg2 − 1 (1.49)

The obtained spectrum is an approximation of the real solution, as in general, the dif-

fusion coefficients depend on energy. Note that for tacc ≪ Tl, the powerlaw index S

becomes S ≃ 3R/(R− 1) that is the standard result for acceleration at a plane parallel

shock (Bell, 1978). Klepach et al. (2000) also estimate the maximum energy that can be

reached with this acceleration mechanism, that is:

Emax ≃ 2× 1015Z

(︃

D2

DB

)︃−1

eV (1.50)

whereDB is the diffusion coefficient in the Bohm regime. For standard values of winds

frommassive stars, themaximumenergy is as high as a few 1015eV (Klepach et al., 2000),

which is encouraging in terms of viewing YMSCs as a possible counterpart for SNRs as

PeVatrons.

We may now wonder whether this scenario could actually develop in a YMCs, given

that clusters tend to emerge from small clumps with sizes of a few pc and that the entire

acceleration process is based on the assumption thatW ≪ 1. To do so, we can estimate

the size of RTS for an isolated star embedded in a hot bubble of shocked wind gas with
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pressure P givenby Eq.1.9. The procedure is identical to that used to obtain the TS radius

of the collective wind from a cluster (see Eq:1.10), with the difference that now the ram

pressure is calculated for the wind of a single star:

M⋆
̇ vw,⋆

4πR2
TS

=
7

(3850π)2/5
L2/5
w ρ

3/5
0 t−4/5 (1.51)

whereM⋆
̇ and vw,⋆ are the mass loss rate and the wind velocity for a single star. Note

that Lw is the wind luminosity of the entire cluster, as the gas heating is provided by the

overall stellar population. The size of the stellar wind TS is then:

RTS ≃ 1.7

(︄

M⋆
̇

10−6M⊙yr−1

)︄1/2
(︂ vw,⋆

2000 km s−1

)︂1/2
(︃

Lw

1037erg s−1

)︃−1/5

(︃

ρ0
10mpcm−3

)︃−3/10(︃
t

1Myr

)︃2/5

pc.

(1.52)

For typical values of the parametersRTS ∼ 2 pc. In general10, given the mass of a YMSC

(MYMSC), the cluster size can be estimated by the following empirical cluster mass-

radius relation (Pfalzner et al., 2016):

RYMSC ≃ 1.82

(︃

MYMSC

103 M⊙

)︃1/δ

pc (1.53)

whit δ = 1.71± 0.07. Note that by cluster size wemean the half-mass radius (the radius

within which half of the stellar mass is enclosed). Reasonably, the average stars spacing

will be less than, or of the order of, the cluster size. Thus, considering the typical prop-

erties of a massive star in terms of wind luminosity, mass loss rate and wind speed (see

Eq. 1.52), RTS has a size similar to the average stellar distance expected in the case of a

YMSC.

It is then clear that this model is likely not a good representation for these objects.

Plus, in Eq.1.51, we are not taking into account the effect of pressure reductiondue to the

cooling induced by the heat ŕow towards the surrounding ISM, so theRTS calculated in

Eq.1.52 is possibly underestimated. Nonetheless, this framework could be valid for older

clusters, especially after a few tens ofMyr in the case of gravitationally unbound systems.

Assuming that the stars velocity dispersion is σ = RYMSC

√︁

3GMYMSC/4πR3
YMSC , after

10Froma theoretical pointof view, the clustermass-size relation is signiőcantly affectedby thedominant
feedback mechanism operating during the emergence of the YMSC from its dense gas cradle (Krumholz
et al., 2019).
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some time t the cluster has expanded by an extent∆R of:

∆R = σt ≃ 7.68

(︃

MYMSC

103 M⊙

)︃(δ−1)/2δ (︃
t

10 Myr

)︃

pc. (1.54)

After a few tens of Myr stars should be sparse enough to validate the mechanism pro-

posed by Klepach et al. (2000). Eventually, the model could also be well describing the

acceleration process in OB associations, which are structures with sizes spanning over a

few tens of pc.

1.3.2 Acceleration through efficient scattering with turbulence

The powerful massive star winds, or alternatively, the strong collective cluster wind, in-

teracting with the ISM irregularities generate chaotic magnetohydrodynamic ŕuctua-

tion with frozen in magnetic őeld, which end up permeating the entire hot bubble. The

scattering with these ŕuctuations induces both spatial and momentum diffusion if the

correlation lengthscales of the turbulent magnetic őeld are comparable with the par-

ticle Larmor radius (Blasi, 2013). The process of momentum diffusion is often called

second-order Fermi acceleration, as it statistically induces an energy gain (Fermi, 1949).

However, this mechanism is not particularly efficient as the energy gain scales as v2a/c
2,

where va = B/
√
4πρ is the plasma Alfvén speed, with ρ the plasma mass density. The

momentum diffusion term can be included in the CR transport equation:

∂fCR

∂t
−∇Dxx∇fCR + u∇fCR − p

3
∇u∂fCR

∂p
− 1

p2
∂

∂p

(︃

p2Dpp
∂fCR

∂p

)︃

= Q (1.55)

where, to avoid confusion, we have renamed the spatial diffusion coefficientDxx, while

Dpp is the momentum diffusion coefficient. Although not generally relevant, second-

order Fermi acceleration may play a signiőcant role in the case of strong turbulence,

potentially boosting particle energies up to relatively high values (Bykov et al., 2020).

One can estimate the maximum energy achieved in such a way by comparing the ac-

celeration and the propagation time scales. For second order Fermi acceleration, the

characteristic time scale is:

τacc =
p2

Dpp

, (1.56)

where themomentumdiffusion coefficient canbewritten as (Thornbury&Drury, 2014):

Dpp ≃
p2v2a
9Dxx

. (1.57)

25



CHAPTER 1

In general, the spatial diffusion coefficient is directly linked to the type of plasma turbu-

lence spectrum:

Dxx =
1

3

βcrL
F(1/rL)

(1.58)

with

F(k) =
kP(k)

B2
0/8π

(1.59)

where k is thewave number andP(k) ∝ k−α is the turbulentmagnetic őeld power spec-

trum. If the power is injected at a characteristic scale Linj , then Eq.1.59 can be normal-

ized to the injection scale and rewritten in terms of themagnetic őeld correlation length

scale l = 1/k:

F(l) = A
(︃

l

Linj

)︃(α−1)

. (1.60)

In Eq.1.60 the index α is correlated to the type of plasma turbulence cascade, and reads

α = 5/3 for Kolmogorov-like turbulence (Kolmogorov, 1941), α = 3/2 for a Kraichnan-

like cascade (Kraichnan, 1965), and α = 1 for a ŕat turbulence spectrum (Bohm diffu-

sion regime). The constantA is related to the total power in magnetic ŕuctuation δBtot,

through the condition δB2
tot/B

2
0 = ΛBA, where B0 is the unperturbed magnetic őeld.

We consider here the scenario where δBtot = B0. The parameter ΛB depends on the

turbulence spectral index α, and is deőned as:

ΛB ≡
∫︂ kmax

kinj

(︃

k

kinj

)︃1−α
dk

k
=

⎧

⎪

⎨

⎪

⎩

1
α−1

[︃

1−
(︂

kinj

kmax

)︂α−1
]︃

for α ̸= 1

ln
(︂

kmax

kinj

)︂

for α = 1
(1.61)

where kinj = 1/Linj . Generally, the parameter kmax corresponds to the inverse of the

length scale at which turbulence thermal dissipation occurs. Note that, if this is the case,

then one has typically kinj ≪ kmax, and for α ̸= 1 we have ΛB ≃ (α − 1)−1. In the case

α = 1, however, it appearsunrealistic to extend theassumptionof equal turbulentpower

per decade down to the dissipation scale. We consider this description only appropriate

to wave modes within an interval [kinj , kmax] in which it is likely that power injection

occurs at all scales. For example, a reasonable guess for such range could be given by

the length scale associated with the average distance between the stars, down to the

characteristic length scale of wind irregularities.

In ğ 2.2 we will show that CR propagation in an expanding hot bubble is in general

dominated by advection for particles with energies ≲ 1 TeV, so the propagation time

scale can be estimated as:

tadv ≃
Rb

u2
≃ tage (1.62)
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where tage is the ageof thewind-blownbubble (or equivalently the cluster age). Equating

Eq.1.56 with Eq.1.62, leads to

9Dxx

v2a
= tage ⇒

3βcLinj

v2a
ΛB

(︃

rL
Linj

)︃(2−α)

= tage , (1.63)

and the particle maximum energy for the second order Fermi acceleration is readily ob-

tained by considering rL = E/eB0:

ETurb
max ≃

(︃

e2−α
0

12πρc

)︃1/(2−α)

Λ
−1/(2−α)
B L

(1−α)/(2−α)
inj B(4−α)/(2−α)t1/(2−α)

age (1.64)

where we have assumed that β ≈ 1. Fixing α to the three previously mentioned values,

the maximum energies are:

ETurb
max,K41 ≃ 29

(︃

B0

1 µG

)︃7(︃
Linj

1 pc

)︃−2(︃
tage

10 Myr

)︃3(︃
ρ2

10−2mp cm−3

)︃−3

MeV (1.65)

ETurb
max,Kra ≃ 6

(︃

B0

1 µG

)︃5(︃
Linj

1 pc

)︃−1(︃
tage

10 Myr

)︃2(︃
ρ2

10−2mp cm−3

)︃2

GeV (1.66)

ETurb
max,Bohm ≃ 5

1

ln(kinj/kmax)

(︃

B0

1 µG

)︃3(︃
tage

10 Myr

)︃(︃

ρ2
10−2mp cm−3

)︃−1

TeV. (1.67)

The values obtained are far from PeV energies but remain considerably high, especially

in the case of Bohm diffusion11.

Nevertheless, several caveats may limit the realistic efficiency of such an accelera-

tion process. Acceleration is achieved under the core assumption of particle scattering

with resonant ŕuctuations, and the underlying calculations are performed in the con-

text of quasi-linear theory. However, recent simulations have demonstrated that, by us-

ing modern anisotropic magnetohydrodynamic turbulence theories, the wave-particle

resonancesmaybe strongly suppressed, severely reducing the efficiency of secondorder

Fermi acceleration (see Lemoine (2021) and references therein).

In this section, we have considered the case where acceleration is provided by sub-

sonic turbulence. In older clusters, the combined presence of fast winds and supernova

shocks may induce the presence of supersonic turbulence. See the work of Bykov et al.

(2020) for a comprehensive review of particle acceleration in such a framework.

11This signiőcantly depends on the value of kmax, which can potentially be several orders ofmagnitude
above kinj .
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1.3.3 Acceleration at the cluster wind termination shock

YMSCs are probably compact enough to allow single star winds to combine so as to cre-

ate a collective cluster wind. As we showed in ğ 1.2.3, the fast collective cluster wind

impacting on the surrounding hot bubble material produces a strong TS at which par-

ticle acceleration may occur. This speciőc case was recently studied by Morlino et al.

(2021).

Let us now consider a YMSC that has developed a bubble structure and is now in the

intermediate evolutionary stage. From the CR point of view, the system can be brieŕy

described as follows: particles are accelerated at the TS via the diffusive shock acceler-

ation mechanism, and subsequently escape from the acceleration site experiencing a

combination of advection and diffusion in the hot bubble until they reach the forward

shock. From there, CRs are free to leave the system by diffusing in the unperturbed ISM.

Given the slow expansion rate of the cavity, the system can be considered as stationary,

and if one assumes radial symmetry, and neglects second order Fermi acceleration and

particles energy losses, the distribution fCR(r, E) of CRs can be found by solving the

following steady-state transport equation12

∂

∂r

[︃

r2D(r, p)
∂f

∂r

]︃

− r2u(r)
∂f

∂r
+
d[r2u(r)]

dr

p

3

∂f

∂p
+ r2Q(r, p) = 0 (1.68)

whereu(r) is theplasmaspeed, andD(r, p) is the spatial diffusioncoefficient. The source

termQ(r, p) describes the particle injection taking place at the TS:

Q(r, p) =
ηinjn1u1
4πp2inj

δ(p− pinj)δ(r −RTS) , (1.69)

where n1 is the density immediately upstream of the termination shock, u1 is the speed

of the cold wind, and ηinj is the fraction of particle that are injected in the acceleration

process withmomentum pinj . The global solution of Eq. 1.68 can be found in threemain

steps: őrst, the equation must be solved separately in the unperturbed ISM (r > Rb)

and upstream (in the cold cluster wind, r < RTS) and downstream of the TS (in the

hot shocked wind bubble, RTS < r < Rb). Secondly, the solutions in these three zones

are joined together using ŕux continuity at r = RTS and r = Rb. Finally, one needs to

specify two boundary conditions. This can be done by assuming no net ŕux at r = 0,

and requiring that fCR(r, E) at inőnity matches the distribution of the galactic CR sea

(fgal).

Following the above-mentioned procedure, the CR radial distribution in the three

12Note that the system is very similar to that described in ğ1.3.1 for the acceleration at the wind TS for
a single star. The differences are limited to the boundary conditions considered.
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zones is:

f1(r, p) ≃ fTS(p) · exp
[︃

−
∫︂ RTS

r

u1
D1(r′, p)

dr′
]︃

(1.70a)

f2(r, p) = fTS(p)e
α1 + β(eαB−α − 1)

1 + β(eαB − 1)
+ fgal(p)

β(eα − 1)

1 + β(eαB − 1)
(1.70b)

fism(r, p) = f2(Rb, p)
Rb

r
+ fgal(p)

(︃

1− RTS

r

)︃

(1.70c)

with

α = α(r, p) =
u2RTS

D2(p)

(︃

1− RTS

r

)︃

(1.71a)

αB = α(r = Rb, p) (1.71b)

β = β(p) =
Dism(p)Rb

u2R2
TS

(1.71c)

where the subscripts 1, 2 and ism refers orderly to values assumed by the variables in

the upstream, downstream, and interstellar medium regions. Notice that Eq. 1.70a is a

őrst-order approximation of the full solution presented by Morlino et al. (2021), which

in principle should be formally obtained by iteratively solving Eq. 1.68 in the upstream.

fgal is the average spectrum of the Galactic CR sea, e.g. as inferred from AMS-02 data

(Aguilar et al., 2015). Finally, fTS is the distribution of injected particles at the TS.

The formal solution for fTS can be written in the following form

fTS(p) = s
ηinjn1

4πp3inj

(︃

p

pinj

)︃−s

e−Γ1(p)e−Γ2(p). (1.72)

The function is composed of three terms: the őrst one is the standard power-law spec-

trum resulting fromparticle acceleration in plane shocks. The second term contains the

functionΓ1(p), whichdepends itself onfTS , implyinganon-linearnatureof the solution.

Fromaphysical point of view, the suppression term e−Γ1(p) canbe seenas amodiőcation,

induced by the spherical geometry of the system, to the usual energy gain obtained in

parallel shocks. The last term őnally, e−Γ2(p), describes the cut-off caused by the escape

of particles at the bubble boundary.

The őnal form of fTS is non-analytical. Nevertheless, it can be approximated with

good accuracy using a modiőed power-law with an exponential cut-off, whose expres-

sion slightly changes depending on the model for particle diffusion around the TS:

fTS(p) ≃ s
ηinjn1

4πp3inj

(︃

p

pinj

)︃−s [︃

1 + a1

(︃

p

pmax

)︃a2]︃

e−a3(p/pmax)a4 , (1.73)
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Models a1 a2 a3 a4

Kolmogorov 10 0.308653 22.0241 0.43112

Kraichnan 5 0.448549 12.52 0.642666

Bohm 8.94 1.29597 5.31019 1.13245

Table 1.1: Parameter values used to calculate the distribution of injected particles.

where pmax is related to the maximum achievable momentum in the system, and the

parameters ai depend on the type of magnetohydrodynamic turbulence in the plasma

(see Tab. 1.1). The normalization of fTS is determined by ηinj and pinj , which can be

usefully expressed in terms of ϵCR, the fraction of cluster wind luminosity Lw converted

into accelerated particles:

ϵCRLw = LCR = 4πR2
TSu2

∫︂

fTS(p)Ek(p)d
3p, (1.74)

where LCR is the CR luminosity and Ek = E(p) − mpc
2 is the particles kinetic energy.

Knowing that Lw = 4πmpn1R
2
TSu

3
1, from Eq.1.74 one can obtain an expression for ηinj ,

which can be used in Eq. 1.73 to obtain:

fTS(p) ≃
3n1u

2
1ϵCR

4πΛp(mpc)3c2

(︃

p

mpc

)︃−s [︃

1 + a1

(︃

p

pmax

)︃a2]︃

e−a3(p/pmax)a4 (1.75)

where:

Λp =

∫︂ ∞

xinj

x2fTS(x)
(︂√

1 + x2 − 1
)︂

dx, (1.76)

with x = p/mpc.

Interestingly, once the parameters of the star cluster are őxed, fTS is fully described

by only two parameters, namely the efficiency of CR production (ϵCR) and the spectral

index of injected particles (s). Indeed, it is possible to őx pmax, or equivalently, themaxi-

mumenergy of accelerated particles (Emax), to the intrinsic properties of the YMSC. The

maximummomentum of particles can be calculated by equating the particle diffusion

length to the size of the TS13:
D1(Emax)

u1
= RTS . (1.77)

13From a formal point of view, this approach to estimatingEmax is somewhat approximate. In fact, one
would have to consider the conőnement of the particle in the downstream, since if the particle escapes
the bubble it will immediately diffuse into the ISM, effectively terminating the acceleration process. This
mechanism is formally included in the term e−Γ(p)2 in Eq. 1.72.
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This is because theprobability of crossing theTSandbeing further accelerateddecreases

signiőcantly when the particles have diffusion lengths greater than or comparable to

RTS . Ifwe consider again the three turbulent cascademodelsmentionedabove, givenby

the Kolmogorov, Kraichnan and ŕat (Bohm-like) spectrum, the corresponding diffusion

coefficients upstream are easily obtained from Eq. 1.58, and are respectively:

DK41(E) =
1

3
ΛBβcr

1/3
L L

2/3
inj (1.78)

DKra(E) =
1

3
ΛBβcr

1/2
L L

1/2
inj (1.79)

DBohm(E) =
1

3
ΛBβcrL. (1.80)

where rL = E/eδBtot.

The diffusion coefficients are directly linked to the intensity of the magnetic őeld

ŕuctuations upstreamof the TS.We assume that the total power inmagnetic ŕuctuation

δBtot/8π =
∫︁

P(k)dk is a fraction ηB of the wind luminosity, such that:

δB2
tot

4π
= ηB

Lw

4πu1R2
TS

(1.81)

we furthermore consider the scenario of strong turbulence, so that δBtot/B1 = 1, with

B1 themagneticőeldupstreamof theTS, andweshall rename for simplicity δBtot = δB1.

Solving Eq. 1.77 forEmax and rewriting the expression forRTS using Eq. 1.11 and Eq. 1.1

leads to the following maximum energies:

EK41
max ≃ 1014Λ−3

B η
1/2
B

(︄

Ṁ

10−4M⊙yr−1

)︄11/10
(︂ u1
103 kms−1

)︂37/10
(︃

ρ0
mp cm−3

)︃−3/5

(︃

tage
10 Myr

)︃4/5(︃
Linj

2 pc

)︃−2

eV

(1.82)

EKra
max ≃ 4× 1014Λ−2

B η
1/2
B

(︄

Ṁ

10−4M⊙yr−1

)︄4/5
(︂ u1
103 kms−1

)︂13/5
(︃

ρ0
mp cm−3

)︃−3/10

(︃

tage
10 Myr

)︃2/5(︃
Linj

2 pc

)︃−1

eV

(1.83)
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EBohm
max ≃ 7.53× 1015Λ−1

B η
1/2
B

(︄

Ṁ

10−4M⊙yr−1

)︄1/2
(︂ u1
103 kms−1

)︂3/2

eV (1.84)

As we will show in ğ 3.1.2, u1 is expected to be of the order of the speed of the winds

from the most massive stars, which ranges between 2000−3000 km s−1. This implies

that energies of a few PeV are easily reached in the case of protons. For the sake of com-

pleteness, it must be noted that Emax depends on two parameters, namely ηB and Linj

that are observationally hard to estimate and are currently largely unknown. For exam-

ple, Linj can vary by one order of magnitude, depending on whether the turbulence is

injected at a characteristic scale of the average distance between stars (a few pc) or at

the typical length scale of the TS size (∼ 10− 20 pc), and this has a signiőcant impact in

the cases of Kraichnan and Kolmogorov-like cascades. For the Bohm case, the parame-

ter Linj is instead substituted by ΛB , which accounts for the interval in length scales for

which the power spectrum is ŕat.

Finally, knowing the relation between u1 andLw given by Eq. 1.1, one can rewrite the

equations for the maximum energy in a more handy form, which directly depends on

Lw. Assuming that ηB ≪ 1, Eqs. 1.82 ś 1.83 ś 1.84 becomes:

EK41
max ≃ 1.2Λ−3

B

(︂ ηB
0.1

)︂1/2
(︄

Ṁ

10−4M⊙yr−1

)︄−3/4
(︃

Lw

1039 ergs−1

)︃37/20(︃
ρ0

20mp cm−3

)︃−3/5

(︃

tage
3 Myr

)︃4/5(︃
Linj

2 pc

)︃−2

PeV

(1.85)

EKra
max ≃ 2.8Λ−2

B

(︂ ηB
0.1

)︂1/2
(︄

Ṁ

10−4M⊙yr−1

)︄−5/10
(︃

Lw

1039 ergs−1

)︃13/10(︃
ρ0

20mp cm−3

)︃−3/10

(︃

tage
3 Myr

)︃2/5(︃
Linj

2 pc

)︃−1

PeV

(1.86)

EBohm
max ≃ 10.07Λ−1

B

(︂ ηB
0.1

)︂1/2
(︄

Ṁ

10−4M⊙yr−1

)︄−1/4
(︃

Lw

1039 ergs−1

)︃3/4

PeV (1.87)
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1.4 Probing YMSCs as CRs accelerators

In ğ 1.3 we acknowledged that, from the the theory point of view, YMSCs are able to

accelerate CRs in different ways. Moreover, the maximum energies achieved in these

systemscanbeashighasa fewPeV,makingYMSCsconceivable as galacticPeVatron. The

general question that onemay ask is how to empirically conőrm or reject the possibility

that of YMSCs actually produce a sizable amount of CRs and accelerate particle up to

1015 eV.

Unfortunately, it is impossible to probe CR sources directly from the reconstruction

of the trajectories of particles arriving at the Earth, since CR propagation in the Galaxy is

fully diffusive at 1 PeV. The validity of this statement is readily proven by computing the

Larmor radius of a proton in the average Galactic magnetic őeld (∼ 3 µG):

rL ≃ 0.36

(︃

E

1 PeV

)︃(︃

B

3 µG

)︃−1

pc, (1.88)

whichmeans that after a few pc from the source, a CR has deviated signiőcantly from its

original escape trajectory.

The study of CR accelerators must then rely on observational techniques that can

probe the presence of accelerated particles by means of their interaction with the envi-

ronment close to the CR source. One possibility is to consider the radiation emitted by

CRs. High-energy photons within the γ-ray range can serve as a direct indicator of the

presence of CRs. This is because only energetic particles, via non-thermal processes,

can emit radiation with energies higher than a few tens MeV.

Indeed, during the last decades, several YMSCs have been observed in coincidence

with large diffuse γ-ray emission, both in the high-energy (≳ 1 GeV) and very high-

energy (≳ 1 TeV) bands. Examples are Westerlund 1 (Abramowski et al., 2012; Aharo-

nian et al., 2022), Westerlund 2 (Yang et al., 2018), Cygnus OB2(Ackermann et al., 2011b;

Bartoli et al., 2014b; Abeysekara et al., 2021b), and NGC 3603 (Saha et al., 2020). The

presence of γ-ray emission has largely strengthened the hypothesis of YMSC as CRs fac-

tories. This is even more true considering that in all the detected YMSCs, the observed

γ-ray luminosity, if interpreted as hadronic, is easily explained assuming that a fraction

of a few percent of the cluster wind power ends up in accelerated particles.

Let us consider, for instance, the speciőc case of the YMSC Cygnus OB2. Aharonian

et al. (2019) measured a total γ-ray luminosity towards Cygnus OB2 of Lγ ≈ 3.02 ×
1034 erg s−1 for photon energies above 10 GeV. The total energyWp in terms of hadronic
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particles to explain such emission can be estimated as (Aharonian et al., 2019):

Wp ≃ 2.55× 1050
(︃

Lγ

1034 ergs−1

)︃

(︂ n2

0.1 cm−3

)︂−1

erg, (1.89)

which is≈ 0.7× 1051 erg for Cygnus OB2. Given the wind power and the age of Cygnus

OB2 of Lw ≈ 2× 1038 erg s−1 and tage ≈ 3Myr respectively (see ğ 2.1), the total injected

energy by the stellar cluster isEcluster = Lwtage ≈ 2× 1052 erg, that implies a reasonable

efficiency of CR production of the order of∼ 10% to account for the observed emission.

For the sake of completeness, it must be underlined that this estimation has been car-

ried out assuming that the observed γ-ray emissionwas of hadronic nature. In principle,

also leptons may generate high-energy radiation, and, often, discriminating the nature

of the emission is a challenging task. Nevertheless, a comprehensive study of the mor-

phology and spectrum of the γ-ray emission from a YMSC can provide essential insight

into the properties of the freshly accelerated CRs, revealing the main characteristics of

the ongoing particle acceleration processes in such systems. In ğ A.1 a general overview

of the principal leptonic and hadronic γ-ray emission processes is reported.

Another way to probe the presence of energetic particles is to observe the enhanced

ionization degree induced by the low-energy tail of the CR population in dense regions

of the ISMclose to aCR source. At the beginning of ğ 1.3, we emphasized the importance

of low-energy CRs as regulators of the molecular cloud dynamics and in general of the

star formation process.

A diffuseHI cloudwhich is embedded in theGalactic CR sea is foreseen to have a ion-

ization rate of ζHI ≳ 6.8 × 10−18 s−1 (Spitzer & Tomasko, 1968), while for dense molec-

ular cloud the ionization rate is instead expected to be ζH2 ≳ 1 × 10−17 s−1 (Glassgold

& Langer, 1974). Close to a CR source, the ŕux of ionizing CRs is likely to be higher, and

one could consider searching for an enhanced ionization rate in cloud close to the ac-

celeration site to conőrm the presence of freshly accelerated particles.

This technique has been successfully used in the case of SNRs. A well known case

is that of W28, where the presence of an increased ionization rate in nearby molecular

clouds was found, in agreement with the idea of SNRs as CR accelerators (Vaupré et al.,

2014). Interestingly, the information on the ionization rate can be further combined

with γ-ray observations, to eventually help to discriminate the hadronic nature of the

emission (Gabici & Montmerle, 2015).

So far, no attempt to extend this approach toYMSChasbeenmade, in spite of the fact

that the environment is foreseen to be particularly promising given the large amount of

clumpedmolecular gas that is expected close to a YMSC as a result of the fragmentation

of the swept-up shell. See ğ A.2, for a review on how to calculate the ionization rate from

apopulationofCRs andhow to assess its value fromobservationsbasedon thedetection
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of speciőc molecular lines.
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THE SCIENTIFIC CASE OF CYGNUS OB2

T
HE understanding of YMSCs as particle accelerators must necessarily pass,

to a large extent through γ-ray observations, as their investigation through

direct detection of CRs is severely limited by the diffusive behavior of the

accelerated particles, as is the case for all galactic sources. Currently, a

handful of YMSCs have been found in coincidence with extended γ-ray emission, in-

cluding Cygnus OB2.

CygnusOB2 represents, perhaps, one of themost intriguing cases for 3main reasons.

First, the detected diffuse γ-ray emission has been widely investigated from both the

spectral and morphological point of view in both the high-energy (1 < Eγ < 100 GeV)

and very-high-energy bands (0.1 < Eγ < 100 TeV), a fact that allows a robust modeliza-

tion of the underlying CR distribution, potentially leading to an exhaustive knowledge

of the acceleration properties. Secondly, the stellar population of Cygnus OB2 has been

extensively studied over the decades, paving the ground for a realistic estimate of fun-

damental stellar cluster parameters such as the total wind luminosity and themass loss

rate. Last but not least, the recent detection by the LHAASOexperiment (Cao et al., 2021)

of a 1.4 PeV γ-ray in coincidence with the star cluster could indicate the presence of CRs

with energies of at least 10 PeV, marking Cygnus OB2 an excellent PeVatron candidate.

In this chapter, we aim to interpret the observed γ-ray emission assuming an under-

lying distribution of CRs described by the model of particle acceleration at the cluster

windTSdevelopedbyMorlino et al. (2021) summarized inğ1.3.3. The informationgiven

by the combination of the morphological and spectral shapes of the extended γ emis-

sion can be used to constrain, at some level, the propagationmechanism of CRs. This is

particularly critical as CR propagation close to the acceleration site is directly related to

the type of plasma turbulence in the system, which in turn affects themaximumparticle

energy achievable by the accelerator.
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The chapter is structured as follows: in the őrst part, we will review the main prop-

erties of the YMSC Cygnus OB2, and we will estimate the mass loss rate and wind lu-

minosity considering the population of stars in the cluster. In the second part, knowing

the properties of the star cluster, we comment on the morphological properties of the

freshly accelerated particle distribution. We furthermore describe how to evaluate the

γ-ray ŕux under the assumption of pure hadronic emission. In the last part, we compare

the spectro-morphological properties of the expected γ-ray emission with available ob-

servations from different experiments. Finally, we comment on the obtained results,

discussing on the model validity and its limitations.

2.1 The youngmassive star cluster Cygnus OB2

Cygnus OB2 (Cyg OB2) is one of the most massive and compact OB associations in the

Milky Way, located towards the center of the Cygnus-X star-forming complex (l≈80.22◦,
b≈0.79◦), anextended (∼10◦) radio structurehostingnumerousmolecular clouds (Schnei-

der et al., 2006),HII regions (Dickel et al., 1969) andseveral otherOBassociations (Uyanıker

et al., 2001). Cyg OB2 harbor hundreds, possibly thousands of massive stars. The őrst

study of its population has been carried out by Reddish et al. (1966), who inferred with

large uncertainties a total of 400ś3000OB stars, based on star counts on the Palomar Sky

Survey plates. Similarly, Knödlseder (2000) found a compatible result using star counts

in the near-infrared, estimating a total population of 2600±400 OB stars, with 120±20
being O-type stars. However, because of the problematic background subtraction and

highly patchy extinction pattern towards the association, the amount of stars inCygOB2

is possibly lower, as noted by Wright et al. (2010), who estimated a total star content of

∼1200 OB stars, with∼75 O-type stars. The radial stellar distribution from observations

seems to followacompact andpeakedproőle,withahigh stellardensity in thecoreof the

association, similar to the YMSCs observed in the Large Magellanic Cloud (Knödlseder,

2000). Due to the peakedmorphology of CygOB2, a large fraction of the stars is enclosed

in the central part of the association, in a regionwith a radius of∼14 pc. A recent census
of this central core has revealed the presence of 169OB stars, of which 52 areO-type, and

3 are Wolf-Rayet stars (Wright et al., 2015).

Several estimations of the age of Cyg OB2 have been made through the years. The

presence of O-type dwarf stars and high-luminosity blue supergiants in the sample of

85 OB stars selected by Hanson (2003) suggests that Cyg OB2 should not be older than

a few Myr, with a likely value of 2±1Myr. An investigation of the population of A-type

stars in CygOB2 indicated the presence of a group of 5ś7Myr old stars, locatedmainly in

the southern part of the association (Drew et al., 2008). In parallel, X-ray analysis of low-
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mass stars seems to point to an age of 3ś5 Myr (Wright et al., 2010). Wright et al. (2015)

found a typical age of 2ś3 Myr and 4ś5 Myr by applying respectively non-rotating and

rotating evolutionary stellar models to the selected sample of 169 OB stars. The latter

results seem to agree with a scenario describing an overall continuous star formation

activity, starting ∼7 Myr ago and going on until ∼1 Myr ago, with a possible peak of

star formation around 4ś5 Myr. This is compatible with the results found by Comerón

& Pasquali (2012), that were also suggestive of a continuous star-forming activity in the

region for the last 10 Myr.

The distance of Cyg OB2 is a subject still under debate in the community. Right after

the discovery of the association, Johnson&Morgan (1954)measured the distance of Cyg

OB2using spectroscopic observations of 11 stars, őnding a value of∼1500 pc. In the őrst
comprehensive investigation of the CygOB2 population, Reddish et al. (1966) estimated

a distance of 2100 pc. Independent studies in the early 90s based on themethod of spec-

troscopic parallax resulted in a distance of∼1700 pc (Torres-Dodgen et al., 1991;Massey

& Thompson, 1991). Perhaps the most commonly adopted value, at present, is the one

measured by Hanson (2003), who inferred a distance of 1400±80 pc after analyzing the
absolute magnitude and extinction of 14 OB stars. This measure is reasonably compati-

ble with the position of somemolecular clouds in the Cygnus-X region, whose distance

has been calculated using maser parallaxes (Rygl et al., 2012). Moreover, this value is

also in agreement with the results of a recent work exploiting parallax based distances

calculated using eclipsing binaries, fromwhich a distance of 1330± 60 pcwas evaluated

(Kiminki et al., 2015). Finally, a comprehensive study using parallaxes from the second

data release by Gaia seems to point out that the association is actually composed of two

main subgroups, the őrst located at a distance of∼1350 pc and the second at∼1755 pc
(Berlanas et al., 2019).

2.1.1 Cygnus OB2 wind luminosity andmass loss rate

As we will detail later in this chapter, two fundamental parameters regulating multiple

aspects of the CR distribution properties are the cluster mass loss rate and the cluster

wind luminosity. In order to calculate these parameters for Cyg OB2, we need to com-

pute themass loss rate Ṁ i for every i-thmember of Cyg OB2. We then consider the stars

at the core of the association belonging to the sample studied byWright et al. (2015). We

use two different recipes to calculate Ṁ i. The őrst one is a theoretical formula given by

Yungelson et al. (2008)

Ṁ i =
Li

v∞,ic

1

(1− Γ)(α−0.5)
(2.1)
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whereLi is thebolometric stellar luminosityof the i-th star of the sample, c is the speedof

light, Γ = Li/LEdd with LEdd the Eddington luminosity, α=0.25 (Yungelson et al., 2008),

and v∞,i is the wind terminal velocity of the i-th star. The latter is deőned as (Kudritzki

& Puls, 2000):

v∞,i = C(Teff)

[︃

2GMi(1− Γ)

R⋆,i

]︃1/2

(2.2)

with R⋆,i = 0.85(Mi/M⊙)
0.67R⊙ (Demircan & Kahraman, 1991) the stellar radius, G the

gravitational constant,Mi the stellar mass, andC(Teff) a parameter that depends on the

star temperatureTeff , which isC(Teff) = 2.65 forTeff > 21000K (Kudritzki & Puls, 2000).

The second equationwe use is an empirical relation valid for stars with temperature1

27500 K< T i
eff < 50000 K given by Vink et al. (2000):

log10

(︄

Ṁ i

M⊙yr−1

)︄

= −6.668(80) + 2.210(31)log10

(︃

Li

105 L⊙

)︃

−1.339(68)log10

(︃

Mi

30M⊙

)︃

− 1.601(55)log10

(︃

v∞,i

2vesc

)︃

+1.07(10)log10

(︃

Teff,i
40000 K

)︃

+ 0.85(10)log10

(︃

Zi

Z⊙

)︃

(2.3)

where Zi is the stellar metallicity and vesc =
√︁

2GMi(1− Γ)/R⋆,i is the escape velocity.

When using equation 2.3 we will assume solarmetallicity. For every star in their sample,

Wright et al. (2015) provide an estimation of the stellar parameters L̃i, T̃ eff,i, and M̃ i (we

will refer to the quantities estimated byWright et al. (2015) using the∼ diacritic symbol)

together with the associated parameter uncertainty (δL̃i, δT̃ eff,i, and δM̃ i).

We compute four diverse estimation of Ṁ , using different combinations of themea-

sured parameters L̃i, T̃ eff,i, and M̃ i. More precisely,

• as a őrst trial, we calculate the total mass loss rate using all the measured param-

eters.

• as a second trial, we use only L̃i, while Teff,i andMi are calculated using respec-

tively the Stefan-Boltzmann law and the inverted Luminosity-Mass scaling rela-

tion given by Yungelson et al. (2008):

Teff,i =

(︄

L̃i

4πR2
⋆,iσb

)︄1/4

(2.4)

1Note that this condition is respected for all stars in the sample of Wright et al. (2015), whose masses
are greater than 20M⊙
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Mi

M⊙

=

[︄

10−3.48

(︄

L̃i

L⊙

)︄]︄0.75

(2.5)

where σb is the Stefan-Boltzmann constant.

• as third trial, we use L̃i and T̃ eff,i, whileMi is obtained using equation 2.5.

• lastly, we use T̃ eff,i and M̃ i whileLi is calculated inverting equation 2.5 (Yungelson

et al., 2008).

In each trial, we account for the uncertainties in the measuraments of L̃i, T̃ eff,i, and M̃ i

by utilizing a Montecarlo method. This involves creating 104 different samples of stars

where the measured parameters (L̃i, T̃ eff, i, and M̃ i) are randomly ŕuctuated following

a Gaussian distribution with a width equal to the associated error (δL̃i, δT̃ eff,i, and δM̃ i).

Fig. 2.1a shows the result for the Ṁ calculation after considering only single stars (no

binary systems) withMi > 20M⊙ and without the contribution of Wolf-Rayet stars. The

value of Ṁ lies between∼ 0.2− 0.7× 10−4 M⊙ yr−1. To account for the contribution of

the threeWolf-Rayet (WR) stars in the sample, we consider an ad-hoc empirical relation

reported by Renzo et al. (2017):

log10

(︄

ṀWR, i

M⊙yr−1

)︄

= −11.0 + 1.29(14)log10

(︃

LWR, i

105 L⊙

)︃

+1.73(42)log10

(︃

YWR, i

Y⊙

)︃

+ 0.47(09)log10

(︃

ZWR, i

Z⊙

)︃

.

(2.6)

Adopting for YWR,i (helium fraction) and ZWR,i (metallicity) the solar values, we őnd a

contribution to the mass loss rate fromWR stars of ṀWR(L̃WR, i) ∼ 0.3× 10−4 M⊙yr−1.

The star sample of Wright et al. (2015) includes also 9 known binary systems, whose

contribution to Ṁ is not straightforward to quantify. However, we can make a rough

estimation assuming that the observed luminosity L̃i of the system is equally distributed

between the two companions. By doing so, and by following the same approach as for

single star systems for the calculation of Ṁ i using only L̃i, we őnd ṀBinary ∼ 0.22−0.3×
10−4 M⊙yr−1. By summing up all the contributions, Cyg OB2mass loss rate should lie in

a conservative range of Ṁ ≃ 0.7 − 1.3 × 10−4 M⊙yr−1. Once Ṁ i and v∞,i are known, it

is then possible then to estimate the wind luminosity (Lw
i ) for each star as:

Lw
i =

1

2
Mi
̇ v2∞,i. (2.7)
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(a)

(b)

Figure 2.1: (a) Mass loss rate distribution for Cygnus OB2 considering the sample of stars
investigated by Wright et al. (2015). The mass loss rate is estimated using two different recipes,
a theoretical one (Yungelson et al., 2008) and an empirical one (Vink et al., 2000), using diverse
stars measured quantities (see text). The plot only shows the contribution from single star

systems and does not include WR stars. (b) Wind luminosity of Cygnus OB2 inferred using the
estimated mass loss rates.

41



CHAPTER 2

Consequently, the cluster wind luminosity is easily found as:

Lw =
∑︂

i

Lw
i (2.8)

The contribution of single, non Wolf-Rayet stars, accounting for both the values of Ṁ i

inferred using the theoretical and empirical recipes of Yungelson et al. (2008) and Renzo

et al. (2017), ranges in the rangeLNBS
w ≃ 0.4−1.6×1038 erg s−1 (seeFig. 2.1b). In addition

to this, we also estimate the wind luminosity contribution from the three Wolf-Rayet

stars included in the sample of Wright et al. (2015) assuming an average wind speed of

2500 kms−1: this turns out to beLWR
w ≃ 0.6×1038 erg s−1. Finally, the contributionof the

9 binary systemsusing the previously computedmass loss rate, isLBS
w ≃ 0.55−0.7×1038

erg s−1. Accounting for all contributions, Cyg OB2 wind luminosity should lie between

Lw ≃ 1.55 − 2.9 × 1038 erg s−1. It is worth noticing that the obtained value of Lw is

compatible with other estimations done by different authors. For example, Ackermann

et al. (2011b) calculate a wind luminosity of Lw ≃ 2 − 3 × 1038 erg/s considering a

different sample of stars that include the presence of 17 stars withM⋆ > 35M⊙ and 5

Wolf-Rayet stars.

One last point worth mentioning is that the values obtained for the theoretical and

empirical prescription for Ṁ are approximately in good agreement within a factor of a

few, with the trial based on themeasured bolometric luminosity becoming the one with

the better agreement. There are several possible recipes given in the literature (Renzo

et al., 2017), and a discrepancy of a factor 2ś3 is reasonably expected.

2.1.2 The wind blown bubble of Cygnus OB2

As a young (<7 Myr) and massive stellar cluster, it is reasonable to expect Cyg OB2 to

be surrounded by a wind-blown bubble. Over the years, several attempts were made to

őnd this structure: one of the őrst suggestions was to identify the Cyg OB2 wind bub-

ble with the extended X-ray source known as Cygnus Superbubble (Cash et al., 1980;

Uyanıker et al., 2001). However, this hypothesis encountered several problems, such as

the fact that Cyg OB2 is signiőcantly offset from the geometrical center of the superbub-

ble. Moreover, various portions of the superbubble itself appeared to be uncorrelated,

prompting the idea that the Cygnus Superbubble is actually a combination of several

structures along the line of sight (Uyanıker et al., 2001). Another attempt to search for

thewindbubblewasperformed throughdirect searchof the cold shell of dense swept-up

material surrounding the expanding hot shocked gas (Lozinskaya et al., 2002). Unfortu-

nately, the unlucky position of Cyg OB2 at Galactic longitudes close to 90◦ prevents a

robust determination of the gas location by using kinematic distances. The detection of
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the Cyg OB2 bubble still remains nowadays a matter of debate.

For the sake of curiosity, we can try to estimate the expected dimension of the wind

bubble considering the theory ofWeaver et al. (1977), introduced in ğ 1.2.3. If we assume

the following reasonable values for the parameters of Cyg OB2: Lw = 2 × 1038 erg s−1

(compatible to what has been calculated in ğ 2.1.1), cluster age of 3 Myr, and ρ0 = 20mp

cm−3, the size of the forward shock position tracing the location of the swept-up shell of

dense material is (Eq. 1.8) Rb ≈ 86 pc. Considering a distance of 1.4 kpc, the projected

size of the forward shock is of the order of a few degrees in radius. Interestingly, this is

slightly larger, but in good agreement with the dimension of the diffuse, őlamentary, 21

cm continuum radio emission of the Cygnus-X star-forming region (Fig. 2.2).

Knowing that a signiőcant fraction of the continuum emission is of thermal nature

(Xu et al., 2013), the overall őlamentary structure observed at 21 cm could be tracing

what is left of the former (now fragmented) shell of dense material. Thermal emission

could then be produced in this scenario by the ionized HII region trapped within the

fragmented dense shell.

Currently, no evidence for a collective wind TS has ever been searched for. It is there-

fore fair to askwhetherCygOB2 fulőlls the conditions todevelopa collectivewind. Using

the same parameters for the estimation of Rb, and considering a star cluster mass loss

rate Ṁ = 10−4M⊙ yr−1, the TS shock radius canbe calculatedusing Eq. 1.11, fromwhich

we obtain RTS ≈13 pc. This value is similar to the overall size of the Cyg OB2 association

core studied by Wright et al. (2015). The half-mass radius is, however, smaller by a fac-

tor∼ 0.4 (Rhm ≈ 5.2 pc) (Pfalzner, 2009), which is compatible with the half-luminosity

radius Rhl ≈ 2.5 pc obtained from the sample of Wright et al. (2015) (see Fig. 2.3). Since

the most massive stars are also the brightest, Rhl should roughly delimit the region con-

taining themostmassive stars, i.e., those that contributemost to the creation of the col-

lective cluster wind. Reasonably assuming that the average distance between the stars

is a fraction of Rhl, the hypothesis that a collective wind exists becomes rather concrete

(see ğ 1.2.3).
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Figure 2.3: Cumulative radial distribution of Cyg OB2 stellar luminosity calculated using the
star sample of Wright et al. (2015).

2.2 The distribution of CRs in Cygnus OB2

Given the compactness of CygOB2 and the possibility of developing awindTS, it is likely

that the acceleration mechanism in this system, and the resulting distribution of CRs

(fCR), is the one described in ğ 1.3.3, appropriate for particles acceleration at the wind

TS. In such a scenario, Eq. 1.70 describes the distribution of CRs. Note that fCR is com-

posed of a contribution of two populations, the freshly accelerated particles escaping

from the acceleration site and the population of Galactic CRs thatmay end up penetrat-

ing in the system. Let us now rewrite Eq. 1.70 accounting only for the contribution of

freshly accelerated CRs, i. e., considering fgal = 0:

fCR(r, p) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

fTS(p) · exp
[︂

−
∫︁ RTS

r
u1

D1(r′,p)
dr′
]︂

for r ≤ RTS

fTS(p)e
α 1+β(eαB−α−1)

1+β(eαB−1)
forRTS ≤ r ≤ Rb

fTS(p)
eαB

1+β(eαB−1)
Rb

r
for r ≥ Rb

(2.9)

where α, αB and β are deőned in Eq. 1.71, and fTS is given by Eq. 1.75.

Clearly, both the spectral and morphological characteristics of fCR depend more or

less directly on the properties of CygOB2, but also on the type of diffusion in the system,

which is related to the (unknown) turbulence spectrum in the bubble. We therefore pro-

ceed to evaluate Eq. 2.9 in the speciőc case of Cyg OB2, considering three different cases

of turbulence spectrum: Kolmogorov-like, Kraichnan-like and ŕat spectrum. The fol-
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lowing values are used for Cyg OB2: Lw = 2 × 1038 erg s−1, Ṁ = 10−4 M⊙ yr−1, cluster

age of 3 Myr, and ρ0 = 20mp cm−3 (related to the mean density of the GMC from which

Cyg OB2 was formed, unknown in fact and totally hypothetical). We model the plasma

turbulence in the three cases considering that the total power inmagnetic turbulence is

a fraction ηB = 0.1 ofLw, and that the power injection scale of the turbulence isLinj = 2

pc, as it is reasonable to assume it to be of the order of the cluster sizeRhl. For the Bohm

case, we also assume that the turbulence is injected down to scales of kmin = 10−5 pc−1.

Finally, we additionally assume that a fraction ϵCR = 0.1 of Lw goes into acceleration of

CRs, and that the slope of the injected particle spectrum at the TS is s = 4. The results

obtained evaluating Eq. 2.9 under these assumptions are shown in Fig. 2.4 and Fig. 2.5,

which show respectively the radial shape of fCR at different energies and the spectra of

injected particles at the TS for the three cases under analysis.

By looking at the radial shape of fCR, one can readily see how the three cases corre-

spond to different spatial proőles: the Kolmogorov turbulence produces a more peaked

shape, while a Bohm diffusion induces a ŕat proőle. The Kraichnan case instead, gen-

erates a proőle that is intermediate between Kolmogorov and Bohm, with a ŕat distri-

bution at low energies and a peaked proőle at energies higher than ∼100 TeV. Actually,
themorphology is energy-dependent in all the treemodels, with an increasingly peaked

proőle at higher energies. This change in shape is caused by the onset of dominance of

diffusive propagation over advection at high energies.

It is possible to őnd atwhat energy the two transport processes are equally important

by equating the advection time scale tadv, with the diffusion time τd, deőned as:

tadv =

∫︂ Rb

RTS

dr

u2(r)
(2.10)

τd(E) =
(Rb −RTS)

2

2D2(E)
, (2.11)

where the advection timescale is obtained under the assumption of a strong shock con-

sidering a velocity in the downstream of u2(r) = (u1/4)(r/RTS)
−2. Using the standard

parameters for Cygnus OB2, we őnd that tadv ≈ 1.8Myr. In Eq. 2.11, the diffusion co-

efficients for the three cases under analysis (D2) are given by Eqs. 1.78 ś 1.79 ś 1.80.

We calculate them considering the turbulent magnetic őeld in the downstream, that is

δB2 =
√
11δB1(RTS), with δB1 given by Eq. 1.81. Fig. 2.6 shows the energy at which

tadv = τd(E). This energy is∼20 GeV,∼2 TeV, and∼100 TeV for Kolmogorov, Kraichnan,

and Bohm respectively. It is crucial to underline that these numbers are average values.

If one takes into account the velocity proőle, the effect of advection should be stronger

(i.e., shifting to higher energies the former values) at distances closer to the TS. This can
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Figure 2.4: Radial CR distribution normalized to its value at the termination shock in the case of
Kolmogorov (top panel), Kraichnan (central panel), and Bohm (bottom panel) turbulence. In

these plots, the contribution of the galactic CR sea to fCR has not been considered.
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Figure 2.5: Injected particles spectrum at the TS with same cluster and turbulence injection
properties but with different diffusion coefficient in the system.

be clearly seen in Fig. 2.4, where the proőle becomes ŕatter close to the TS.

In addition to the propagation properties, the diffusion coefficient also regulates the

conőnement of particles around the acceleration site; hence, it directly affects themax-

imum energies that CRs can reach, and the spectral shape of injected particles. Both ef-

fects are noticeable in Fig. 2.5: in spite of begin calculated with the same parameters for

Cyg OB2, the particle spectra at the TS present very different shapes of the cut-off, and

the position itself of the cut-off is different for the three considered diffusion regimes.

Kolmogorov turbulence, for example, is not very efficient in conőning particles close to

thewind TS. As a consequence, themaximumenergywill be less if compared to a harder

turbulent cascade spectrum, as for example the ŕat spectrum behind Bohm-like diffu-

sion.

2.3 Modeling γ-ray emission from Cygnus OB2

During theescape fromtheacceleration site, thehadronic componentofCRs is expected

to interact with the surrounding medium causing the creation of neutral pions. As de-

scribed in ğ A.1, the π0s subsequently decay with the emission of γ-rays. The observed

spectrum andmorphology will strongly depend on both the distribution of CRs and the

target medium. The γ-ray ŕux from π0 production is described by Eq. 2.

In our speciőc case, fCR(Ep, r) is the radial distribution of CRs given by Eq. 2.9, while

n(r) represents the number density distribution of the target medium in the vicinity of
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Figure 2.6: Comparison between diffusion and advection time scales as a function of the
particle energy. For showing purpose, we also included the diffusion time scale obtained
considering the standard diffusion coefficient in the ISM (dotted line) (Strong et al., 2007).

Cyg OB2, which is largely unknown and must be assumed a priori (see ğ 2.3.1). Having

inmind the spherical geometry of the system, Eq.2 can be simpliőed by considering the

volume integral in terms of cylindrical coordinates. Knowing that r =
√
ℓ′2 + z2, where

z is the direction along the line of sight and ℓ′ the projected distance on the sky, Eq. 2 can

be rewritten as

ϕγ(ℓ,∆ℓ, Eγ) =

∫︂ ℓ+∆ℓ

ℓ

n(ℓ′)ξ(ℓ′, Eγ)ℓ
′dℓ′, (2.12)

wheren(ℓ′) is the average ISMdensity proőle that can be inferred fromobservations (see

ğ 2.3.1) and ξ(ℓ′, Eγ) deőned as

ξ(ℓ′, Eγ) =
1

d2

∫︂∫︂

cfCR(ℓ
′, z, Ep)

dσ(Ep, Eγ)

dEp

dEpdz. (2.13)

By varying the limits of integration, Eq. 2.12 can be used to estimate the total γ-ray ŕux

from a particular area of the sky (for spectral analysis) and also to obtain the γ-ray radial

proőle (for morphological analysis).

2.3.1 The interstellar medium close to Cygnus OB2

The distribution of the ISM is a crucial parameter that directly affects themorphology of

theobservedγ-ray emission. Onavery general ground, the ISMcanbedivided into three
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main gas phases: ionized, neutral atomic gas, and molecular gas. The latter two phases

are typically the densest and the most massive, and hence are the ones that contribute

themost to the production of γ-ray emission. The neutral atomic gas is usually observed

using the emission of the 21 cm line of HI, while molecular H2 must be traced indirectly

using 12CO, since direct observation of H2 is not possible due to the symmetry of the

molecular structure which forbids dipole emission.

Clearly, due to the projection effect, not all the molecular or atomic gas observed in

the vicinity of a given source is actually in its vicinity. The location of the gas along the

line of sight can be estimated using the method of kinematic distances (Roman-Duval

et al., 2009). Kinematic distances are based on the Doppler shift of a certain transition

(atomic or molecular) induced by Galactic differential rotation. Knowing the Galactic

rotation curve, a speciőc Doppler shift value identiőes three points along a given line

of sight with Galactic longitude θ. These three points correspond to three different po-

sitions returning the same projected radial velocity Vr (see Fig. 2.7), and are known as

Near distance, Tangent points, and Far distance. The distance (d) of these point can be

calculated as:

d = R0 cos(θ)±
√︂

r2gal −R2
0 sin(θ) (2.14)

whereR0 is the Galactocentric distance of the Sun, V0 is the Sun orbital velocity, and rgal
is the Galactocentric distance of the gas:

rgal = R0 sin(θ)
V (rgal)

Vr + V0 sin(θ)
(2.15)

with V (rgal) as the Galactic rotation curve. In Eq. 2.14, the tangent point is obtained for

rgal = R0 sin(θ), and so d = R0 cos(θ). It is impossible to discern between near, far and

tangent points based on kinematics alone. This issue is generally known as kinematic

distance ambiguity. In general, additional pieces of information are required to remove

the ambiguity, as for example, dust absorptionor parallaxmeasures. Note that this prob-

lem exists only for rgal < R0, as in the outer Galaxy the radial velocity along the line of

sight decreases monotonically.

In principle, tomodel the gas distribution near CygOB2, one could use speciőc kine-

matic cut on the gas velocity. Unfortunately, the Cygnus-X region is located at Galactic

longitudes where the differential galactic rotation up to∼4 kpc results in low radial ve-

locities, with values compatible with the typical gas motion dispersion, thus preventing

a robust 3Dmodelization of the ISM proőle along the line of sight. Even if the kinematic

ambiguity prevents a small-scale spatial modelization of the gas, we consider anyway

a velocity cut between -20 km s−1 and 20 km s−1, selecting in such a way the gas asso-

ciated with the Cygnus-X star forming complex (Schneider et al., 2006) while removing
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Figure 2.7: Scheme for calculating the kinematic gas distance. The Doppler shift of an atomic or
molecular transition depends on the component of the gas velocity due to the galactic

revolution (vc) projected along the line of sight (vr). This produces an ambiguity in position
(near and far position, N and F points respectively). The case where the radial velocity of the
gas is totally aligned with the direction of the line of sight deőnes the tangent point (T point).

the gas contribution of both the Perseus and Outer arms. Once the gas is kinematically

selected, we assume the most straightforward case where all the observed gas is uni-

formly distributed along the line of sight in a range ∆z = ±400 pc around Cyg OB2

position. The choice of∆z stems from the fact that the total extent of 800 pc is inferred

from the distribution of dust towards the Cygnus-X star forming complex (Green et al.,

2019). Note that this speciőc gas model is perfectly consistent with the expression for

the γ-ray emission in Eq.2.12, which was derived by implicitly assuming a constant gas

proőle along the line of sight.

To quantify the amount of neutral hydrogen, we use 21 cm line data from the Cana-

dian Galactic Plane Survey (CGPS) (Taylor et al., 2003). For the molecular component,

we use high-resolution observations of 12CO J(1ś0) spectral line from the Nobeyama ra-

dio telescope (Takekoshi et al., 2019) in combination with the data from the composite

galactic survey of Dame et al. (2001). The neutral hydrogen column density is estimated

using the approach described by Wilson et al. (2009):

[︃

NHI

cm−2

]︃

= −1.8224× 1018
[︃

Ts
K

]︃
∫︂ 20

−20

log

(︃

1− THI
B (v)

Ts − TBG

)︃[︃

dv

km/s

]︃

, (2.16)

where THI
B is the observed line brightness temperature, Ts is the spin temperature, as-

sumed to be 150 K, and TBG = 2.66 K is the brightness temperature of the cosmic mi-
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Figure 2.8: Total target column density considering the interstellar medium in the neutral and
molecular phases. The column density of HI has been evaluated using the 21 cm line

observation from the CGPS, while for the molecular gas, we used a combination of 12CO
observation from the Nobeyama radio telescope and the data from the 12CO galactic plane
survey by Dame et al. (2001). All the observations are kinematically cut selecting only the gas

between -20 and 20 km/s. White rings represent the regions used by Aharonian et al. (2019) and
Abeysekara et al. (2021b) to build the γ-ray radial proőle. The circle radii correspond to angular

sizes of 0.61◦, 1.19◦, 1.8◦ and 2.21◦.

crowave background at 21 cm. For the molecular hydrogen, we calculate the column

density using the standardXCO conversion factor:

NH2 = XCO

∫︂ 20

−20

TCO
B (v)

[︃

dv

km/s

]︃

, (2.17)

with XCO = 1.68 × 1020 mol. cm−2 km−1 s K−1 as found by Ackermann et al. (2011b).

Finally, we can write the total target column density as n(r) = (NHI + 2NH2)/∆z (see

őg. 2.8).
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2.4 Comparisonbetweenexpectedandobservedγ-rayemis-

sion

To test the validity of the model described in ğ 1.3.3, we compare the spectral and mor-

phological properties of the expected γ-ray emission obtained in ğ 2.3 with currently

available observations by several experiments. The general idea is to őnd the best values

of the parameters in terms of Lw, s, and ϵCR that can adequately describe the observed

γ-ray spectrum. Then, a posteriori, we check if the best values found are reasonable, by

comparing for example the obtained wind luminosity with the estimates in ğ 2.1.1. For

the sake of simplicity, when not speciőed otherwise, we keep all other parameters de-

scribing Cyg OB2 (i.e. age, Ṁ , distance of Cyg OB2, ρ0, ηB , Linj , kmin) őxed to the values

used in ğ 2.2.

In the search for the best parameters, we use the following approach. We őt through

χ2 minimization the observed spectral energy distribution extracted from a region of

2.2◦ centered on the stellar cluster (corresponding to a projected radius of∼ 54 pc). We

deőne the χ2 as:

χ2 =
∑︂

k

[(E2
kϕγ,k)data − (E2

kϕγ(Ek))model]
2

σ2
k

(2.18)

where k is the index associated to the k-th spectral point, and σk is the error of the k-th

spectral energy distribution point. During the őt procedure, the parameters are left free

to vary in a range of 1037− 5× 1039 erg s−1 forLw, 1.8− 2.6 for s and 10−3− 10−1 for ϵCR.

In terms of datasets, we consider the Cygnus Cocoon ŕux points measured by Fermi-

LAT in the 4FGL (4FGL J2028.6+4110e) (Abdollahi et al., 2020), and the very-high-energy

observations carried out by ARGO (ARGO J2031+4157) (Bartoli et al., 2014b) and HAWC

(HAWC J2030+409) (Abeysekara et al., 2021b).

All the employed spectral points are rescaled in order to account only for the ob-

served ŕux coming from a region of 2.2◦. This is done by considering that in all the

cases the emission towards Cyg OB2 is modeled using a 2D symmetric Gaussian proőle

with different sizes: 2.0◦ for 4FGL J2028.6+4110e, 1.8◦ for ARGO J2031+4157 and 2.13◦

for HAWC J2030+409, which leads to rescaling factors of 0.45, 0.53 and 0.41 respectively.

In addition, for the calculation of the χ2, we do not account for the highest energy data-

point by HAWC, as it differs, by almost one order of magnitude from the ŕux measured

by LHAASO (LHAASO J2032+4102) at 100 TeV (Cao et al., 2021). The ŕux measured by

LHAASO J2032+4102 is also not considered as the size of the source is not provided, thus

the ŕux cannot be rescaled accordingly to the analyzed sky region size. Finally, note that

the expected γ-ray emission is calculated using Eq. 2.9, hence, without accounting for

the contribution of fgal. This is because in principle, all the employed ŕux points should
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be background subtracted. In general, the background emission by Galactic CRs is non-

negligible in the Fermi-LAT band. However, the Fermi-LAT data does not include this

contribution. This is because, in the analysis procedure, a template model that follows

the gas distribution is őtted along with the source model to account for the background

emission.

Before proceeding further, a note of caution is mandatory. The implemented anal-

ysis approach is relatively naive, so the őnal best őt value should be handled with care.

This is even more true for the associated conődence intervals. Clearly, to obtain a pre-

cise estimation of the parameters, a robust multi-instrument joint analysis accounting

for the systematics between different experiments is required. However, even with this

simpliőed approach, we can still obtain a rough estimation of our parameters of inter-

est. We do not however return conődence intervals for the parameters, as they could be

signiőcantly affected by the systematics between the experiments.

Once we obtain the CR distribution that best describes the observed spectrum, we

investigate the corresponding expected γ-ray radial proőle to understand if one spe-

ciőc type of propagation model among the ones implemented can best reproduce the

observed morphology. For this purpose, we calculate the total γ-ray luminosity in four

different rings centered on Cyg OB2, with projected sizes of 0−15 pc, 15−29 pc, 29−44
pc, and 44−54 pc (see Fig. 2.8). The γ-ray luminosity is deőned as:

Lγ = 4πd2OB2

∫︂ E+

E−

Eγϕγ(Eγ)dEγ (2.19)

where dOB2 is the distance of Cyg OB2 and ϕγ(Eγ) is the spatial integrated ŕux from

eq. 2.12. we then divide the obtained value of the luminosity by the rings surfaces, and

compare the result with the value estimated for the same sky regions by Aharonian et al.

(2019) using Fermi-LAT data and byHAWC (Abeysekara et al., 2021b). Consequently, we

set the limit of integration in Eq. 2.19 to account only for the luminosity in the energy

ranges for which the measurements refer, that are respectively E− = 10 and E+ = 300

GeV for the Fermi-LAT band andE− = 1 andE+ = 250 TeV for the HAWC observations.

In the following subsections, we will separately discuss the analysis outcomes for

the three different transport models implemented, then, we will proceed to discuss the

implications of the obtained results in the next section.

2.4.1 Kolmogorov case

We start by studying the case in which the CR distribution is calculated assuming a Kol-

mogorov like diffusion. We found that χ2 as a function of Lw has an overall decreasing

trend with increasing Lw in the considered wind luminosity interval, with no clear sign
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of a minimum. This trivially translates into a global χ2 minimum for Lw = 5 × 1039 erg

s−1. With this value of Lw, the best őt values for the spectral index of injected particles

and the efficiency of CR production are s ≃ 4.17 and ϵCR ≃ 4 × 10−3. Although the

position of the global χ2 minimum does not fall in the considered luminosity interval,

the value of Lw = 5 × 1039 erg s−1 should not be far from the true minimum position,

which is probably a factor of a few higher. This can be seen in the top panel of Fig. 2.9,

where the spectrum corresponding to Lw = 5 × 1039 erg s−1 describes fairly well the

observations. It follows that to adequately reproduce the observed spectrum, a wind lu-

minosity equal or higher than 5 × 1039 erg s−1 is needed, which is more than one order

of magnitude above the range of values ofLw estimated in ğ 2.1.1. The reason for such a

high luminosity is to be found in a combination of two factors: őrst, the low efficiency of

Kolmogorov turbulence in conőning particles at the acceleration site, causes low max-

imum energies even for high wind luminosities; second, the large diffusion coefficient

produced by Kolmogorov turbulence in the bubble is inefficient in trapping particles at

high energy, hence suppressing the emission at very-high energy. One can notice these

two effects by considering the γ-ray spectrum obtained by őxing the wind luminosity

to the value expected from the star population of Cyg OB2, Lw = 2 × 1038 erg s−1, and

by őtting s and ϵCR. In this case, the maximum energy of particles is too low, and the

expected spectrum fails to reproduce the observed ŕux at very high-energies.

Even taking in to account the large uncertainties on the estimatedwind luminosities

in ğ 2.1.1, such a high Lw is largely in disagreement with our expectations, a fact that

strongly disfavors the model with diffusion resulting from Kolmogorov turbulence.

As a őnal consideration, it is worth noticing that the maximum reachable energy for

Lw = 5 × 1039 erg/s is Emax ≃ 23 PeV. Since the problem is, in part, linked to the value

ofEmax, one could consider decreasing the required Lw to obtain such value by consid-

ering a higher value for ηB , asEmax is directly proportional to the square root of ηB (see

Eq. 1.85). However, even by increasing ηB to an unrealistic value of 50%, the required lu-

minosity onlydecreasesby∼40%,which is still in strongdisagreementwith the expected

values. Given the difficulties of thismodel at reproducing the observed spectrum, we do

not investigate further the properties of the γ-ray emission for the Kolmogorov case.

2.4.2 Kraichnan case

Let us now consider the results for the case of Kraichnan turbulence. After running the

analysis procedure, we found the global minimum for the χ2 for a wind luminosity of

Lw = 1.28 × 1039 erg s−1. The corresponding best őt values for the spectral index and

the CR efficiency are s ≃ 4.23 and ϵCR ≃ 7×10−3. The requiredLw is lower compared to

the Kolmogorov case, but still a factor of∼4 higher than the maximum estimated lumi-
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Figure 2.9: Spectral energy distribution of the expected hadronic γ-ray emission extracted from
a region of 2.2◦ centered on Cyg OB2. Results are shown for the Kolmogorov (top panel),
Kraichnan (middle panel), and Bohm diffusion (bottom panel). See text for more details.
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nosity of 2.9× 1038 erg s−1. AlthoughLw is at odds with the estimatesmade for the wind

luminosity, let us anyway proceed with our analysis without discarding the Kraichnan

case, and compare the predicted γ-ray radial proőle with current observations. The top

panel of Fig. 2.10 shows this comparison for both the high-energy and very high-energy

bands. Starting from the high-energy band, one can distinctly see that, excluding the

inner ring, the normalization of the expected γ-ray luminosity per ring is, on average, a

factor of∼2 higher than the one estimated by Aharonian et al. (2019). This discrepancy

is caused by the different ŕux normalization between the 4FGL datapoints (used in our

spectral analysis) and the spectrummeasuredbyAharonian et al. (2019), as shown in the

middle panel of Fig. 2.9. Moreover, even if we account for this difference in normaliza-

tion by rescaling the observed luminosity by a factor of 2, we can see that the predicted

proőle shape is still not in agreement with the observations. In fact, we expect a ŕat pro-

őle, contrary to observations that seem to show a peaked morphology. The situation is

different at very high energy, where themorphology observed byHAWC is in good agree-

ment with our model, which still predicts a ŕat proőle.

2.4.3 Bohm case

Bohm-like turbulence is highly efficient in conőning particles around the acceleration

site, producing higher maximum energies with small values of Lw. If we, in fact, őx the

wind luminosity value to the usualLw = 2× 1038 erg s−1, and we perform the őt varying

s and ϵCR, the resulting spectrum is close to the observed one, with the exception of the

very high energy part (see bottom panel of Fig. 2.9). Since this wind luminosity provides

a reasonable őt to the spectrum, we decided to use a different approach, consisting in

őxing the wind luminosity to Lw = 2× 1038 erg s−1 and performing the őt in s, ϵCR and

ηB . Following this method, we found ηB = 0.35, with an associated spectral index and

CR efficiency of s ≃ 4.27 and ϵCR ≃ 0.022. The corresponding maximum energy for

particle isEmax ≃ 466 TeV.

The bottompanel of Fig. 2.10 shows the corresponding predicted γ-ray radial proőle.

The result is analogous to thatobtained for theKrainchnancase,withanoverall ŕat trend

in both energy bands.

2.5 Discussion

Table 2.1 summarizes the results obtained in the analysis for all the considered cases.

We now proceed to a deeper analysis of the results related to the Kraichnan and Bohm

cases, while the Kolmogorov model was ruled out because of the high wind luminosity

needed to reproduce the γ-ray spectrum.
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Figure 2.10: Comparison between the expected γ-ray surface brightness radial proőle assuming
Kraichnan (upper panel) or Bohm (bottom panel) diffusion. Black squares show the

measurements by Fermi-LAT (Aharonian et al., 2019), while purple circles indicate the surface
brightness observed by HAWC (Abeysekara et al., 2021b). Grey squares represent instead

Fermi-LATmeasurements rescaled by a factor of 2 (see text). Diamonds and asterisks indicate
the expected surface brightness values from the models at energies of 10 GeV< Eγ < 316 GeV

and 1 TeV< Eγ < 251 TeV respectively.
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Models Lw s ϵCR ηB Emax RTS Rb χ̄2
min

[erg s−1] [%] [PeV] [pc] [pc]

Kolmogorov 5 · 1039 4.17 0.4 0.1 (őxed) 23 16 163 0.66

Kraichnan 1.28 · 1039 4.23 0.7 0.1 (őxed) 3.97 14 124 0.39

Bohm 2 · 1038(őxed) 4.27 2.2 0.35 0.47 13 86 0.25

Table 2.1: Best őt parameters values andmain system properties for three different models. For
the Kolmogorov and Kraichnan cases, the parameters varied during the őt are Lw, s, and ϵCR.

For the Bohm case we őx the wind luminosity and vary s, ϵCR and ηB .

Note that in principle, the Kraichnan case, similarly to the Kolmogorov model, also

requires a wind luminosity value that is inconsistent with the estimates calculated in

ğ 2.1.1. However we keep the Kraichnan case for the purpose of discussion. In fact, the

value of Lw required to reproduce the spectrum decreases as we consider turbulence

models with gradually harder spectra, at the cost of increasing by a factor of a few the

fraction of power in magnetic turbulence. We may then conclude that the true turbu-

lence spectral index lies between the cases of Bohm and Kraichnan-like cascades. In

this scenario, we can keep the two models as limiting cases, bearing in mind that the

most realistic scenario, assuming that CR acceleration occurs at the wind TS, will have

intermediate properties between the two diffusion models.

The discussion of the results is organized as follows: őrst, we will comment on the

results obtained from the spectral analysis, and later concentrate on the morphological

analysis. Finally, we will discuss which, among the considered cases, is the one that can

best reproduce the observed emission properties.

2.5.1 Discussion on the spectral analysis results

Starting fromthe spectral analysis results, one cannoticehowbothKraichnanandBohm

cases require a particle injection slope at the termination shock s > 4. This is softer than

the standard spectral index predicted fromdiffusive shock acceleration at strong shocks,

as onewouldexpect theTSof a compact cluster tobe. Apossible reason for this softening

could be related to the plasma cooling in the bubble caused by the heat transmission to

the cold shell of swept material (see ğ 1.2.3). The temperature drop in the downstream

can potentially affect the TS, resulting in an effective weakening of the shock itself and

causing a softening in the spectra of accelerated particles.

A signiőcant difference between the two turbulence models is the maximum energy
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reached by the particles. For the Kraichnan caseEKra
max ≃ 4 PeV, which is almost an order

of magnitude higher than in the Bohm case,EBohm
max ≃ 0.5 PeV. Interestingly, despite the

different maximum energies, the γ-ray spectra of the two cases are remarkably similar,

with a cutoff feature that in both cases is located in the range 10ś100 TeV. As the maxi-

mumenergy in theKraichnan case is higher, one could naively expect the cutoff in the γ-

ray spectrum tobepositioned at energies slightly higher than100TeV. This doesnot hap-

pen because of two distinct factors. The őrst one is related to the different spectral cutoff

shapes of the emitting particle spectrum for the two considered cases. As explained in

the paper by Morlino et al. (2021), the maximum energy calculated in ğ 1.3.3 does not

represent the exact location of the cutoff of the injected particles spectrum. This can be

readily seen by computing Emax for the standard parameters of Cyg OB2 given in ğ 2.2

and by comparing the results with the cutoff positions shown in Fig. 2.5. The deviation

from a power law and the beginning of the cutoff region usually starts at energies lower

thanEmax. On a general ground, the energy shift is related to the spherical symmetry of

the TS, which affects primarily themost energetic particles, whose diffusion length is of

the order of the TS radius. The magnitude of the shift directly depends on the diffusion

coefficient in the upstream region: the hardest (the softest) themomentumdependence

of the diffusion coefficient, the smaller (the larger) the energy shift. The second factor

is related to the different propagation properties in the downstream region. Particles

propagating in Kraichnan turbulence are not as effectively trapped inside the bubble as

they are inBohm-like turbulence, and as a result, they enter thediffusion regimeat lower

energies. This leads to a reduction in the number of particles at high energies, causing

the γ-ray cutoff to shift towards lower energies.

Noticeably, both the Kraichnan and Bohm cases require a low fraction, of order a

few percent, of the wind luminosity to be converted into CR production. One might

then think that the process is inefficient in accelerating particles. This is, however, not

true: the best őt value found for ϵCR should be considered as a sort of lower limit, with

true values potentially higher by a factor of∼ 10. The reason for this lies in the method

implemented in ğ 2.3.1 to model the distribution of the ISM around Cyg OB2, which

consists of a uniform density proőle along the line of sight. Under the assumption of a

constant distribution, the average numerical particle density in the region is∼ 8 cm−3.

However, the density in the downstream, wheremost of the γ-ray emission is produced,

is expected to be lower.

An estimate of the density can be obtained assuming that the entire bubble is only

őlled with thematerial provided by the cluster wind, that is n2 ≃ Ṁt/(4/3πR3
b) ≈ 0.005

cm−3. This value is extremely low, and in fact, not realistic. As explained in ğ 1.2.3, due

to the heating of the cold swept-up shell, part of the shell material evaporates into the

downstream region, causing an increment of the density.
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Considering the parameters of Cyg OB2, using Eq. 1.24, we can estimate the density

in the bubble as: n2 ≃ Ṁ st/(4/3πR
3
b) ≈ 0.1 cm−3. The latter value could be even higher

by a factor of a few, if one accounts for the shell fragmentation, that potentially boosts

the evaporation rate (Lancaster et al., 2021b). In the end, we can reasonably expect n2 to

lie between 1ś0.1 cm−3. If these are the density values in the downstream, the observed

spectrum would require ϵCR a factor of∼10 larger.

2.5.2 Discussion on themorphological analysis results

As brieŕy mentioned in the previous section, both cases considered show a ŕat mor-

phology of the γ-ray emission proőle, regardless of the energy band. The uniformity of

the proőle is a result of the advection dominated transport of CRs, making their distri-

bution uniform in space. While such result is not unexpected in the case of Bohm-like

turbulence, in the Kraichnan case, one could expect that the diffusion would dominate

in the HAWC energy band. This does not happen because we are probing the morphol-

ogy of the γ-ray emission in a projected sky area of about 54 pc. This region is very small

compared to the size of the forward shock, which for our best-őt, in the Kraichnan case,

isRb ≃ 126 pc. As described in ğ 2.2, since the advection velocity scales as u2 ∝ r−2, the

vicinity of the TS will be characterised by high advection velocities, making it the main

propagation mechanism. This can be easily understood by looking at Fig. 2.11, where

the timescales of advection and diffusion are compared taking into account the size of

the region under analysis. For the Kraichnan case, in a region of 54 pc, advection dom-

inates over diffusion up to energies of almost a hundred TeV. The same is also true for

Bohm-like turbulence.

Actually, to be accurate, onemust also consider the effect of projection along the line

of sight of the γ-ray emission, so that the observed emission does not come only from

a spherical volume of radius 54 pc. However, during the calculation of the radial proőle

shown in Fig. 2.10, this effect is already taken into account. Nevertheless, a ŕat trend is

consistent with theHAWCobservation. Yet this is not the case for the radialmorphology

observed by Fermi-LAT, which shows a peaked proőle in the γ-ray luminosity. This is

clearly in tension with the prediction of our model, where at lower energy, the effect of

advection is expected to become even stronger.

According to Aharonian et al. (2019), the observed γ-ray morphology is consistent

with the expected emission generated by a pure diffusive distribution of CRs continu-

ously injectedbyCygOB2. However, this typeof proőle cannotbe achieved in thepicture

where YMSCs are surrounded by an expanding bubble of hot gas. In order to reproduce

the size of the observed emission, Aharonian et al. (2019) require a diffusion coefficient

at 10TeVwhich is∼ 5×1025 cm2 s−1. With this normalizationof thediffusion coefficient,
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Figure 2.11: Same as Fig. 2.6 but now both diffusion and advection timescales are calculated
only considering a region of 54 pc, corresponding to the projected size of 2.2◦ that is the extent
of the outermost ring used for the morphological analysis. Note that Kraichnan and Bohm
advection times (dot dashed lines) are different as the best őt Lw are not equal. The dotted
orange line represents the diffusion timescale considering the standard interstellar medium

diffusion coefficient suppressed by two orders of magnitude.

if the energy dependence is∝ Eδ, with δ > 0, the diffusion time scale will always higher

than the advection time at energies below 10 TeV. Aharonian et al. (2019) also provide an

upper limit to the diffusion coefficient based on the efficiency of particle acceleration at

10 TeV. The upper limit is found to be two orders of magnitude below the Galactic diffu-

sion coefficient. Assuming that the diffusion coefficient scales at lowenergy asD ∝ E1/3

(hence following a Kolmogorov-like diffusion), even in this case the diffusion time is al-

ways larger or comparable with the advection timescale (see Fig. 2.11). Thus, the CR

distribution should be ŕatter than a pure diffusive 1/r proőle.

2.6 Cygnus OB2 as a cosmic ray accelerator?

Throughout this chapter, we tried to interpret the extended γ-ray radiation detected in

coincidence with Cyg OB2 in terms of hadronic emission from a population of freshly

accelerated CR under the assumption of particle acceleration at the wind TS. We tested

three differentCRdistributions, considering differentmodels of particle transport based

on three speciőc diffusion coefficients calculated in quasi linear theory for the following

plasma turbulence spectra: Kolmogorov-like, Kraichnan-like, and ŕat spectrum. Before
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drawing conclusions and arguing about the capability of CygOB2 to accelerate particles,

let us őrst summarize the main results obtained for the three different models:

• We have rejected the hypothesis that the acceleration and propagation of CRs are

governedbyKolmogorov-like turbulence, since the resultingγ-ray emissionwould

disagreewithobservationsunless invokingunreasonable valuesof theclusterwind

luminosity compared to theoneestimated fromthe stellar population (seeğ2.1.1).

• The Kraichnan model is disfavored as it also requires wind luminosities at least a

factor of a few higher than the estimates based on the cluster star population.

• In contrast to the two previous cases, if one considers Bohm-like diffusion, the re-

sulting CR distribution is able to account for the γ-ray spectrumwith a reasonable

Lw andanefficiencyof theordrer of∼ 30%of turbulentmagnetic őeldproduction.

Taking into account the results obtained for Kraichnan and Bohm models, it is plausi-

ble to consider the existence of a turbulence spectrummidway between the two, which

is capable of reproducing the γ-ray spectrum with reasonable values of both Lw and

ηB . In this scenario, the analyzed Kraichnan and Bohm models can be treated as limit

cases, with the actual solution leading to spectral and morphological properties inter-

mediate between the two. However, since bothmodels considered are able to reproduce

the spectrum equally well (as testiőed by the almost equivalent χ2 value), and both re-

turn a predominantly ŕat morphology, it is natural to expect that also the true solution

will adequately reproduce the spectrum as well, and will be likely characterized by a ŕat

radial proőle of γ-ray emission.

Having this in mind, we expect that the maximum energy of accelerated particles

will be around 1 PeV. A model characterized by a ŕat morphology, both in high-energy

and very high energy γ-ray, is at odds with the peaked proőle observed in the Fermi-LAT

energy band by Aharonian et al. (2019). One possible solution for this problem consists

in trying to explain the increasing γ-ray luminosity towards the cluster center through

the leptonic inverse Compton emission from an electron population located in a thin

shell around the TS. This scenario will be explored in a future work.

To understandwhat the actual turbulence spectrum in the system is, amore detailed

study would have to be carried out considering amulti-instrument analysis of the γ-ray

emission. In a not so far future, thismight be possible with the use of new-generation γ-

ray telescopes, such as the Cherenkov Telescope Array and the ASTRI Mini Array. In this

regard, additional information can be used during the analysis to better constrain the

diffusionmechanism in the bubble. First, one can consider the γ-ray spectrumoriginat-

ing from molecular clouds that are possibly found inside the forward shock. Thanks to
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precisemaser parallaxesmeasurements, we know the existence of a fewmassivemolec-

ular clouds (i.e. DR21, W75N, and DR20) in the Cygnus-X region, located in close prox-

imity to Cyg OB2. Unfortunately, the exact distance between the clouds and the star

cluster is not easy to estimate, as the position of Cyg OB2 is still not well constrained.

Fig. 2.12 shows the expected γ-ray spectrum from the molecular cloud DR21, consider-

ing different possible distances from Cyg OB2. It is interesting to note that, while below

∼100 GeV the spectra obtained from the Kraichnan and Bohm models are similar, ex-

cept for a normalization factor, in the very-high-energy range, the spectral shape in the

two cases can be signiőcantly different. The emission at very-high-energy can be hence

used to constrain the diffusion coefficient.

A second possible way to constrain the diffusion coefficient is to analyze the γ-ray

spectrum at different projected distances from Cyg OB2. Fig. 2.13 shows the spectra ex-

tracted from different regions of the system. The main difference between the two limit

cases is observed in the cutoff part of the spectrum. Similarly to the Bohm case, a hard

turbulence spectrum will produce sharper cutoff shapes. In the vicinity of the forward

shock, the discrepancy between the two limit cases starts to become appreciable even at

lower energies (>10 GeV), with the Kraichnan case producing softer emission. Indeed,

modeling of spatially resolved γ-ray spectra appears as a promising way to constrain

particle transport and contribute to unveil the mechanism of particle acceleration in

YMSCs.
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Figure 2.12: Expected hadronic γ-ray spectra from the molecular cloud DR21 considering the
two possible CR distributions given by the Kraichnan (thin lines) and Bohm (thick lines) cases.

The spectra are calculated considering different relative distances from Cyg OB2: 40 pc
(continuous line), 60 pc (dashed line), and 80 pc (dot-dashed line). The dotted line shows the
CTA North point source sensitivity for 50h of exposure considering the Alpha Conőguration

(CTA Collaboration, 2023), while black solid line is the Astri sensitivity for a point-like source for
200h of exposure (Lombardi et al., 2022).
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THE CONTRIBUTION OF YMSCS TO THE DIFFUSE γ-RAY

EMISSION

G
IVEN the ability of YMSCs to produce CRs, it is natural to expect them to

also be γ-ray emitters. In addition to the case of Cygnus OB2, a dozen of

other clusters have been associated with diffuse γ-ray emission detected

by different telescopes (see Tab. 3.1), namely: Westerlund 1 (Abramowski

et al., 2012; Aharonian et al., 2022) (observed by HESS and Fermi-LAT), Westerlund 2

(Yang et al., 2018) (observed with HESS and Fermi-LAT), NGC 3603 (Saha et al., 2020)

and NGC 6618 (Liu et al., 2022) (observed with Fermi-LAT).

At őrst glance, onemight think that thenumberof cases is rather lowcompared to the

expected population of galactic YMSCs. The reason for such a low number of observed

YMSCs is probably due to a combination of two factors. First, most YMSCs are lessmas-

sive than the objects listed above, which should be considered somewhat extreme cases.

Therefore, a large fraction of Galactic YMSCs is expected to have lower Lw. This has a

direct impact on the luminosity in terms of CRs, which affects the γ-ray emission. Sec-

ondly, as we saw in Ch. 2, most of the γ-ray emission comes from particles propagating

within the wind blown bubble. Consequently, the projected size of the emission region

can be considerably large, especially if compared to the resolution of current γ-ray tele-

scopes. As we will show in ğ 3.2.4, the typical size of a bubble is of the order of tens of

parsecs (10ś100 pc), which corresponds to an angular size of:

θ ≃ 0.57

(︃

Rb

10 pc

)︃(︃

d

1 kpc

)︃−1

deg (3.1)

withd thedistanceof the cluster fromtheSun. The fact that theyarepotentially extended

sources makes detection even more difficult, especially given the problems associated
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Name logM/M⊙

rc

[pc]

D

[kpc]

Age

[Myr]

Lw

[erg s−1]

Westerlund 1 4.6± 0.045 1.5 4 4− 6 10

Westerlund 2 4.56± 0.035 1.1 2.8± 0.4 1.5− 2.5 2

Cygnus OB2 4.7± 0.3 5.2 1.4 2− 7 2

NGC 3603 4.1± 0.1 1.1 6.9 2− 3 -

BDS 2003 4.39 0.2 4 1 -

W40 2.5 0.44 0.44 1.5 -

RSGC 1 4.48 1.5 6.6 10− 14 -

MC 20 ∼ 3 1.3 3.8− 5.1 3− 8 ∼ 4

NGC 6618 - 3.3 ∼ 2 < 3 -

30 Dor (LMC)

NGC 2070 / RCM 136

4.8− 5.7

4.34− 5

multiple

subcluster
50

1

5
-

Table 3.1: List of YMSCs for which a diffuse γ-ray emission has been detected in their
coincidence. References of each cluster: Westerlund 1 (Abramowski et al., 2012; Aharonian
et al., 2022), Westerlund 2 (Yang et al., 2018), Cygnus OB2 (Bartoli et al., 2014b; Abeysekara
et al., 2021b; Astiasarain et al., 2023), NGC 3603 (Saha et al., 2020), BDS 2003 (Albert et al.,

2021), W40 (Sun et al., 2020b), RSGC 1 (Sun et al., 2020a), MC 20 (Sun et al., 2022), NGC 6618
(Liu et al., 2022), and the LargeMagellanic Clusters (H. E. S. S. Collaboration et al., 2015). Values

marked by a ’-’ are not provided in the literature.

with studying extended sources in the γ-ray band.

Given the difficulty of studying single sources, wemay study the contribution ofmul-

tiple overlapping γ-ray halos arising from a population of YMSCs, to estimate whether

thismay result in a non-negligible contribution to the large-scale diffuse emission along

theGalactic plane. The estimationof this emission and subsequent comparisonwith the

data is a key element that can be used to constrain YMSCs as CR factories. In addition,

calculating the emission from a population of YMSCs is also useful in view of the next

generation of gamma telescopes, since it can be used to estimate the number of poten-

tially observable YMSCs.

In this chapter, we will calculate the diffuse γ-ray emission arising from a synthetic

population of Galactic YMSCs and compare it with available observations from Fermi-

LAT. The structure of the chapter traces the workŕow implemented to reach our objec-

tives. First, we describe how to generate for each cluster a stellar population fromknown

initial mass functions and how to calculate the fundamental properties of stars such as
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luminosity, radius, and temperature. We also describe the recipes used to model stellar

winds. Next, we discuss how to simulate a population of Galactic YMSCs, illustrating our

choices for the distribution in mass, galactic position, and age.

Once we have all the pieces of the puzzle, we proceed to investigate the properties

of the resulting Galactic YMSC population in terms of particle acceleration. To this goal,

we estimate the expected γ-ray emission for each cluster, and we compute the diffuse

contribution from the entire population. Finally, we compare the results with existing

observations and discuss our őndings. We anticipate that our results will provide a lower

limit to the possible contribution to the γ-ray sky in that we are neglecting the role of SN

exploding inside stellar clusters.

3.1 Modeling the star population inside YMSCs

For any given YMSC, characterized by a speciőcmass and age, we need to build a stellar

population that is consistent with its properties. The general approach is the following:

knowing the mass and age of the cluster, we build a population of stars given the initial

stellar mass function (IMF). Then, based on the cluster age, we remove all the stars that

are expected to have exploded as supernovae. Afterward, we compute the intrinsic char-

acteristics of all the stars that are left, such as luminosity, radius, and temperature. To

this purpose, we do not use any stellar model, but rather the observedmass-luminosity,

mass-radius, and mass-temperature relations. The usage of empirical relations is pre-

ferred to the usage of more robust stellar models as computational time is signiőcantly

decreased. Finally, for every star, we calculate the main parameters of the stellar wind,

such as the wind luminosity, the wind speed, and the mass loss rate.

In the next subsection we describe in details all the ingredients implemented in the

afore mentioned procedure.

3.1.1 Mass distribution of stars inside clusters

The number of stars formed as a function of their mass (M⋆) is generally referred to as

the stellar initial mass function (f⋆(M⋆)). Generally such a function is parameterized as

a set of broken power laws. Above ∼10 M⊙ there is a general consensus that the IMF

follows the Salpeter law∝ M−2.3. At lower mass the IMF is ŕatter, but its exact shape is
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still debated. Here we have decided to use the expression given by Kroupa (2001):

f⋆(M⋆) ∝
dN⋆

dM⋆

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

M−0.3
⋆ forM⋆ < 0.08M⊙

0.08M−1.3
⋆ for 0.08M⊙ ≤M⋆ ≤ 0.5M⊙

0.04M−2.3
⋆ forM⋆ > 0.5M⊙

(3.2)

Each cluster with massM will initially include a total number of stars equal to:

N⋆(M) =M

∫︁M⋆,max

M⋆,min
f⋆(M⋆)dM⋆

∫︁M⋆,max

M⋆,min
M⋆f⋆(M⋆)dM⋆

(3.3)

whereM⋆,min andM⋆,max are respectively the minimum and maximum stellar masses

that canbe generated in a cluster. Weőx the value ofM⋆,min to 0.08M⊙, which is themin-

imum theoretical mass to support signiőcant nuclear burning (Carroll & Ostlie, 1996).

The choice of maximummass, on the other hand, turns out to be an extremely delicate

problem1. As a matter of fact, M⋆,max represents a crucial parameter for the purposes

of this work, as massive stars are the ones that contribute the most to the YMSC wind

luminosity. Clearly, this value cannot be arbitrarily high, and a őrst limit to M⋆,max is

given byM⋆,max = 150M⊙. This value seems to be widely recognized as a fundamental

mass upper limit for stars with zerometallicity that form in clusters (Weidner & Kroupa,

2004; Figer et al., 2005; Oey&Clarke, 2005; Koen, 2006), and it is also themaximumvalue

of stellar mass observed in our Galaxy. In general, it is reasonable to consider the exis-

tence of a relation betweenM⋆,max andM . Indeed, thismust be true for lowmass stellar

clusters since, for example, a 100 M⊙ cluster cannot include stars with masses equal

or greater than 100 M⊙. However, for massive stellar clusters, the matter is presently

still under debate. Weidner et al. (2010) seem to prove the existence of this relationship

through a comprehensive study of the literature, showing that it is extremely unlikely to

reproduce the observed stellar populations with a random sampling of the initial mass

function that does not account for the clustersmasses. On the other side, a parallel anal-

ysis of published data performed by Maschberger & Clarke (2008) using sophisticated

unbiased selection criteria for stellar clusters shows that even lowmass clusters do pos-

sess populations of massive stars. Given the importance of the parameterM⋆,max and

its current uncertainties, we decide to run our analysis considering two different sce-

narios. In the őrst we use a constant maximummass for all YMSCs őxed to the 150M⊙

limit. In the other case, we consider amaximummass that depends on the clustermass,

following the relation provided by (Weidner & Kroupa, 2004) and reported in Fig. 3.1.

After generating the stellar population, depending on the YMSC age, we remove all

1See Bastian et al. (2010b) for a comprehensive description of the topic.
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Figure 3.1: Relationship between the maximum stellar mass that can be generated in a cluster
and the mass of the host cluster (dashed line, lower x-axis). The graph also reports the mass of
stars leaving the main sequence at a given time tTO (solid line, upper x-axis), given by inverting

Eq. 3.4.

those stars that exploded as supernova. We do so by considering that a star with a given

massM⋆ will leave themain sequence (and soon after explode as a supernova) at a turn-

off time (tTO) approximately given by the following relation (Buzzoni, 2002):

log

(︃

tTO

1 yr

)︃

= 0.825 log2
(︃

M⋆

120 M⊙

)︃

+ 6.43 (3.4)

which is obtained őtting several of sets of theoreticalmodels. Fig. 3.1 shows the resulting

inverse relation. Note that no stars explode before∼ 2.8Myr, and that, for themaximum

cluster age we are interested in (10 Myr), only stars with less than 20 M⊙ can survive.

3.1.2 Modeling stellar parameters

For each generated star, we estimate stellar luminosity and radius using empirical rela-

tions. The choice of thismethod, expected to provide estimates that are less robust than

those based on stellar models, comes for two needs: őrst, considering a larger mass in-
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terval than that usually covered by stellar models. Second, to minimize computation

time. The latter turns out to be an extremely relevant aspect since, eventually, we intend

to calculate multiple synthetic stellar populations to obtain an estimate of the diffuse

γ-ray emission together with an appropriate guess of its statistical ŕuctuations. Note

that, from now on, we will consider in our analysis only stars with masses larger than

2.75M⊙, roughly corresponding to the lowermass limit for a B-type star. We do so as the

contribution to the cluster wind power of stars withmasses below∼ 3M⊙ is believed to

be negligible.

Mass-Luminosity relation

Various mass-luminosity relationships (MLRs) have been proposed over the years. In

general, several authors provide MLRs that are valid only in speciőc mass ranges. Eker

et al. (2018), for example, model the MLR as a series of power laws valid from 0.179ś31

M⊙. For the range of masses in which we are interested, the expression is:

log

(︃

L⋆

L⊙

)︃

=

⎧

⎨

⎩

3.967 log
(︂

M⋆

M⊙

)︂

+ 0.093 for 2.4 < M⋆

M⊙
< 7

2.865 log
(︂

M⋆

M⊙

)︂

+ 1.105 for 7 ≤ M⋆

M⊙
≤ 31

(3.5)

In the case of very massive stars (M⋆>100 M⊙), the MLR is provided by Yungelson et al.

(2008), whose expression has been used in ğ 2.1.1 for the calculation of Cygnus OB2

parameters. The formal equation is obtained inverting Eq. 2.5:

L⋆ = 103.48
(︃

M⋆

M⊙

)︃1.34

L⊙ (3.6)

No MLR is deőned over a broad enough range of masses for our purposes, as we are

interested in a wide interval ranging from 2.75 to 150M⊙. To overcome this problem, we

decided to merge the two recipes given by Eker et al. (2018) and Yungelson et al. (2008).

We do so by implementing a set of smoothed broken power-laws, deőned as:

L⋆ =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Lb1

(︂

M⋆

Mb1

)︂α1
[︃

1
2
+ 1

2

(︂

M⋆

Mb1

)︂1/∆1
]︃(−α1+α2)∆1

for 2.4 ≤ M⋆

M⊙
< 12

KLb2

(︂

M⋆

Mb2

)︂α2
[︃

1
2
+ 1

2

(︂

M⋆

Mb2

)︂1/∆2
]︃(−α2+α3)∆2

forM⋆ ≥ 12M⊙

(3.7)

where Lb1 = 3191 L⊙ and Lb2 = 368874 L⊙ are the luminosity values calculated using

Eq.3.5 at the mass break pointsMb1 = 7 M⊙ andMb2 = 36.089 M⊙ respectively. The

value ofMb2 is the intersection point between the two MLRs of Yungelson et al. (2008)

and Eker et al. (2018). The power law indexes are α1 = 3.97, α2 = 2.86, and α3 = 1.34
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respectively. The parameters ∆1 and ∆2 are used to smooth the junction between the

power law components. We őx the two parameters to 0.01 and 0.15 respectively. Finally,

K = 0.817 is a normalization constant providing continuity at 12 M⊙ Note that in the

interval 2.4ś12 M⊙ the MLR is an adaption of Eq.3.5 in the form of a smoothed power

law. We decided to use this form rather than Eq.3.5 as we found that Eq.3.5 is not con-

tinuous atMb1 = 7M⊙. To check whether the extension of the MLR given by Yungelson

et al. (2008) to masses less than 100 M⊙ is valid, we compare Eq. 3.7 with archival data

of massive stars where both bolometric luminosities andmasses are given. For this pur-

pose, we considermassive stars observed in different YMSCs, such asCygusOB2 (Wright

et al., 2015), R136 (Brands et al., 2022)2, and 30 Doradus (Schneider et al., 2018). We ad-

ditionally include eclipsing binary stars from the DebCAT catalog (Southworth, 2015)

and the sample of stars used by Eker et al. (2015) in their őrst work for the estimation

of the MLR. Top panel of Fig. 3.2 shows the result of this comparison: the MLR given by

Eq. 3.7 is in fair agreement with the observations, with the underlying implication that

the relationship of Yungelson et al. (2008) is valid even at smaller masses, down toMb2

(eventually the relation can be considered still valid down to about∼20 M⊙).

Mass-Radius relation

Mass-radius relations (MRRs) are in general less constrained and much broader than

MLRs. Similarly to what we have done in ğ 2.1.1, we employ the relation provided by

Demircan & Kahraman (1991):

R⋆ = 0.85

(︃

M⋆

M⊙

)︃0.67

R⊙ . (3.8)

Eq. 3.8 is plotted in the middle panel of Fig. 3.2, where a comparison with archival data

is made showing that theMRR is able to adequately reproduce the observations. To this

purpose, we used the same dataset employed for the MLR, with the exception of the

CygnusOB2 stellar cluster where the information on stellar radii is not provided. For the

sake of completeness, we also report in Fig. 3.2 an additional MRR obtained from the

work of Yungelson et al. (2008). We found the latter relation in strong disagreement with

both Eq. 3.8 and data from the literature, although the authors claim that the relation

should be valid for themass range 25ś115M⊙. All stellar radii employed for the compar-

ison are obtained using stellar models calibrated to other observable stellar parameters

(see references for details). The only exception is that of the DebCAT data, which are

based on direct measurements of the stellar radii using detached eclipsing binaries.

2For every star Brands et al. (2022) provide different estimated properties after őtting stellar models
with a different number of free parameters. The choice of the number of parameters ultimately depends
on the available spectroscopy for each star (UV and optical or only optical).
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Mass-Temperature relation

Even though empirical mass-temperature relations (MTRs) exist in the literature, once

the MLR andMRR are given, we can readily calculate stars effective temperatures using

Boltzmann law:

Teff =

[︃

L⋆(M⋆)

4πR⋆(M⋆)2σb

]︃1/4

. (3.9)

Thebottompanel of Fig. 3.2 shows thedifferencebetween theempirical relationgivenby

Eker et al. (2018), and the resultingMTR obtained from Eq. 3.9. For comparison, we also

display themass and temperature ofmassive stars. Once again, we consider the same set

of stars extracted from catalogs that are used for the study of the MLR. With our choice

ofMLR andMRR, Eq. 3.9 is consistent with observed data, although, at masses below 10

M⊙, the temperature is slightly overestimated (of the order of few tens percent). Note

that forM⋆ ⪆Mb2, the effective temperature becomes independent from themass. This

is a direct consequence of the speciőc combination of the power index of our chosen

MLR and MRR. From Eq. 3.7 we have that L⋆(M⋆ ≫ Mb2) ∝ M1.34
⋆ , while from Eq. 3.8,

R⋆ ∝ M0.67
⋆ . As from Eq. 3.9 one has that Teff ∝ L

1/4
⋆ R

−1/2
⋆ ∝ M0

⋆ , forM⋆ ≫ Mb2, the

resulting temperature is independent of the stellar mass.
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Figure 3.2: Top panel: Mass-luminosity relationship used in this work (Eq. 3.7) (dashed black
line) together with the relations provided by Eker et al. (2018) and Yungelson et al. (2008). For
comparison, we also plot the well knownMLR given by Salaris & Cassisi (2005). Central panel:
Mass-radius relationship used in this work (Demircan & Kahraman, 1991) compared to the

MRR provided by Yungelson et al. (2008). Bottom panel: Comparison of empirical
mass-temperature relation given by Eker et al. (2018) with the relation obtained via Boltzmann’s

law (Eq. 3.9). In all panels the various data points report observed stellar properties and
computed masses for several stars in different clusters, such as Cyg OB2 (Wright et al., 2015),
R136 (Brands et al., 2022), and 30 Doradus (Schneider et al., 2018). We also include stars from
the DebCAT catalog (Southworth, 2015) and the previous work onMLRs of Eker et al. (2015).
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3.1.3 Modeling stellar winds

Once the stellar parameters are known, we can readily estimate the wind speed, mass

loss rate, andwind power for each star. From thesewe can afterward evaluate the cluster

wind properties. We here use for the wind speed (v⋆,∞) and wind luminosity (L⋆,w) the

same expressions implemented in ğ 2.1.1, that are Eq. 2.2 and Eq. 2.7 respectively, which

we again report below for convenience:

v⋆,∞ = C(Teff)

[︃

2GM⋆(1− Γ)

R⋆

]︃1/2

L⋆,w =
1

2
M⋆
̇ v2⋆,∞.

For what concerns the mass loss rate (Ṁ⋆), we use a different recipe from that of Vink

et al. (2000) and Yungelson et al. (2008), employed for the case of Cygnus OB2. This is

because both expression are expected to be accurate only for very massive star, while

here we need a prescription valid for a broader range of masses. The empirical formula

provided by Vink et al. (2000) works only for stars with 27500 K< Teff < 50000 K, which,

considering Eq. 3.9, implies starswithmasses larger than∼ 20M⊙. Similarly, the expres-

sion provided by Yungelson et al. (2008) is in principle valid forM⋆ > 60M⊙, although

the result obtained including also stars of mass about to 20M⊙ is approximately correct

within a factor of a few, as demonstrated in ğ 2.1.1.

Given our plan to consider also lessmassive stars, we use the expression provided by

Nieuwenhuijzen & de Jager (1990), which reads:

log

(︄

M⋆
̇

M⊙yr−1

)︄

= −14.02 + 1.24 log

(︃

L⋆

L⊙

)︃

+ 0.16 log

(︃

M⋆

M⊙

)︃

+ 0.81

(︃

R⋆

R⊙

)︃

(3.10)

Eq. 3.10 is valid for stars with Teff > 5000 K, hence it is adequate for all the considered

mass range.

As a őnal consistency check, we compare stellar wind luminosity andmass-loss rates

with data available in the literature. Brands et al. (2022) provide these data for a sub-

sample of stars in the YMSC R136. Similarly, Mokiem et al. (2007) provide them for a set

of stars located both in the Milky Way and in the Small and Large Magellanic Clouds.

Fig. 3.3 shows the result of this comparison. In this regard, it is interesting to note the

following: őrst, the expression (Eq. 3.10) used for Ṁ⋆ is in good agreementwith the data.

Second, for masses below∼ 25M⊙ the stars wind luminosity appears to be highly over-

estimated, by almost 1-2 orders of magnitude on average. However, we expect that this

error will not signiőcantly affect the őnal result. In fact, even if heavily overestimated,

the contribution to the cluster wind luminosity of tens of stars under 25M⊙ is negligible
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compared to the wind power of a single star of mass greater than∼ 30M⊙.

Figure 3.3: Top panel: Expected stellar mass loss rates as a function of L⋆ compared with
observations (Mokiem et al., 2007; Brands et al., 2022). The Sunmass loss rate is reported by
Carroll & Ostlie (1996). The continuous line shows the relation used in this work, while dashed
and dotted lines are the mass loss rates provided by Yungelson et al. (2008) and Vink et al.

(2000) respectively, which have been used in ğ 2.1.1. Bottom panel: Wind power as a function of
stellar luminosity computed using the mass loss rate given by Nieuwenhuijzen & de Jager

(1990). The solar wind luminosity is calculated considering a wind speed of 400 km s−1 (Carroll
& Ostlie, 1996).
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3.2 Generating a synthetic population of YMSCs

In order to simulate a population of stellar clusters, the core ingredient from which one

must start is the cluster distribution function:

ξSC(M, t, r, θ) =
dN

dMdtdrdθ
(3.11)

deőned such that the total number of clusters in the Milky Way with masses ranging in

a given interval [Mmin,Mmax], and age [tmin, tmax] is:

NSC =

∫︂ Mmax

Mmin

∫︂ tmax

tmin

∫︂ RMW

0

rξSC(M, t, r)dMdtdrdθ (3.12)

where RMW is the Milky Way radius. The true form of ξSC is not known, however, as-

suming that the cluster distribution is factorized in mass, time, and space, ξSC can be

written as:

ξSC(M, t, r) = f(M)ψ(t)ρ(r, θ) (3.13)

where f(M), ψ(t), and ρ(r, θ) are the cluster initial mass function, the cluster formation

rate and the cluster spatial distribution respectively. In the next subsections, we discuss

each single term separately.

3.2.1 Cluster age andmass distribution

It is possible to infer both the cluster formation rate and cluster mass function from ob-

servations. One of the seminal works for the study of these two functions is the analysis

done by Piskunov et al. (2018) on theMilkyWay Star Cluster Survey (MWSCS). Piskunov

et al. (2018) used 2242 stellar clusters from this survey for their analysis, all within 2.5

kpc from the Sun. Actually, the sample can be considered complete only up to 1.8 kpc.

Hence the result from Piskunov et al. (2018) should be considered as local.

In their paper, Piskunov et al. (2018)model the cluster initial mass function as a bro-

ken power law:

f(M) =
dN

dM
=

⎧

⎨

⎩

k1M
−(x1+1) forMmin ≤M ≤Mb

k2M
−(x2+1) forMb ≤M ≤Mmax

(3.14)

whereMb = 100M⊙ is themass at which the break occurs, and x1 and x2 are parameters

used to őt the observed cluster mass distribution. Note that Eq. 3.14 coincides with the

observed cluster mass distribution only in the case of young clusters. As explained in

ğ 1.2.1, some of the clusters may not survive the initial stage of gas expulsion triggered
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by the appearance of stellar feedback mechanisms. This eventually ends up affecting

themass distribution of currently observed clusters, hence, in order to obtain the initial

clustermass function, one has to account for this effect. Numerical N-body simulations

show that the cluster survival depends on the percentage of gas őlling the cluster Roche

lobe (Ernst et al., 2015). When it comes to inferring f(M), Piskunov et al. (2018) consider

three different scenarios associated with underőlled, őlled, and overőlled Roche lobes.

Ultimately, this produces differs values for the parameters x1 and x2. The scenario that

best agrees with the observations is the underőlled case, for which x1 = 0.39 and x2 =

0.54. Finally, k1 and k2 are two constants obtained by requiring both continuity atMb

and normalization of the distribution
∫︁Mmax

Mmin
f(M)dM = 1, which are calculated as:

k2 =

[︃

M
(x1−x2)
b

∫︂ Mb

Mmin

M−(x1+1)dM −
∫︂ Mmax

Mb

M−(x2+1)dM

]︃−1

(3.15a)

k1 = k2M
(x1−x2)
b . (3.15b)

In the work carried out by Piskunov et al. (2018), the minimum and maximum stellar

cluster mass are őxed toMmin = 2.5M⊙ andMmax = 6.3 × 104 M⊙ respectively. To be

consistent with Piskunov et al. (2018), we also őxMmin to the same value, which should

correspond to binary systems or small brown dwarf aggregates. However, it is crucial to

stress that when we will calculate the number of Galactic massive stellar clusters using

Eq. 3.12, the minimum consideredmassMmin will be different from 2.5M⊙. The choice

ofMmin has a certain degree of arbitrariness. In ğ 1.1, we deőned as massive all those

clusters with masses greater than 1000 M⊙. In general, the choice ofMmin is made by

considering a reasonably small mass to produce enough massive stars to make the ex-

istence of a collective cluster wind possible. We will check a posteriori in ğ 3.2.4 if this

choice is reasonable.

The choice of Mmax in Piskunov et al. (2018) is dictated by the most massive star

cluster observed in the Milky Way. However, observations of Milky Way star clusters are

biased by extinction. Hence, we decided to make a consistency check based on obser-

vations of other closeby galaxies. Observational pieces of evidence show how the lumi-

nosity of YMSCs in spiral and dwarf galaxies correlates with the measured value of the

star formation rate (SFR) in their host galaxy (Weidner et al., 2004): the higher the SFR,

the higher the luminosity of the brightest (hence themostmassive) YMSCs. The inferred

relation between the SFR andMmax is (Weidner et al., 2004):

Mmax = kML

(︃

SFR

1 M⊙yr−1

)︃0.75±0.03

× 106.77±0.02 M⊙ (3.16)
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where kML is the cluster mass-to-light ratio which depends on the cluster age. For clus-

ters with ages less than 10Myr one has kML = 0.0144 (Smith &Gallagher, 2001). Consid-

ering that the Milky Way SFR is ∼ 2M⊙ yr−1 (Elia et al., 2022), the expected maximum

mass isMmax ≈ 1.4×105M⊙. Note that this valuemust be interpreted as an upper limit

on aGalactic scale. However in different places of theMilkyWay, it is reasonable to think

that the maximummass of a YMSC correlates with the total amount of gas. Eventually,

the work performed by Pŕamm-Altenburg & Kroupa (2008) has proven this relation. In

their paper, Pŕamm-Altenburg&Kroupa (2008) showhowtheHα emission indisk galax-

ies (tracing the population of short-lived massive stars) is characterized by a cut-off at

some galactocentric distances, which can be smoothly explained by introducing a clus-

ter mass function withMmax,r dependent on the total gas surface density:

Mmax,r(r) =Mmax

[︃

Σgas(r)

Σgas(r = 0)

]︃δ

(3.17)

where δ = 3/2 that can be inferred by observations. Fig. 3.4 shows the evaluation of

Mmax,r(r). We estimateMmax,r(r) considering the radial gas distribution implemented

by Strong et al. (2000) in the GALPROP code (Strong et al., 2009). The radial gas proőle

accounts for bothmolecular and atomic gas phases. Interestingly, themaximummasses

at different galactocentric radii are perfectly consistent with themeasuredmass of some

of the most massive Galactic YMSCs. One can see that for radii larger than 2 kpc, the

maximummass is roughly constant, with variations by a factor of a few.

It isworthunderlining that ifweconsider a radius-dependentmaximummass, Eq. 3.14

must necessarily bemodiőed by replacingMmax withMmax(r). This will ultimately pro-

duce a radial dependence of the parameters k1 and k2 which can be then obtained by

requiring the normalization of f(M) at each galactocentric radius. Clearly, by doing so,

f(M) will become dependent on r, making invalid the hypothesis of factorization for

ξSC . Given that the maximum mass does not vary much with galactocentric distance,

we will use, for the rest of the work, the approximation of a constant mass equal to the

value adopted by Piskunov et al. (2018) (Mmax = 6.3× 104 M⊙).

As stated at the beginning of this section, Piskunov et al. (2018) provide also an ex-

pression for the cluster formation rateψ(t) inferred from the present population of local

clusters. Comparisonwithdata shows that several functional forms are allowed. Auseful

form adopted by Piskunov et al. (2018) is:

ψ(t) =

[︃

A+B exp

(︃

C
Tp − Tf
Tp

)︃]︃

Myr−1kpc−2 (3.18)

where Tp = 4.8 Gyr is the present time, considering as initial reference point the age of
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Figure 3.4: Maximum cluster mass as a function of the galactocentric radius (dashed line). The
normalization ofMmax,r at the Galactic Center is calculated using Eq. 3.16. For comparison

purposes, we show themass of several of the most massive YMSCs, such as Cygnus OB2 (Wright
et al., 2015), Westerlund 1 (Brandner et al., 2008), NGC 3603 (Rochau et al., 2010; Röllig et al.,
2011a), Archer and Quintuplet (Figer, 2004). The maximummass used by Piskunov et al. (2018)

is also reported (dotted line).

the oldest observed cluster, and Tf is the time at which the cluster was formed, such that

the age of the cluster can be calculated as t = Tp − Tf . Eq. 3.18 is such that the present

SFR is given by ψnow = A + B, while SFR at t = Tp is ψ0 = A + BeC . The coefficients

A, B and C are obtained by őtting the observed cluster age distribution. Similarly to

x1 and x2 in f(M), the coefficients A, B, and C also depend on the clusters capability

to survive. Still considering the previously mentioned underőlled Roches lobe case, the

values ofA,B ad C are -0.55, 0.57, and 1 respectively. Using Eq. 3.18 one can readly see

that the cluster formation rate is practically constant in the last 10 Myr, as the value of

ψ(t) changes only by a few percent in the 1ś10 Myr range:

ψ(Tp − 10Myr)− ψ(Tp)

ψ(Tp)
≃ 0.06

This is also well conőrmed by observations, as shown in Fig. 1 of Piskunov et al. (2018).

Hence, we can consider the cluster formation rate as constant in the last 10 Myr.

The average value of the cluster formation rate (ψ̄) is a crucial parameter as in the
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end it will be the one setting the normalization of ξSC . In order to determine the value

of ψ̄, we rely on the work by Lamers & Gieles (2006) who determined from observations

the SFR in local clusters (SFRSC) for masses betweenM− = 100M⊙ andM+ = 3× 104

M⊙. Such a rate is ∼ 350M⊙ Myr−1 kpc−2. The result of Lamers & Gieles (2006) is also

compatiblewith amore recent estimate donebyBonatto&Bica (2011), who found a SFR

in local clusters of 790 ± 160M⊙ Myr−1 kpc−2 after considering clusters within a mass

range ofM− = 10M⊙ andM+ = 7.5 × 104 M⊙. Starting from SFRSC , it is possible to

infer ψ̄ as:

ψ̄ =
SFRSC

∫︁M+

M−
Mf(M)dM

. (3.19)

This leads to average cluster formation rates of ψ̄LG ≈ 1.3Myr−1 kpc−2 and ψ̄BB ≈ 1.8

Myr−1 kpc−2 for the works of Lamers & Gieles (2006) and Bonatto & Bica (2011) respec-

tively. When simulating the Galactic population of YSMCs, we will consider the value

ψ̄BB because it is the most recent one (however, given the uncertainties, the two values

are consistent with one another).

3.2.2 Cluster spatial distribution

In the previous sectionwehave determined the cluster formation rate in the solar neigh-

borhood. However, the cluster formation rate is expected to vary across the Galactic

disk according to the density of giant molecular clouds (GMC) from which stellar clus-

ters originate. It is then reasonable to presume that the distribution of GMCs well traces

the Galactic position of YSMCs, which in turn closely follow the spiral arm structure of

the Milky Way. We spatially distribute the synthetic stellar clusters following a two-step

procedure:

1. We start by generating stellar clusters with a galactocentric radial distribution fol-

lowing that of GMCs (under the assumption of an isotropic angular distribution)

and assuming an exponential altitude distribution similar to the observed gas pro-

őle.

2. Afterward, based on its radial and angular position, we associate every synthetic

YMSC to a speciőc Galactic structure, i. e. spiral arm, galactic bar, etc.

For the radial distribution of GMCs and the modeling of the Milky Way spiral structure,

we rely on the materials and results of the work by Hou & Han (2014), who őtted spiral

armsmodels simultaneously using the distribution of observedHII regions,masers, and

GMCs.

Hou&Han (2014) supply a complete catalog of GMCs, which reports, for each cloud,

the galactic position (along with kinematic distance), kinematic velocity, size andmass.
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For a large portion of the GMCs, the kinematic ambiguity is resolved. We then recom-

pute the kinematic distance of every cloudwith disentangled kinematic ambiguity using

the code developed byWenger et al. (2018), which calculates distances using two possi-

ble approaches: a Montecarlo method or the conventional estimate using the Galactic

rotation curve (see ğ 2.3.1). We adopt the classical rotation curve based method using

the state of the art curve provided by Reid et al. (2019). A small fraction of GMCs in the

catalog also have distances calculated usingmore reliablemethods such as parallax. For

those speciőc cases, the latter value is used.

Once the location is known, we can estimate the radial distribution of GMCs, which

weexpress in termsof the surfacemassdensity ofmolecular gas (ΣGMC
H2

). Todo so,weav-

erage the total GMCsmass in 18 rings with constant width of 1 kpc and radii spanning in

the interval 0ś18 kpc, and centered on theGalactic center. The result is shown in Fig. 3.5,

where the surface mass density of molecular material in GMCs is compared to several

measurements of the diffuse molecular gas distribution. Note that the overall proőle

is remarkably compatible with the results from different works (Grabelsky et al., 1987;

Bronfman et al., 1988; Digel, 1991; Nakanishi & Sofue, 2006; Pohl et al., 2008), except for

two aspects. First, the normalization, which is found to be lower by a factor∼ 3. This is

expected as we are considering only molecular gas within GMC, while the other results

account for all the diffuse molecular gas. Second, the trend towards the Galactic Cen-

ter, where data by Nakanishi & Sofue (2006) indicate an increase of the density, which in

parallel seems not consistent with the őndings of Bronfman et al. (1988). Nevertheless,

the proőle is also in good agreement with the radial distribution of far-infrared emission

detected from embedded OB stars (Bronfman et al., 2000), emphasizing the robustness

of the hypothesis that YMSCs andmolecular gas.

At this point we can formally deőne the radial distribution of YMSCs as:

ρ(r) =
ΣGMC

H2
(r)

ΣGMC
H2

(r = 8.5 kpc)
(3.20)

Note that by doing so, the normalization of ξSC at the sun position is given by the local

observed cluster formation rate ψ̄LG, as ρ(r) is normalized at the Sun position.

Once the radial distribution is known, we allocate stellar clusters following theMilky

Way observed morphology3. Unfortunately, the Milky Way spiral structure still remains

nowadays amatter of debate. Within their work, Hou &Han (2014) model the Galaxy by

considering two possible scenarios, one containing three and one containing four spiral

arms. They furthermore consider two different functions for the spiral arms: logarith-

3In theworkpresented, aswewill describe inSection3,wewill only consider two regionsof theGalactic
plane. However, we still decided to simulate the distribution of clusters rigorously over the entire galaxy,
especially in view of future more detailed work.

82



CHAPTER 3

Figure 3.5: Comparison of surface mass density of molecular gas enclosed in GMC (thin dashed
line), calculated using Hou &Han (2014) catalog, andmass density of diffusemolecular gas (see
text for the references). The thick solid line is the surface mass density rescaled for comparison

purposes. The dash-dotted line referring to the right axis is the FIR surface luminosity
calculated from embeddedmassive stars (Bronfman et al., 2000).

mic and polynomial-logarithmic functions. Here we use the 4-arm model with simple

logarithmic function as it is on average the case returning the best őt to the spiral arm

tracers. The logarithmic spiral arm, are deőned as:

ln

(︃

r

Ri

)︃

=

(︃

θ − θi
1 rad

)︃

tanΨi (3.21)

whereRi,θi, andΨi are parameters inferred from the őt procedure to the position of HII

regions, masers and GMCs. In addition to the 4 spiral arms, we also include the Local

Spur. Table 3.2 shows the numerical values of the parameters in Eq. 3.21. On top of the

spiral structure, we also take into account the structure of the innermost region. Here

we consider the presence of the Galactic bar and the Near 3 kpc and Far 3 kpc arms. The

őrst is modeled as an ellipse with an aspect ratio of 10:4 (length:width) having a half-

length of 3.3 kpc and an inclination angle of 70◦, deőned counterclockwise with respect

to the positive direction of the x-axis (or equivalently, 20◦ clockwise from the Galactic

Center - Solar System connecting line, see Fig. 3.6) (Churchwell et al., 2009). The Near 3

kpc and Far 3 kpc arms are similarly modeled using an ellipse, with a semi-major axis of
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Parameters Arm 1 Arm 2 Arm 3 Arm 4 Local Spur

Ri [kpc] 3.27 4.29 3.58 3.98 8.16

Ψi [◦] 9.87 10.51 10.01 8.14 2.71

θi [◦] 38.5 189 215.2 320.1 50.6

Table 3.2: Parameters values used to calculate Milky Way spiral arms (Hou & Han, 2014).

4.1 kpc, and an aspect ratio of 0.54 (a semi-minor axis of 2.2 kpc). The ellipse major axis

orientation is 52◦ counterclockwise with respect to the positive direction of the x-axis

(Green et al., 2011). Fig. 3.6 shows the resulting structure composed with the observed

position of different tracers used by Hou & Han (2014). The positions of HII regions are

recalculated using the same approach employed for the GMCs.

Let us now describe in detail the implemented process to allocate the synthetic YM-

SCs in the Galaxy. For every j-th cluster, we start by randomly generating its radial (Rj)

and angular coordinates (θj). Radial distances are extracted considering the probabil-

ity distribution ρ(r) given by Eq. 3.20, while the angular coordinate is chosen assuming

a uniform distribution. Afterward, based on the values of Rj and θj , we associate the

YMSC to a speciőc structure, following the criteria listed in Tab. 3.3. Namely, depend-

ing on the criterion met, we randomly select one speciőc structure among the included

ones. The minimum value of r allowed for each arm corresponds to the position where

the arm connects to the inner region of the Milky Way.

Note that theangular coordinate θj is usedonly to checkwhether theYMSCshouldbe

associated with the Local Spur. Once the cluster is placed in a given arm, the coordinate

θj is recalculated by inverting Eq 3.21:

θj =

(︃

tanΨi

1 rad

)︃−1

ln

(︃

Rj

Ri

)︃

+ θi . (3.22)

In case there is an associationwithNear 3 kpc and Far 3 kpc arms or the Galactic Bar, the

association method is slightly more involved. To be precise, we őrst check which struc-

ture to associate the cluster with, following a minimum distance criterion. After that, if

the cluster is associated with the Galactic Bar we check whether its position is actually

located within the Bar. If not, θj is varied until its position falls within the Galactic Bar.

Note that, given the speciőc geometry of the Near and Far arms and the shape of the

Galactic Bar, there are certain areas where YMSCs end up being closer to the Bar (and

thus associated with it) but there are no values of θj such that the cluster can be moved
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R θ

Spiral Arm 1 R ≥ 3.27 kpc

θ < 360◦

(or 50◦ > θ > 110◦

if 7.59 kpc < R < 9.17 kpc)

Spiral Arm 2 R ≥ 4.29 kpc

θ < 360◦

(or 50◦ > θ > 110◦

if 7.59 kpc < R < 9.17 kpc)

Spiral Arm 3 R ≥ 3.58 kpc

θ < 360◦

(or 50◦ > θ > 110◦

if 7.59 kpc < R < 9.17 kpc)

Spiral Arm 4 R ≥ 3.98 kpc

θ < 360◦

(or 50◦ > θ > 110◦

if 7.59 kpc < R < 9.17 kpc)

Local Spur 7.59 kpc< R < 9.17 kpc 50◦ ≤ θ ≤ 110◦

NF 3kpc / Bar R < 4.29 kpc θ < 360◦

Table 3.3: Criteria in radius and angle implemented to choose which structure to associate a
given YMSC with.
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Figure 3.6: Milky Way structure used in this work. The spiral arms (thick continuous gray lines)
are modeled following the work of Hou & Han (2014). The dashed black line represents the
Local Spur. Yellow and green ellipses represent the Galactic Bar (Churchwell et al., 2009) and
the Near and Far 3kpc arms (Green et al., 2011), respectively. Also shown in the overlay are the
positions of the GMCs (blue points, with sizes proportional to the GMCmass) and HII regions
(red points) from the catalog provided by Hou & Han (2014). The yellow star marks the position

of the Solar System.

within the Bar. In this speciőc case, we associate the cluster with the Near 3 kpc and Far

3 kpc arms.

When a cluster is associated with the Near 3 kpc and Far 3 kpc arms, we change its

coordinates so as to have them within the ellipse that deőnes these structures. We do

so by replacing the cluster coordinates with the ones of the nearest point of the ellipse.

It should be emphasized that this procedure induces a distortion in the starting radial

distribution. However, the deviation found is totally negligible for the őnal result.

Once all clusters are associated we proceed to perturb their positions according to

a Gaussian distribution, following the fundamental concept that both Spiral Arms and

Near and Far structures possess an intrinsic thickness. For spiral arms, we extract a non-

constant radial ŕuctuation, which increases with the galactocentric distance such that
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the probabilityP of having a certain ŕuctuation∆Rj is (Faucher-Giguère&Kaspi, 2006):

P(∆Rj) =
1

2π(0.07Rj)
e
−

∆R2
j

2(0.07Rj)
2
. (3.23)

As for the clusters belonging to the Near and Far arms, we extract from a gaussian prob-

ability distribution the galactic x and y coordinates with a spread of σx = σy = 0.1667

kpc, such that the probability at 3σ returns a scattering compatible with the observed

radial thickness of 0.5 kpc.

Finally, after having set the position of all YMSCs in the Galactic plane, we generate

the vertical coordinate (z) following the observed gas distribution proőle, i.e. an expo-

nential distribution (ρ(z)) with a characteristic spread of 100 pc (Strong et al., 2000):

ρ(z) = exp

(︃

− z

100 pc

)︃

(3.24)

3.2.3 Wind luminosity of star clusters

To model the wind from each YMSC, őrst, its stellar population must be generated fol-

lowing the description given in ğ 3.1. Knowing the wind luminosity (L⋆,i) and mass loss

rate (Ṁ⋆,i) of each i-th star of the cluster, then, the luminosity (Lw) and mass loss rate

(Ṁ ) of the collective cluster wind are readily obtained as:

Lw =
∑︂

i

L⋆,w (3.25a)

Ṁ =
∑︂

i

Ṁ⋆,i (3.25b)

With these parameters, one can also estimate the wind speed as:

vw =

√︃

2Lw

Ṁ
(3.26)

3.2.4 Statistical properties of the YMSC synthetic population

With all the ingredients in our hands, we can őnally generate a synthetic population of

Galactic YMSCs and examine their general properties. After normalizing the cluster dis-

tribution function using Eq. 3.19 with the most updated value of the star formation rate

(Bonatto & Bica, 2011), we obtain from Eq. 3.12 a total number of 747 YMSCs. Fig. 3.7

shows the resulting spatial distribution for a speciőc realization of the Galactic cluster

population. Unless differently stated, we will use this speciőc synthetic population for

the rest of the chapter.
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Figure 3.7: Spatial distribution of a single realization of the YMSC Galactic population. Different
colors correspond to different Galactic structures. The size of the dots is directly proportional to

the mass of the clusters. The yellow star marks the Sun position.

The main parameters that determine the effectiveness of a cluster as a particle ac-

celerator are the wind luminosity, along with the mass loss rate and the cluster wind

speed. Fig. 3.8 shows the distribution of such values considering both the case when the

maximum stellar mass depends on the cluster mass and the case when it is őxed to 150

M⊙. Noticeably, although the latter case produces, as expected, distributions withmore

pronounced high-value tails, the parameters average values are almost unchanged and

equals to Ṁ ≈ 10−6 M⊙ yr−1, vw ≈ 2800 km s−1 and Lw ≈ 3× 1036 erg s−1.
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Figure 3.8: Distribution of the mass loss rate (left panel), wind luminosity (central panel), and
collective cluster wind speed (right panel) for the cases of constant (step histograms) and
non-constant (őlled histograms) maximum stellar masses. Continuous and dashed lines

represent the average values for the two different cases (see plot legend).

For the sake of completeness, we also show the trend of wind luminosity and mass

loss rate as a function of mass (Fig .3.9) and cluster age (Fig .3.10). As can be easily

guessed, both wind power and mass loss rate are roughly proportional to the cluster

mass, as the content of massive stars increases with the latter. Similarly, after ∼ 2Myr,

the two values start to decrease with increasing cluster age, since the number ofmassive

stars decreases as they start exploding as supernovae.

An interesting point worth outlining is the difference between the two cases of high

stellar mass cutoff under analysis. A constant maximum stellar mass of 150 M⊙ is able

to produce clusters characterized by higher wind powers even for low cluster masses.
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Figure 3.9: Wind power (top row) andmass loss rate (bottom row) as a function of the cluster
mass for the synthetic population shown in Fig. 3.7. The left column shows the case where the
maximum stellar mass (M⋆,max) is őxed to 150 M⊙, while the right column is for a maximum
stellar mass dependent on the cluster mass. In all the plots, the marker size is proportional to
the number of stars withM⋆ > 20M⊙. For comparison purposes, the properties of Cygnus OB2
along with their uncertainties obtained in ğ 2.1.1 are indicated with a black cross(Wright et al.,

2015).
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Figure 3.10: Same as Fig. 3.9, but the wind luminosity and mass loss rate are plotted as a
function of the cluster age. Grey continuous line show for comparison the turn-off time of stars

with masses of 100, 50, and 30 M⊙.

Along with the physical properties of the stellar clusters, it is worth investigating the

dimensions of the associated wind-blown bubbles. To calculate the size of the TS (RTS)

and the forward shock (Rb), we need to estimate the interstellar medium density sur-

rounding our YMSCs (see Eq. 1.11 and Eq. 1.8 respectively). As we stated in ğ 1.2.1, YM-

SCs are likely to be still partially (or completely) embedded in their parent GMC, so the

average medium density (ρ0) is expected to be higher than the average density of the

interstellar medium.

To compute a rough estimate of ρ0, we can use again the GMC catalog provided

by Hou & Han (2014), which additionally reports the mass and the angular size of the

clouds. Considering the cloud distances calculated in ğ 3.2.2, from the angular size we

can estimate an average cloud physical radius, from which, assuming spherical geom-

etry, we infer the average gas density. Fig. 3.11 shows the distribution of the particle
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number density for the clouds in the catalog of Hou & Han (2014), characterized by an

average value of∼ 8.76 cm−3, with a spread of +31.62
−9.96 cm−3.

Figure 3.11: Particle density distribution in GMCs derived from the catalog provided by Hou &
Han (2014). The solid line shows the distribution average value, while the dotted and

dash-dotted lines are the particle density obtained for clusters with masses of 103 and 104 M⊙

respectively (see text).

There is a second less direct way to infer the clouds density, that we can use as dou-

ble check. In principle, the environmental density surrounding a given cluster, which

is linked to the GMC mass, should be correlated to the cluster mass. In ğ 1.2.1 we saw

that for a given star formation efficiency ϵSFE (usually of the order of a few percent), the

mass of a cluster is linked to the mass of the parent cloud as:

MGMC =MYMSC

(︃

1

ϵSFE

− 1

)︃

. (3.27)

The density of the cloud as a function of the cluster mass is then:

n0 =
MYMSC

4
3
πR3

GMC

(︃

1

ϵSFE

− 1

)︃

. (3.28)

where RGMC is the radius of the cloud, which also depends on the GMC mass. Several

mass-radius relations for the clouds have been proposed over the decades. In general,
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all relations are parametrized as power laws:

RGMC = R0

(︃

MGMC

M0

)︃α

(3.29)

with R0 andM0 as normalization constants. Fig. 3.12 shows some of the clouds mass-

radius relations taken from the literature (Larson, 1981; Miville-Deschênes et al., 2017;

Chen et al., 2020) and compared withmass and radius of the sample of GMCs fromHou

& Han (2014). If we consider the relation provided by Miville-Deschênes et al. (2017)

(M0 = 36.7 M⊙, R0 = 1 pc, α = 0.454), which seems to be the one best reproducing

the observed sizes andmasses, using Eq. 3.28 (assuming ϵSFE = 0.01) leads to densities

of∼ 10 cm−3 and∼ 4 cm−3 forMYMSC = 103 M⊙ andMYMSC = 104 M⊙ respectively.

These densities are fully compatible with the estimatedmean value of 10 cm−3 obtained

above. Taking this into account, and given that by changing the mass of the cluster by

an order of magnitude the density only varies by a factor of ∼2, we can safely consider
for our purposes a constant density equal to ρ0 = 10mp cm−3 for all YMSCs.

Figure 3.12: GMCmasses vs radii for the considered sample (Hou & Han, 2014). The solid line
shows the őrst relation obtained by Larson (1981). The dot-dashed and dashed lines are
observed relations provided by Chen et al. (2020) andMiville-Deschênes et al. (2017)

respectively. The color scale associated to the symbols represents the cloud distances from the
Sun.

Once the environmental density is set, we can readily calculate the sizes of the wind-

blown bubbles associated with our synthetic population of YMSCs. Fig. 3.13 shows the

resulting distribution. The distribution peaks at RTS = 4 pc and Rb = 50 pc and is
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not Gaussian but has a long tail extending towards higher values. The average values

are RTS = 6 pc and Rb = 60 pc. Again, changing the maximum stellar mass does not

signiőcantly affect the distributions.

Figure 3.13: Size distribution of the TS and forward shock for both cases under analysis, namely
with maximum stellar mass őxes (step histogram) and dependent on the cluster mass (őlled
histogram). Solid and dashed lines represent the distributions average values for the őlled and

step histograms respectively.

3.3 Cosmic Ray distribution in YMSCs

Once the YMSC distribution is determined, we have all the ingredients to compute the

CR distribution. Once again, we rely on the model of hadronic CR acceleration at the

wind TS developed by Morlino et al. (2021) and described in ğ 1.3.3.

In ğ 1.2.1 and ğ 1.3.3 we emphasized that the validity of this model is bound to the

existence of a collective cluster wind. We recall that the general rule for this to happen is

that the average distance between stars has to be smaller than the size of the TS. When

this condition is satisőed, we call the stellar cluster "compact". In the opposite cases we

speak of "loose" clusters, deőned as the ones where the collective TS will not be formed.

An approximate way to distinguish between compact and loose stellar clusters is by us-

ing the half mass radius, which is, however, a non trivial quantity to estimate from ob-

servations. After a comprehensive analysis of the literature, Pfalzner et al. (2016) found

a power-law relation of the form:

RYMSC =

(︃

M

359 M⊙

)︃0.585

pc. (3.30)

Fig. 3.14 shows Eq. 3.30 compared to the sizes ofRTS of our synthetic population plotted
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as a function of the cluster mass. Noticeably, for a signiőcant fraction of YMSCs the TS

radius is always larger than the cluster size. This condition seems to be violated by some

fraction of clusters with masses larger than 104 M⊙. This would lead one to think that

for some very massive clusters the formation of a collective wind could be suppressed.

However, one still needs to take into account the effect ofmass segregation, which tends

to aggregate the most massive stars (which are the largest contributors to the creation

of the collective wind) toward the center of the cluster. In 90% of the generated syn-

thetic YMSCs, stars with masses greater than 10 M⊙ contribute ∼ 90% of the cluster

wind power. It follows therefore that, instead of the half-mass radius, one should rather

consider an effective radius Reff deőned such that it contains a signiőcant fraction of

stars above 10M⊙. If we őx this fraction to 90%, deőning the distribution of stars within

a cluster as a function of the mass and radius as Ξ(M⋆, r) ≡ dN⋆

dM⋆dr
, the effective radius

can be found by requiring:

∫︂ 150M⊙

10M⊙

∫︂ Reff

0

Ξ(M⋆, r)dM⋆dr = 0.9 ; (3.31)

where we have assumed
∫︁ ∫︁

Ξ(M⋆, r)dMdr = 1. Unfortunately, the function Ξ(M⋆, r)

turns out to be difficult to estimate. However, we can calculateReff as the containment

radius of the fraction of cluster mass due to stars withM⋆ > 10M⊙. Such a fraction is:

∫︁ 150 M⊙

10 M⊙
M⋆f(M⋆)dM⋆

∫︁ 150 M⊙

0.08 M⊙
M⋆f(M⋆)dM⋆

≃ 0.2 (3.32)

Assuming that the stellar mass distribution is dM⋆/dr ∝ r−α one has Reff < Rhalf mass

(unless α ≈ 3). If α is such that Reff ≲ 0.4Rhalf mass (with Reff = 0.4Rhalf mass if α =

2), then, almost all stellar clusters turn out to have a TS more extended than the region

containing the most massive stars. Reff estimated in this way is reported in Fig. 3.14

with a dashed line. Summarizing, the conclusion of our calculation is that all YMSCs in

our synthetic population can generate a TS.

Now we can proceed to the calculation of the CR distribution both in terms of mor-

phological and spectral shape. As illustrated in Ch. 2, for an individual cluster the CR

distribution will depend on two factors, namely the injection efficiency and the type of

plasma turbulence that will determine the diffusion properties in the system. For parti-

cle injection at the TS, we assume a őxed spectral slope s = 4, typical of strong shocks,

and acceleration efficiency (ϵCR) equal to 10% of the wind luminosity. Notice that the ő-

nal result on the γ-ray emissionwill scale almost linearlywith ϵCR. Regarding the plasma

turbulence, given the results obtained in Ch. 2, we again decide to investigate the two

scenarios characterized by the Kraichnan and Bohm-like diffusion.
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Figure 3.14: Termination shock radius as a function of the cluster mass. Continuous line shows
the cluster mass-half mass radius relation provided by Pfalzner et al. (2016). The left panel is for
the case of a synthetic Galactic cluster population realized with a őxed maximum stellar mass
(150 M⊙), while the right panel shows the case with maximum stellar mass dependent on the

cluster mass.

A relevant aspect worth investigating is the distribution of themaximumparticle en-

ergy reached in our synthetic population of CR factories. Themaximum energies for the

Kraichnan and Bohm cases are described by Eq. 1.86 and Eq. 1.84, respectively. We as-

sume once more that a 10% of the clusters wind luminosity is converted into turbulent

magnetic őeld (ηB = 0.1). Note that in the case of Kraichnan turbulence, the maximum

energy also depends on the injection scale of the turbulence, which is totally unknown

and hard to estimate. Consequently, we decide to further split the Kraichnan scenario

into two subcases, deőned by an injection length scale őxed to 1 pc or to 10% ofRTS re-

spectively. The same also holds for the Bohm case. However here the dependence is not

on a single length scale but rather on the interval of length scales for which the turbu-

lence power is uniformly injected. We assume in this case that turbulence is constantly

injected from 10% ofRTS to 10−5 pc. The results are shown in Fig. 3.15. We can see that,

when the maximum stellar mass as őxed to 150 M⊙ the distribution of Emax is slightly

more skewed towards high values. However, the mean values for the maximum energy

are basically the same, namely EKra
max(Linj=1 pc) ≈ 24 TeV, EKra

max(Linj = 0.1RTS) ≈ 37

TeV andEBohm
max ≈ 36 TeV.

Noticeably, no PeVatrons are found. This is true both when considering Kraichnan
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and Bohm like turbulence, but also in all considered scenarios with different turbulence

injection scales andmaximum stellar masses. In fact, we found that the fraction of clus-

ters withEmax > 100 TeV is 13% and 7% for the Bohm and Kraichnan cases respectively.

ForEmax > 500 TeV these fractions reduce to 1% for the Bohm and 0.5% for the Kraich-

nan case, corresponding to ∼ 7 − 5 clusters in total. These values do not vary a lot

when considering the various scenarios under analysis, i.e. different turbulence injec-

tion scales for the Kraichnan case differentmaximum stellarmass. With such a small ex-

pected number of PeVatrons, the statistical ŕuctuations are non negligible, andmultiple

realizations of the Galactic population of YMSCs are needed to asses the contribution of

YMSCs to CRs at energies above 100 TeV.

Figure 3.15: Distribution of maximum energies obtained in the case where the maximum stellar
mass is set to 150M⊙ (left panel) or dependent on the mass of the host cluster (right panel).
Filled and step-dashed histograms represent maximum energy in the case of Kraichnan
turbulence injected at a characteristic length scale of 0.1RTS and 1 pc respectively.

Step-continuous histogram reports instead the maximum energy distribution for Bohm-like
diffusion. Vertical lines show the distribution mean value (legend on the right panel).

3.4 γ-ray emission from single sources

Nowwe are ready for the őnal stepwhich is the estimate for the γ-ray emission fromYM-

SCs. As already stated, we will consider only the hadronic mechanism of π0 production

and decay (see ğ A.1).

Since we are not interested in the analysis of individual sources, but rather in the

study of the total diffuse emission of the population, we perform a simpliőed calcula-

tion of γ-ray emission from a single cluster. More precisely, wemodel the emission from

a single source without accounting for its morphology, namely by considering only the
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total ŕux obtained fromall particles conőnedwithin thewind-blownbubble andassum-

ing that the emission is uniformly distributed in the projected disk in the sky. Following

this approach, the γ-ray ŕux coming from the i-th cluster will be:

ϕγ,i(Eγ) =
cni

4πd2i

∫︂

FCR(Ep)
dσ(Ep, Eγ)

dEp

dEp (3.33)

where ni is the target medium numerical density, di is the distance from the Sun of the

i-th YMSC, σ is the cross section for γ-ray production from p − p interaction (Kafexhiu

et al., 2014), and FCR(Ep) is deőned as:

FCR(Ep) = 4π

∫︂ Rb,i

0

r2fCR(r, Ep)dr (3.34)

with fCR(r, Ep) calculated using Eq. 2.9 after the appropriate transformation from par-

ticle momentum to energy. Note that by using Eq. 2.9, we are again accounting only for

the contribution of freshly accelerated particles without considering the emission from

Galactic CRs penetrating in the wind-blown bubble.

In Eq. 3.33, the density of the target medium ni remains a difficult parameter to es-

timate, as it can vary depending on the evolutionary conditions of the wind bubble. In

general, one could consider the density obtained from the evaporation rate of the swept-

up shell (see Eq. 1.24) in addition to thematerial injected by the stellar winds. However,

for the sake of simplicity andwith the aimof proving a considerable but solid upper limit

for the γ-ray ŕux4, we will consider here the simplest case of a constant target density

equal to that of the surrounding environment, i.e., n0 = 10 cm−3.

3.5 Diffuse emission and comparison with data

Once the ŕux of all YMSCs is obtained, we calculate the diffuse γ-ray emission of a given

areaof the skyby simply summingupall the contributionsof the sources included in that

region. This approach is computationally convenient. However, the őnal result may be

slightly distorted as we are not excluding the emission from those regions of the wind

bubbles that do not fall in the considered sky area. The opposite situation is also not

considered, namely the possibility of including the contribution of portions of bubbles

that fall within the region of interest whose centroid is instead outside the area of the sky

under analysis. However, we expect the two contributions to cancel each other out, so

that on average the őnal estimation does not differ much from the true result.

We select the regions from which to extract the γ-ray emission considering four dif-

4Under the assumption of a őxed acceleration efficiency of the particles.
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ferent works. The őrst is the one by Yang et al. (2016), who supply the diffuse γ-ray spec-

tra in several areas of the Galactic Plane using Fermi-LAT observations. Among the pro-

vided area, we select the one between 15◦ < l < 5◦ and −5◦ < b < 5◦. Fig. 3.16 shows

the selected region of interest and the synthetic YMSC within it. For simplicity, we will

refer from now on to this region as ROI1. The remaining three studies that we consid-

ered are Hunter et al. (1997), Bartoli et al. (2015), and Amenomori et al. (2021). These

works report the diffuse γ-ray emission within a region spanning 100◦ < l < 25◦ and

−5◦ < b < 5◦, employing data from EGRET, ARGO, and Tibet-ASγ. Fig. 3.17 shows the

latter region and the synthetic YMSCs within it. We will refer to this region from now on

as ROI2.

Figure 3.16: Region of interest (ROI1) for the computation of the γ-ray diffuse emission using
the work by Yang et al. (2016). Circles represent the wind-blown bubbles from the synthetic
YMSC. The color scale reports the integrated γ-ray luminosity above 1 GeV considering the

Kraichnan scenario with maximum stellar mass as a function of the cluster mass. For
comparison, we report the CTA point spread function at 10 TeV (CTA Collaboration, 2023).
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Figure 3.17: Same as Fig. 3.16, but for the region of interest deőned between 100
◦ < l < 25

◦ and
−5

◦ < b < 5
◦ (ROI2).

As already mentioned, in this work we consider just one realization of the Galactic

YMSC population and calculate γ-ray emission on top of it. Fig. 3.18 shows the γ-ray

spectral energy distributions compared with observations in ROI1 for all the cases un-

der analysis. There are several things worth discussing. The most important aspect is

that the ŕux obtained from all the cases analyzed lies below the Fermi-LAT data by a

factor of ∼ 2 − 3 for the Bohm scenarios and ∼ 10 for the Kraichnan cases at Eγ > 10

GeV. This is a remarkable result, as it implies that the way we modeled the YMSCs does

not lead to a scenario inconsistent with observations and yet shows that YMSCs could

be an important contributors of the diffuse emission in this band. A second result to

underline is that, changing recipe for the maximum stellar mass does not lead to signif-

icant changes in the overall emission, only resulting in a normalization shift by a factor

of∼ 1.5. This is due to a greater number ofmassive stars in the lower-mass star clusters,

which produce a higher wind power and thus higher ŕux normalization. As we will see

in short, the shift in amplitude is relatively small, as the contribution to the diffuse γ-ray

is mainly due to the most massive stellar clusters.

Remarkable, and again not unexpected, turns out to be the difference betweenmod-

els using different diffusion coefficients. Bohm-like diffusion is capable of producing

γ-ray emission up to very high energy, with a cut-off in the spectrum appearing at ∼ 1

TeV, contrary to the Kraichnan case where the emission start to fade at∼ 100 GeV. Con-

cerning the Kraichnan case, having a constant injection scale őxed to 1 pc produces a

spectrumwith a cut-off at higher energy compared to the case where the turbulence in-
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jection occurs at 10% of RTS , although, in the end, the overall spectra do not differ too

much.

Regarding the cut-off position in the γ-ray spectrum, we stress once more time the

fact that the energy at which it appears is less than the expected 0.1 Emax of acceler-

ated particles. As already discusses in ğ 2.5.1, the maximum energy calculated in ğ 1.3.3

does not report the exact location of the cutoff in the injected particles spectrum, but is

usually shifted to lower energy due to the spherical geometry of the system.

Figure 3.18: Diffuse γ-ray emission from the synthetic population of YMSCs compared to
Fermi-LAT observations in ROI1 (sky region shown in Fig. 3.16). Thin and thick lines represent
the spectra after considering constant and cluster mass-dependent maximum stellar masses.
Dash-dotted lines are the spectra obtained in the case of Bohm-like turbulence. Solid and
dashed lines are instead the spectra calculated for Kraichnan diffusion after considering

Linj = 1 pc and Linj = 01RTS respectively.

In general, it is important to note that the Krainchnan case returns an overall spec-

trum that is softer than the Bohmmodel, despite the same spectral slope at the accelera-

tion site. This is a direct consequence of the interplay between advection and diffusion,

whose relative importance differs in the two cases under analysis. To show the impor-

tance of diffusion, we can compare the full solution with the idealized case completely

dominated by advection, which has fCR inside the bubble equal to fTS . As an example,
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in Fig. 3.19we consider the case of themostmassive YMSCs of our synthetic population,

and assuming the scenario where the maximum stellar mass is őxed to 150 M⊙. One

can readily note that the particle spectrum in the Kraichnan model is much softer than

in the ideal situation of pure advection, which is characterized by the expected power

law fTS ∝ E−2
p . In the case of Bohm-like diffusion, advection is expected to dominate

over diffusion up to very high energy. Therefore, the CR spectrum does not differ much

from the ideal situation of pure advection (except close to the cut-off energies). As a

consequence, the observed γ-ray spectrum is harder than the one obtained considering

Kraichnan-like diffusion.

Figure 3.19: CR spectra (FCR) used to compute the γ-ray radiation (dotted and continuous
lines for Kraichnan and Bohm cases respectively) compared to hypothetical spectra where the
propagation mechanism is totally advection-dominated (dash-dotted and dashed lines for
Kraichnan and Bohm cases respectively). All curves reported refer to the most massive stellar

cluster in our synthetic population.

Fig. 3.20 shows the diffuse γ-ray spectrum in ROI2 compared to EGRA, ARGO and

Tibet-ASγ observations. Similarly to ROI1, the emission at low-energy (Eγ < 10 GeV),

in all the considered cases under analysis, is an order of magnitude below the observed

spectrum. On the contrary, above Eγ ≳ 300 GeV the ŕux for the Bohm case, regardless

themaximumstellarmass considered, is found to behigher than the observed spectrum

by Argo by a factor∼ 3 between 0.2 TeV≲ Eγ ≲ 1 TeV and∼ 6 atEγ ≈ 1−2 TeV. For the
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Kraichnan case, the ŕux is instead below the observed ŕux by a factor of ∼ 2 at 0.2 TeV

≲ Eγ ≲ 1 TeV, while atEγ ≈ 1− 2 TeV the expected ŕuxmatches the observations. This

is true independently on the chosen turbulence injection scale and themaximumstellar

mass in the cluster. This is indeed an intriguing result, indicating that the non-resolved

diffuse emission from YMSCs between a few hundreds of GeV and a few TeV is likely not

negligible and possible even dominant.

We would like to emphasize that the outcomes we obtained were based on the as-

sumption of high efficiency and high target density. It is possible to adjust these two

parameters to reduce the ŕux and achieve consistencywith Argo data, even in the Bohm

scenario. Fig. 3.21 shows the same spectra after assuming an efficiency of CR accelera-

tion of ϵCR = 0.01. Concerning the emission at very-high energy (Eγ > 100 TeV), even

considering the most optimistic scenario of a Bohm-like diffusion, the expected ŕux is

signiőcantly below the observations of Tibet-ASγ. As already discus, at these energies

however, the number of contributing cluster is so low that no conclusion can be derived

based on one single realization of the galactic population of YMSCs.

Figure 3.20: Same as Fig. 3.18, but the spectral energy distributions are calculated considering
ROI2 (sky region shown in Fig. 3.17). The crosses, square and triangles marks the emission

observedy by EGRET Hunter et al. (1997), ARGO Bartoli et al. (2015) and Tibet-ASγ Amenomori
et al. (2021) respectively.
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Figure 3.21: Same as Fig. 3.20, but the spectral energy distributions are calculated considering
an efficiency of CR acceleration of ϵCR = 0.1.

Finally, for the sakeof completeness, one last crucial aspect shouldbediscussed. One

maywonder whether the total γ-ray emission ismainly contributed by themost numer-

ous and lessmassive stellar clusters or by the less numerous andmostmassive ones. The

answer is the latter. In fact, the total γ-ray luminosity differentiated with respect to the

cluster mass is:
dLγ

dM
= Lγ(M)

dNYMSC

dM
(3.35)

where dNY MSC

dM
∝M−1.53 is the cluster mass function and Lγ(M) is the γ-ray luminosity

for a given cluster with massM . As the γ-ray luminosity is dominated by the emission

at low energy, one can write:

Lγ(M) ≈ 4π

3
R3

bn0fTSσpp→γ ∝ fTSR
3
bn0 (3.36)

where σpp→γis the integrated cross section for hadronic γ-ray emission. The distribution

at the TS is given by Eq. 1.75, which scale as:

fTS ∝ ϵCRn1v
2
w ∝ ṀR−2

TSvwϵCR (3.37)
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where in the last step we rewrote n1 as n1 = Ṁ/4πR2
TSvw. Knowing from Eq. 1.8 and

Eq. 1.11 that:

Rb ∝ L1/5
w n

−1/5
0 t3/5 (3.38a)

RTS ∝ Ṁ
1/2
v1/2w L−1/5

w n
−3/10
0 t2/5 , (3.38b)

and considering Eq. 3.37, we can rewrite Eq. 3.36 as:

Lγ(M) ∝ Lwtn0 . (3.39)

The wind luminosity has a quasi-linear dependence on the cluster mass Lw ∝ M , with

this acknowledged and using Eq. 3.39, Eq. 3.35 őnally reads:

dLγ

dM
∝M−0.5tn0 . (3.40)

If we then consider a wide interval of masses, ranging between someMmin andMmax

withMmin ≪Mmax, the total γ-ray luminosity will be:

Lγ ∝
∫︂ Mmax

Mmin

M−0.5 ∝M0.5
max (3.41)

hence, dominated by the most massive stellar clusters. The above estimates can be

veriőed plotting the γ-ray contribution of our synthetic population by mass intervals

for ROI1. This is shown in Fig. 3.22, where we have chosen three different mass in-

tervals that contain the same number of stellar clusters, namely M < 1.6 × 103 M⊙,

1.6 × 103 < M/M⊙ < 3.9 × 103 andM > 3.9 × 103 M⊙. Even considering the most

extreme case of constant maximum stellar mass, for both Kraichnan and Bohm cases

the low mass clusters do not contribute much to the total diffuse emission: the contri-

butions of the three different mass intervals in the total γ-ray ŕux at ∼ 10 GeV is 9%,

21% and 70% respectively. A different way to express the same concept is that 50 % of

the total γ-ray ŕux is contributed by stellar clusters withM > 1.2 × 104 M⊙, which are

only∼20% of the total ensemble (see dashed and dotted black lines in Fig. 3.22)

3.6 Final remarks

In this chapterwedescribed themethod for generating a synthetic galactic populationof

YMSCs. The procedure is complex and requires the knowledge or the assumption of sev-

eral ingredients, starting from how we model stars within each cluster and ending with

the rules for generation of the population itself. The őnal goal was to obtain an estimate
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Figure 3.22: Diffuse γ-ray emission from clusters in three diverse mass ranges (see legend in
each panel). The dashed and dotted lines are the contribution of clusters above and below 10

4

M⊙ respectively.

of the diffuse γ-ray emission from the combination of multiple unresolved sources un-

der the assumption of particle acceleration at the cluster wind TS, and to compare this

emission with observations available in the literature. To this purpose, we considered

two different regions of interest.

Theőrst one, namedROI1, is deőnedas 15◦ < l < 5◦ and |b| < 5◦. Here, themeasure-

ment of the γ-ray diffuse emission is provided by the Fermi-LAT telescope. We obtain

for a single realization of the galactic YMSC population a diffuse γ-ray emission con-

sistent with observations. To be more speciőc, the contribution from stellar clusters in

ROI1 is a factor 2 − 3 below the data at Eγ ≳ 10 GeV considering the Bohm scenarios.

For the Kraichnan case, the expected ŕux is a factor ∼ 10 below the observed ŕux at

Eγ ≳ 10 GeV. These result remains unchanged when considering different maximum

stellar masses in the clusters, or different injection scales of the magnetic turbulence.

In the second region analyzed, named ROI2, and deőned by 100◦ < l < 25◦ and |b| <
5◦, observations of the diffuse γ-ray emission are provided by EGRET, ARGO and Tibet-

ASγ. We found here that the expected emission in the range∼ 0.3−1 TeV is comparable

with the observed ŕux from ARGO. More precisely, the expected emission overshoot by

a factor∼ 2− 3 the observations by ARGO when considering the Bohm scenario, while

is consistent at 1 TeV when considering the Kraichnan case. In general, full consistency

can be recovered for the Bohmcase by changing the product betweenn0 (assumed to be

10 cm−3) and ϵCR (assumed to be 0.1). We conclude that the emission at ∼ 1 TeV from

YMSCs is not negligible and that the observeddiffuse emission couldbe evendominated

by stellar clusters.

Beyond results concerning the γ-ray emission, our study contains several novelties

from the point of viewof stellar clusters. In fact, the generation of a population of YMSCs
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is already per se an interesting result, as it allows one to study the average properties of

theGalactic clusters. For example, we foundmean values of clusterwind luminosity and

mass loss rate ofLw ≈ 3×1036 erg s−1 and Ṁ ≈ 10−6M⊙ yr−1 respectively. Furthermore,

our analysis revealed that the synthetic population of YMSCs contains 157 clusters with

masses exceeding 104 M⊙, which is approximately ten times larger than the number of

Galactic clusters observed within this samemass range (Portegies Zwart et al., 2010).

Althoughhighly simpliőed, themodelingof stellar parameters ultimately reproduces

properties of winds that are fairly consistent with observations for high-mass stars.

From the point of view of YMSCs as particle accelerators, there are two main inter-

esting aspects to emphasize. First, the validity of the acceleration model at the wind

TS. Considering the effect of mass segregation, the establishment of a collective clus-

ter wind is a likely scenario, making the model of particle acceleration we consider a

physically motivated choice. A second important őnding is, the distribution of themax-

imum energy of freshly accelerated particles obtained for the two considered types of

plasma turbulence spectra. We found mean maximum energies of EKra
max ≈ 10ś20 TeV,

and EBohm
max ≈ 35 TeV for Kraichnan and Bohm-like diffusion. No PeVatrons are found

in this speciőc realization of the Galactic population, for both the consideredmodels of

particle diffusion.

The main limitation of our work is neglecting the contribution of SN explosions in-

side stellar clusters. For an age of ≳ 3 Myr we know that those events occur and they

will probably dominate the energetics of the bubble (Vieu et al., 2022). In this respect,

our result for the γ-ray ŕux should be regarded as a lower limit in that SN explosions are

likely to enhance the production of CRs. The reason why we have neglected SN explo-

sions is because the modeling of particle acceleration ath the SNR shock propagating

inside the wind bubble is not very well developed. One of the uncertainty is related to

the SN shock Mach number, which is related to the particle acceleration efficiency by

the shock. Let us consider, for example, the őrst SN exploding in the star cluster. The

resulting SNR will reach the Sedov phase soon after the interaction with the wind TS.

The Mach number of the shock in the hot bubble is M = vsh/cs, where vsh is the SN

shock speed and cs =
√︁

γkBT2/mp is the sound speed, with γ as the adiabatic index.

Neglecting possible effects of cooling, the temperature in the bubble is determined by

the TS, hence, kBT2 = 3/16(mpv
2
w), so that the Mach number is:

M =
vsh
cs

=
vsh

√︂

γ 3
16
v2w

=

√︃

16

5

vsh
vw

≃ 4
(︂ vsh
5000 kms−1

)︂(︂ vw
2000 kms−1

)︂−1

(3.42)

Hencewe see that standard values for vsh and vw giveM ≃ afew, which is not enough to

generate efficient particle acceleration. The effect of cooling in the bubble could change
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the conclusion. However, subsequent SNRs will expand inside a material heated by the

őst SN, hence again, the value of the Mach number should be estimated carefully.

3.6.1 Future prospects

The results presented so far are the outcome of work still in progress, for which some are

to be improved, possibly leading to additional and more signiőcant conclusions.

Some of these aspects are listed below:

1. From the point of view of stellar physics, rather than using empirical relations like

we did here, we could include robust stellar models. In principle, we could gen-

erate tables of stars with different masses and ages, which can then be used to

populate stellar clusters according to their age andmasses. The upside of this ap-

proach is that stellar evolutionwouldbe taken into account, eventually accounting

for evolutionary stages outside the main sequence, which are not currently con-

sidered. The downside is the computation time.

2. Concerning the modeling of the star cluster population, to conőrm the robust-

ness of our stellar cluster population simulation method, lower-mass stellar clus-

ters could be generated so that we could have a comparison with cluster surveys

obtained from Gaia. In general, the number of locally generated clusters should

be consistent with those observed. In addition, comparison with the cluster pop-

ulation of other Milky Way like galaxies can be performed.

3. In terms of modeling particle acceleration, several additional aspects could be

considered. First, we could account for different injection spectral indexes after

estimating for each cluster the termination shock Mach number. At lower ener-

gies, the contribution of second-order Fermi acceleration may prove to be non-

negligible andshouldaccordinglybeconsidered. Wedoexpect secondorderFermi

acceleration toaffectparticlesup to severalGeV if themagnetic turbulence is strongly

enhanced.

4. For the calculation of the γ-ray emission, the estimation of the average target den-

sity remains a largely unbound parameter. For this purpose, a comparison with

results obtained by considering a density dependent on the characteristics of the

wind-blown bubble would be interesting. In addition, the inclusion of leptons

and the subsequent calculation of their contribution to the diffuse γ-ray emis-

sion could prove to be and interesting exercise, possible leading to increasing con-

strains on the electron to proton fraction.

5. Anadditional check that shouldbemade iswith theobserveddiffuseneutrinoŕux.
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6. Finally, a relevant aspect which we want to investigate is the estimate of the num-

ber of detectable sources for the new generation of γ-ray telescopes, such as the

Cherenkov Telescope Array, the ASTRI Mini Array, and the Southern Wide-őeld

Gamma-rayObservatory. This speciőc task is non-trivial, and itwill be covered in a

future work. Themain difficulty relies on the fact that stellar clusters are extended

sources. This can be readily veriőed by looking at Fig. 3.23, where the projected

sizes of the cluster bubbles are compared to the point spread functions of the fu-

ture γ-ray telescopes. It should be noted that a considerable part of the YMSCs is

characterized by an extension of 2ś3 times the telescope point spread functions,

and the analysis of extended sources, especially when located in crowded regions

of the sky, is a particularly difficult and challenging task. In fact, we will need in-

strument response functions (IRFs) for extended sources, which at the moment

are not available.

Figure 3.23: Projected bubble radii compared to the point spread function of new generation
γ-ray telescopes: Cherenkov Telescope Array (dashed line), Astri Mini Array (solid line), and the
Southern Wide-őeld Gamma-ray Observatory (dot-dashed line). Filled and step histograms
report the distribution of the projected radii for constant and nonconstant maximum stellar

mass respectively.
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IONIZATION OFMOLECULAR CLOUDS CLOSE TO YMSCS

A
LONG with high-energy particles, YMSCs also produce a sub-GeV popula-

tion of CRs. The existence of these low energy particles is of fundamental

interest for two reasons. From an observational point of view, the ability

of low-energy particles to penetrate deep within the dense core of molec-

ular clumps, inducing ionization of the dense material and triggering the generation of

speciőc complexmolecular compounds, makes them the perfect tool to probe the pres-

ence of freshly accelerated particles, in parallel with γ-ray observations. From the point

of view of fundamental physics process, the induced ionization of low-energy CRs is a

possible feedback mechanism that regulates the collapse of molecular clumps, making

star formation less efficient. In fact, the molecular cloud interior can only be ionized

by CRs, as UV and X-rays photons are efficiently absorbed at the cloud periphery (Phan

et al., 2020). Moreover, it has been shown that ionization ismainly produced byCRswith

energy 1 MeV < E ≲ 100MeV (Padovani et al., 2009). The larger the ionization degree,

the stronger the coupling of the plasma with the magnetic őeld, whose pressure works

against the gravitational collapse.

Very young star clusters are often found to be close to or surrounded by the frag-

mented material of the parental GMC. As the cluster develops a wind-blown bubble, it

is natural to expect some gas clumps to be encompassed within the expanding hot gas

bubble. For these clumps, the ionization rate can be signiőcantly different from the one

induced by the low-energy population of galactic CRs. This is because at these ener-

gies, galactic CRs are swept away from the expandingmotion of the hot bubble, and the

continuos advection prevents any attempts of penetration. This effect is indeed similar

to the shielding effect of solar wind on galactic CRs for energies ≲ 1 GeV. Ionization is

hence only provided by the population of freshly accelerated particles from the YMSC,

whose spectrum can differ from the galactic standard one.
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In this chapter, we present the estimation of the ionization rate formolecular clumps

found within a YMSC wind-blown bubble. Having in mind the result obtained in Ch. 3

we compute the ionization rate for an average Galactic YMSC. Afterward, we apply our

calculation to the speciőc case of DR21, a molecular cloud observed in the close prox-

imity of Cygnus OB2. For this case, the employed CR spectra used for the calculation

of the ionization rate will be the ones found in Ch. 2 that best reproduce the observed

γ-ray emission. We will, hence, again consider the two extreme propagation cases, and

wewill discuss whether themeasurement of the ionization rate can be used to constrain

the propagation models, and under what circumstances.

The chapter is structured as follows: őrst, we describe the method employed to esti-

mate the CR spectrum inside a molecular cloud accounting for the propagation of low-

energy particles. Afterward, we apply this method to a synthetic YMSC considering the

mean properties obtained in Ch. 3. Finally, we calculate the ionization for parameters

representative of DR21, and we compare the obtained result with archival data related

to HCO+ observations.

4.1 Penetration of low-energy CRs in amolecular cloud

AsCRs penetratewithin amolecular cloud (MC), their spectrum ismodiőed by the com-

binationof propagation andenergy loss effects. Toobtain theőnal particle spectrum ina

MC,weuse the simple analytic prescriptionproposedbyMorlino&Gabici (2015). Let us,

hence, consider a MC encompassed within a wind-blown bubble produced by a YMSC.

The cloud is characterized by a sizeLc and a density nc. Let us furthermore assume that

theMC is completely permeated by the bubble magnetic őeldB2, which we consider as

spatially constant and aligned along the x-axis, such that the cloud can be schematized

as one-dimensional (see Fig. 4.1). The MC density is higher with respect to the bubble

density n2. We then assume that the transition between the dense cloud environment

and the hot, fully ionized, bubble material happens within a thin layer of thickness xc.

According to this picture, the system can be divided into three main regions:

(A) A zone far away from theMC that we identify as thewhole hot bubble downstream

of the cluster wind TS. Here, the CR distribution (f2) is provided by Eq. 1.70b and

is unaffected by the presence of the cloud1. In this one-dimensional problem, the

downstream region is set at x < 0 and x > Lc + xc.

(B) A transition zone positioned at the cloud borders between 0 < x < xc and Lc +

xc < x < Lc + 2xc where the distribution of CRs is affected by the presence of the

MC.
1This statement is true unless a large fraction of the bubble volume is őlled with MCs.
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(C) The cloud itself, deőned between xc < x < Lc + xc.

Figure 4.1: Scheme of the simpliőed one-dimensional model employed to describe the
geometry of the cloud.

To obtain the particle spectra within the MC, we assume that CRs propagate along

the magnetic őeld lines crossing the cloud, hence, we neglect perpendicular diffusion,

assuming that is far slower than parallel (Morlino & Gabici, 2015). As explained in ğ A.2,

low-energy particles in a dense environment undergo severe energy losses due to ion-

ization. Consequently, particles loose energy and migrate to lower energy, such that at

a given momentum p, one has f2(p) > fc(p), where we have deőned fc(p) as the aver-

age CR spectrum within the cloud. Eventually, a negative spatial gradient will appear

in the region (B), which in turn triggers the onset of streaming instabilities. The grown

of streaming instabilities generates Alfvén waves with speed vA = B2/
√︁

4πmpn2, that

propagate towards the cloud direction. This will cause CRs escaping from the MC to be

advected back into the cloud from region (B).

The particle distribution in region (B) can be obtained by solving the transport equa-

tion (see Eq. 1.41). In the speciőc case of a steady state system, under the assumption of

a spatially constant diffusion coefficient, the transport equation in (B) reads:

vA
∂f

∂x
= DB

∂2f

∂2x
(4.1)

whereDB is the diffusion coefficient in region (B). Note that we are not considering en-

ergy losses. This is reasonable as the bubble density is expected to be relatively low.

If propagation in this region is mediated by the scattering with Alfvén waves, then

simple dimensional analysis impliesDB ∼ vAxc. As a consequence, for x < xc one has
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x < DB/vA, so that in Eq. 4.1 the diffusion term dominates. Under these circumstances,

the solution is:

f = −[f2 − f(x−c )]
x

xc
+ f2 (4.2)

where f(x−c ) is the value of the distribution calculated immediately outside of the MC.

The former approximate solution can be then used to calculate the ŕux of CRs penetrat-

ing in the MC. This can be done by integrating Eq 4.1 between−∞ and rc:

−2DB
∂f

∂x

⃓

⃓

⃓

⃓

x−
c

+ 2f(x−c )vA = 2f2vA , (4.3)

where the factor 2 accounts for both sides of the cloud. As emphasized by Morlino &

Gabici (2015), the validity of the previous equation does not require the presence of the

streaming instability, but rather applies to themore general cases of Alfvén waves prop-

agating towards the cloud. This is a common situation, as Alfvén waves cannot come

from the cloud itself due to the damping induced by the dense and largely neutral envi-

ronment. Note that the absence of Alfvén waves within the cloud implies that inside it

particles move balistically along themagnetic őeld lines, so that the CR distribution can

be considered approximately constant in space.

Knowing the incoming particle ŕux, we can readily estimate the spectrum of CRs

within the cloud by imposing an equilibriumbetween the incoming ŕux and the particle

removal rate due to energy losses:

2f2(p)vA =
Lc

p2
∂

∂p
[ṗp2fc(p)] (4.4)

Noticeably, if energy losses are negligible, Eq. 4.4 leads to the trivial solution fc(p) =

f0(p). Using once again dimensional analysis, the condition for energy losses to be ne-

glected is:

ι(p) ≡ vAτloss(p)

Lc/2
≤ 1 (4.5)

where τloss(p) = −p/ṗ is the energy loss time scale, which can be approximated as a

power law in momentum (Morlino & Gabici, 2015):

τloss(p) = 1.46× 105
(︃

p

0.1mpc

)︃2.58
(︂ nc

1 cm−3

)︂−1

yr. (4.6)

The condition reported in Eq. 4.5 can be phenomenologically interpreted as follow: as

the particle propagation within the cloud is ballistic, the crossing time for a given CR

can be simply deőned as τcross = Lc/vp, where vp is the velocity of the particle with

momentum p. The condition can be then rewritten as τloss/τcross < vp/vA, whichmeans

113



CHAPTER 4

that energy losses are only important if the particle crosses several times the molecular

cloud (of the order of vp/vA).

Using Eq. 4.6 in Eq. 4.5, we can estimate the energy abovewhich ionization losses are

negligible, which is:

Ebr ≃ 70
(︂ vA
100 kms−1

)︂−0.78
(︃

Nc

3× 1021 cm−2

)︃0.78

MeV (4.7)

whereNc is the columndensity of theMC. At energies aboveEbr, the CR spectrum in the

cloud is the sameas theone in region (A).On theother hand, belowEbr, ionization losses

start to be important, and the CR spectrum is modiőed. In this regime, the spectrum is

obtained by integrating Eq. 4.4. The őnal spectrum of particles within the MC can then

be written as:

fc(p) =

⎧

⎪

⎨

⎪

⎩

f2(p) forE ≥ Ebr

f2(pbr)
(︂

p
pbr

)︂−0.42
{︃

1− ι(p)
s−3

(︂

p
pbr

)︂−2.58
[︃

1−
(︂

p
pbr

)︂3−s
]︃}︃

forE < Ebr .
(4.8)

where f2(p) is given by Eq. 1.70b. We further assume that the particle spectrum in the

bubble is well represented by a power-law, f2 ∝ p−s. The latter assumption is fairly

well motivated for the following reason: for the energy ranges we are interested in (E<10

GeV), particle propagation in the bubble is totally advective, hence, the spectrum is the

same as the one at the injection site, which is a power-law for p≪ pmax. Note that Eq. 4.8

is a simpliőed analytical approximation of the true solution, which is also provided by

Morlino & Gabici (2015). However, it remains a good approximation for the purpose of

this work.

For the sake of completeness, we underline that, in principle, the distribution of par-

ticles in the bubble has a radial dependence (see ğ 2.2). However, we stress again that,

since we are interested in the low-energy regime, advection is the primary propagation

process, and this produces a constant distribution in radius. Thus, ultimately, f2 can be

considered constant within the bubble to a good approximation.

4.2 Ionizationofmolecular cloudsembedded in thewind-

blown bubble of a YMSC

As the wind-blown bubble develops around a newly born YMSC, it may happen that a

molecular clump, formed due to the fragmentation of the parental GMC, is embedded

within the hot shocked plasma. Let us then consider the case of a compact dense clump,

with size Lc = 1 pc and column density ofNc = 1023 cm−2, close to an average galactic
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YMSC. We assume the cluster younger than tage ∼ 3Myr, so that no supernova should

have explodedwithin it yet. We furthermoreőx thewind luminosity andmass loss rate to

Lw = 3×1036 erg s−1 and Ṁ = 10−6M⊙ yr−1 respectively. These values correspond to the

average wind luminosity and mass loss rate of an average Galactic YMSC, as esitmated

in ğ 3.2.2.

We can compute the CR spectrumwithin the clump using Eq. 4.8. To obtain the par-

ticle spectrum in the bubble, f2, we assume the scenario of Kraichnan-like propagation,

as it represents an intermediate case between the two most extreme regimes of particle

propagation due to Kolmogorov or Bohm-like turbulence. Once again we assume that a

fraction ηB = 0.1 of the wind power is converted into a turbulent magnetic őeld, which

is injected at a characteristic length scale of Linj = 0.1RTS . Under these conditions, the

magnetic őeld in the bubble isB2 = 12 µG.

Furthermore, we calculate the density in the bubble as:

n2 =
Ṁ shelltage

4π
3
R3

b

≈ 0.05 cm−3 (4.9)

where Ṁ is the mass of the shell evaporating in the bubble, which we estimate using

Eq. 1.24. Fig. 4.2 shows the CR spectrum in the clump compared with the spectrum of

the injected particles and the Galactic CR sea as measured by the Voyager spacecraft

(Cummings et al., 2016). It can easily be seen that below Ebr, the particle spectrum is

signiőcantly different from that of the bubble, which, due to advection, is practically the

same as that at the TS. The spectrum also differs from that of the CR sea. Therefore, as

anticipated, the ionization rate will also be different.

For simplicity, to estimate the ionization rate ζH2 , we only consider the effect of ion-

ization induced by primary protons. This can be calculated using Eq. 13, that we report

here for convenience:

ζH2 =
∑︂

k

∫︂ Emax

I(H2)

cfk(Ek)[1+ϕk(Ek)]σ
ion
k (Ek)dEk+

∫︂ Emax

0

cfp(Ep)σ
e.c.
p (Ep)dEp . (4.10)

We ignore the effect of primary electrons (Eq. 15), as the content of accelerated electron

inside stellar clusters has not been established yet. The obtained ionization rate is ζH2 ≈
2.2 × 10−18 s−1 , which is a factor ∼ 5 lower than the Spitzer value ζSpitzer ≈ 10−17 s−1

(Spitzer & Tomasko, 1968).

A crucial aspect to emphasize is that the obtained ionization rate is strongly affected

by the position of the break, namely by the energy at which ionization losses start to

dominate. As described in ğ 4.1, this depends on the number of times a particle crosses

the molecular clump under consideration, which is related in turn to the value of the
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Figure 4.2: Comparison between the CR spectrum in a molecular clump embedded within the
wind-blown bubble (dashed line) and the particle spectrum in the bubble (dot-dashed line).
The spectrum of the Galactic CR sea obtained from Voyager measurement is also reported
(solid line). The vertical dotted line denotes the value ofEbr at which ionization-induced

energy losses in the clump start to dominate.

Alfvén velocity, which depends on the bubble magnetic őeld and density, both of which

can easily be different from the expected values. When estimating the bubble densitywe

assumed that the material within it is composed of the evaporated cold shell medium2.

However, shell fragmentationand turbulentmixingwith theexternal interstellarmedium

can increase this value to a higher density. Concerning themagnetic őeld in the bubble,

we are assuming conversion of the wind power into a turbulent magnetic őeld every-

where in the bubble. This is an approximate assumption, and themagnetic őeld ŕuctu-

ation could have an additional spatial dependence. Following these concerns, we show

in Fig. 4.3 how the ionization rate changes as a function of themagnetic őeld and bubble

density assuming that they are free variables. Noticeably, the value is always lower than

ζSptizer except for very low density and high magnetic őelds.

For the sake of completeness, we recall that the Spitzer value should be considered

only as a reference value, as it is calculated without accounting for the physics of CR

propagation within the cloud. Phan et al. (2018) provide a better estimation using a re-

őned version of the approach proposed by Morlino & Gabici (2015). They found a ion-

2The contribution of the wind material is negligible.
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ization rate that is lower than ζSpitzer (see solid black line in Fig. 4.3), and closer to, but

still higher than, our results, where the density of the bubble and the magnetic őeld are

őxed to n2 = 0.05 cm−3 andB2 = 12 µG, implying ζH2 ≈ 9.2× 10−18.

Figure 4.3: Ionization rate induced by primary protons as a function of bubble density and
magnetic őeld for a clump withNc = 10

23 cm−2. The dashed line indicates the standard Spitzer
value, while the cross marks our results obtained for values ofB2 and n2 consistent with the
YMSC properties (see text). The solid line indicates the ioniazation rate as estimated by Phan

et al. (2018).

Finally, weadditionally calculate the ionization rates in the caseof amolecular clump

withNc = 1022 cm−2. In this case, the ionization rate estimated by Phan et al. (2018) is

much closer to the standard Spitzer value, and our result for őxedn2 andB2 lies between

the two numbers (see Fig. 4.4).
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Figure 4.4: Same as Fig. 4.3, but for a MC with column densityNc = 10
22 cm−3.

4.3 Comparison with reality: The case of DR21

Because Cygnus OB2 (Cyg OB2) lies within the Cygnus-X star formation complex, it rep-

resents the perfect test bed for studying the ionization rate in molecular clouds near a

YMSC. Indeed, there are plenty ofMCs that in projection are located close to the cluster,

although the uncertainties in the position along the line of sight prevent a conclusive

association. Nevertheless, a relevant fraction of these clouds is likely in close proximity

of the cluster, as they show to be bright at 8 µm.
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Radiation at 8 µm should trace the emission from hot dust in photon dominated re-

gions (Röllig et al., 2011b), heated by the ionizing light of massive stars, suggesting then

the vicinity to an ionizing source (see Fig. 4.5). In addition, some clouds, such as DR18

and DR20NW, are characterized by an elongated shape pointing toward the direction of

CygOB2 (Schneider et al., 2006), suggesting a direct interactionwith thewind. Morepre-

cisely, the vicinity of the DR20 complex is also conőrmed by precise distance measure-

ment with maser parallaxes (Rygl et al., 2012): the distance is estimated to be 1.46 kpc,

very close to the estimated distance of Cyg OB2 (see ğ 2.1). In addition to DR20, again

throughmaser distancemeasurements, twomassiveMCs are observed in the vicinity of

Cyg OB2: DR21 andW75N.

The MC DR21, positioned at 1.5 kpc, is of great interest for the scope of this work as

the ionization rate has been measured by Hezareh et al. (2008) based on HCO+ obser-

vations (see ğ A.2). Noticeably, the estimated ionization rate, ζDR21
H2

≈ 3.1 × 1018 s−1,

is found to be lower than the one expected for clouds with the same column density

(Padovani et al., 2009). This fact makes the case of DR21 even more interesting, given

the result obtained in ğ 4.2 where a reduced ionization rate was shown for molecular

clumps in interaction with a cluster wind-blown bubble.

Having in mind the results obtained in Ch. 2, we can estimate the ionization rate in

DR21byusing theparticle spectra that best reproduce theobservedγ-ray emission, con-

sidering both the cases of Kraichnan and Bohm-like propagation. Following the same

approach used in ğ 4.2 for the case of an average Galactic YMSC, we readily obtain the

ionization rates of ζH2 ≈ 1.88× 10−18 s−1 and ζH2 ≈ 1.08× 10−18 s−1 for the Kraichnan

and Bohm cases respectively. Noticeably, both values are in fairly good agreement with

the measured ionization rate of DR21.

Note that the particle spectra we are using are calibrated on γ-ray emission under

the assumption of a constant particle density in the bubble equal to n2 ≈ 8 cm−3. As

we have already pointed out in ğ 2.5.1, this density is perhaps too high (which we recall,

causes a low acceleration efficiency). As mentioned in the previous section, the density

in the bubble for estimating the ionization rate turns out to be a crucial parameter, so an

erroneous estimate of the density is likely to produce a wrong result. In terms of the γ-

ray spectrum, the efficiency and thedensity in bubble are totally degenerate parameters.

This means that the same γ-ray spectrum can be re-obtained by keeping constant the

product n2ϵCR while varying both. Following this reasoning, we additionally consider

the case where the CR efficiency is őxed to ϵCR = 0.1, and the bubble density is changed

accordingly. All other parameters are őxed to their previous values. The resulting ion-

ization rates are ζH2 ≈ 5.98 × 10−17 s−1 and ζH2 ≈ 6.27 × 10−18 s−1 for the Kraichnan

and Bohm cases respectively.

Fig. 4.6 summarized the results obtained so far. Hezareh et al. (2008) state that their
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Figure 4.6: Ionization rates estimated for DR21. Cross and X points report the ionization rates
for the Kraichnan case for őxed n2 and ϵCR respectively. The same holds for the Bohm scenario,
denoted by square and diamondmarkers respectively. The solid line indicates the ionization
rate measured by Hezareh et al. (2008). Dashed and dotted lines report the uncertainty bars for

a factor of 2 and 5 respectively.

measured ionization rate is correct within a factor "of a few", we hence report in Fig. 4.6

also their value with uncertainty bars of factors 2 and 5. Interestingly, all values are

roughly in agreement with the exception of the Kraichnan case with ϵCR = 0.1, which

returns a ionization rate ofmore than one order ofmagnitude higher than themeasured

one. This is a remarkable result, showing that themeasurement of the ionization rate of

closebyMCs, combined with γ-ray observations, can be used to constrain (and in some

cases even exclude) the models of CR diffusion in these sources.

4.4 Preliminary conclusions and future prospectives

The study of the ionization rate in clouds close to a YMSC is a relevant aspect to under-

stand the physics of CRs in these sources. First, the measurement of the ionization rate,

coupled with γ-ray observations, provides a unique method to constrain particle prop-

agation in the vicinity of a stellar cluster, returning in additions valuable information

on the CR spectrum at low energy. Secondly, understanding how YMSCs can affect the

population of CRs in their neighborhood is a crucial aspect to better comprehend the

process of star formation. Eventually, the enhancement (the suppression) of the con-
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tent of CRs within the wind-blown bubble can induce negative (positive) feedback for

star formation.

The work presented in this chapter is split into two distinct parts. In the őrst half

of the chapter, we estimated the ionization rate for a molecular cloud in close proxim-

ity of a typical Galactic YMSC. We őxed the wind luminosity and mass loss rate of the

stellar cluster to the average values obtained in ğ 3.2.2 during the study of the Galac-

tic population of stellar clusters. We considered two possible column densities for the

molecular cloud: Nc = 1023 cm−2 andNc = 1022 cm−2, and we found a ionization rate

always lower than the Spitzer value. We additionally compared our ionization rate with

the more accurate estimates given by Phan et al. (2018), who calculated the ionization

rate induced by the population of Galactic CRs using a robust modelization of particle

propagationwithin the cloud. We found our ionization rates in good agreementwith the

value predicted by Phan et al. (2018), for both considered column densities. Finally, we

providedpredictions for the ionization rate considering both themagnetic őeld andpar-

ticle density in the bubble as free variables ranging between 1ś50 µG and 10−3ś1 cm−3

respectively.

In the second part of the chapter, we focused on the speciőc case of the molecular

cloud DR21, which is located close to the YMSC Cygnus OB2. To infer the ionization

rate of DR21, we considered the particle distributions obtained in Ch. 2 that best őt the

observed γ-ray emission. More precisely, we used the particle distributions obtained as-

suming Kraichnan and Bohm-like diffusion. We then compared the resulting ionization

ratewith archivalmeasurements obtained throughobservationsofHCO+ and foundour

result consistent with observations. However, we noticed that our estimates are proba-

bly biased.

In fact, the employed particle distributions are obtained after őtting the γ-ray obser-

vations with the underlying assumption that the density in the bubble is 8 cm−3, which

is the average density in a±400 pc region around Cygnus OB2. This number is too high

and difficult to justify unless invoking extreme scenarios of material mixing and intense

mass evaporation rate from the cold shell. We then recomputed the ionization rate us-

ing a lower particle density in the bubble, which we őx to n2 = 0.58 cm−3 and n2 = 1.77

cm−3 for the Kraichnan and Bohm cases respectively. The particle distributions are ac-

cordingly changed by setting the efficiency for CR acceleration to ϵCR = 0.1 such that

the γ-ray spectrum remains unchanged and so does the consistency with observations.

The resulting new ionization rates are in agreement with observations only when con-

sidering a Bohm-like diffusion. This would tents to favor a scenariowhere particle diffu-

sion is provided by a diffusion coefficient with sharper energy dependence than for the

Kraichnan case.

The entire work carried out in this chapter is still in its early stage, and there is room
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for signiőcant improvements. At present, there are twomain limitations to thepresented

work. The őrst is the absence of the contribution to the ionization from primary elec-

trons. Currently, the electron distribution within the bubble remains unconstrained.

Consequently, no reliable guesses can be made for their contribution. The second is

the uncertainty in the diffusion coefficient in the bubble. This prevents us frommaking

a robustmodelization and systematic estimation of the ionization rate in clouds close to

YMSCs. Therefore, it is currently not possible to make a conclusive statement regarding

this particular feedback on star formation by YMSCs.

To overcome these limitations, systematic radio and X-ray observations of YMSCs

could be used to constrain the magnetic őeld intensity within the wind-blown bubbles.

This would lead to better estimates of the ionization rates, in parallel to a better mod-

elization of the particle diffusion in these systems. X-ray and radio observations could

also provide precious constrains on the electrons distribution. We aim to investigate

these aspects with the upcoming data from theMeerKAT radio telescope and the Galac-

tic Plane survey carried out by eROSITA.
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CONCLUSIONS

Y
OUNGmassive stellar cluster (YMSCs) represent at present one of the most

intriguing sources in the panorama of high-energy astrophysics. The en-

vironment shaped by the winds of multiple young massive stars provides

ideal conditions for particle acceleration, making these objects potential

Galactic CR accelerators. In this manuscript, we analyzed the capability of YMSCs to

produce CRs assuming the scenario where particle acceleration exclusively take place

at the termination shock of the cluster wind. We performed the investigation by means

of a comprehensive modelization of the hadronic γ-ray emission and by estimating the

ionization rate in nearbymolecular clouds induced by the injected low-energy particles.

Tomodel the CRdistribution in the scenariowe considered, we employed themodel de-

veloped by Morlino et al. (2021), which describes both particle acceleration at the wind

termination shock and particle propagationwithin thewind-blown bubble of the stellar

cluster.

In the őrst part of thework, we focused on the speciőc case of the YMSCCygnusOB2.

We tried to interpret the diffuse γ-ray emission detected by the Fermi-LAT, HAWC, and

ARGO experiments in terms of hadronic emission generated by a population of freshly

accelerated particles, whose distribution is obtained following the model of Morlino

et al. (2021). Whenmodeling the particle distributionwithin thewind-blownbubble, we

considered three possible scenarios corresponding to three different diffusion regimes:

Kolmogorov, Kraichnan andBohm like. We found that a Kolmogorov like diffusion in the

system cannot reproduce the observed γ-ray spectrum, as the wind luminosity required

to őt the γ-ray ŕux at very-high energy is more than one order of magnitude higher than

the one inferred from the observed population of massive stars (Lw ≃ 1.5 − 3 × 1038

erg s−1). Similarly, also Kraichnan like diffusion requires a wind luminosity higher than

the one inferred from the stellar population. However, differently from the Kolmogorov
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case, the discrepancy is reduced and amount to a factor of∼ 4. When considering Bohm

like diffusion, we found that the γ-ray spectrumcanbe explainedwith awind luminosity

consistent with our estimations, if∼ 30% of the wind power is converted into turbulent

magnetic őeld. As the wind luminosity required to reproduce the γ-ray emission de-

creases when considering increasingly harder energy dependencies for the diffusion co-

efficient (at the cost of increasing by a factor of a few the fraction of wind power inmag-

netic turbulence), we concluded that, if acceleration proceeds according to our model,

the most plausible scenario is the one where the turbulence spectrum has a spectral in-

dex that lies between the Kraichnan and Bohm cases.

In addition to the γ-ray spectrum, the observations of Fermi-LAT andHAWCprovide

also the radial proőle of the emission in a circular region of 2.2◦ (corresponding to∼ 54

pc for an assumed distance of 1.4 kpc) centered on Cygnus OB2. We then compared the

expected radial proőle for our best-őt cases to the observedmorphology. We limited this

analysis only to the Kraichnan and Bohm scenarios. We found that both cases return

a ŕat morphological proőle in the same region. This proőle is consistent with HAWC

observations, but not with the Fermi-LAT ones, which are characterized by a centrally

peakedmorphology. From the point of view of ourmodel, a ŕatmorphology is the result

of advection as the dominant propagation mechanism. Diffusive transport in a region

of 2.2◦ (corresponding to a physical radius of ∼ 54 pc) is expected to start dominating

only at energies above ∼ 100 TeV. The reason for the peaked morphology observed by

Fermi-LAT remains not fully understood. One possibility is that the increasing γ-ray

luminosity towards the center of the system is due to inverse Compton emission by a

population of accelerated leptons conőned in a thin shell around the termination shock.

This scenario will be investigated in a forthcoming paper, where a robust modelization

of electrons acceleration and diffusion in stellar clusters, along with an estimate of their

γ-ray emission, will be provided.

Given the obtained results, we conclude that the model of particle acceleration at

the wind termination shock of Cygnus OB2 is capable to reproduce the observed γ-ray

emission, and that particle diffusion in the system is likely the result of a scenario in

which the power spectrum of the magnetic turbulence has a spectral index in between

Kraichnan and Bohm predictions. In the near future, it will be possible to conőrm or

reject these conclusions through a number of different tests, among which is the anal-

ysis of the γ-ray spectrum at different distances from Cygnus OB2, and the study of the

γ-ray emission fromnearbymolecular clouds. In this regard, joint observationswith the

MAGIC and LST-1 telescopes are currently ongoing for the molecular clouds DR21 and

W75N.

In the second part of themanuscript, we analyzed the γ-ray emission expected from
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a simulated population of Galactic YMSCs. Given that, within the model of particle ac-

celeration and propagation in YMSCs we assume, the γ-ray radiation is expected to be

mostly produced by particles conőned within the wind-blown bubble, the emission of

single clusters is expected to be on average extended (≳ 0.1◦) and possibly difficult to

distinguish from the diffuse. Therefore, we focused on the diffuse emission produced by

the collective contribution of multiple sources, rather than examining the properties of

each source individually.

To do so, we simulated a population of Galactic YMSCs following a cluster distribu-

tion function tuned on several observational parameters, such as mass and age distri-

bution of local clusters, observed star forming rate in clusters, and the Galactic radial

distribution of giant molecular clouds. To estimate the cluster wind properties, we sim-

ulated for each cluster a synthetic population of stars. When simulating the cluster stel-

lar population, we considered two potential scenarios. In the őrst one, we assumed that

the maximummass of stars generated by each cluster is őxed as 150 M⊙. In the second

scenario, we assumed that the maximum stellar mass is a function of the cluster mass.

After generating the star population, for each starwemodeled the associatedwindusing

again empirical relationsbasedon the stellar parameters, suchasbolometric luminosity,

radius and temperature. We estimated these parameters starting from the stellar mass

andusingempirical relations. In addition toourmaingoal of estimating thediffuseγ-ray

emission, the simulation of a synthetic Galactic population of YMSCs provides already

per se an interesting results. We found that the average wind mass loss rate and wind

power of stellar clusters are Ṁ ≈ 10−6 M⊙ yr−1 and Lw ≈ 3 × 1036 erg s−1 respectively.

The average size of the wind-blown bubble is found to beRb ≈ 60 pc, so that the mean

projected size of the γ-ray emission is≈ 0.25◦. These average values do not vary much

when we considered different maximum stellar masses.

Whencalculating theCRdistribution in each cluster, we considered twodifferent dif-

fusion regimes, Kraichnan and Bohm like. We further consider subcases for the Kraich-

nan regime, assuming twopossible injection scales of themagnetic turbulence, 1 pc and

10% of the termination shock radius. In all scenarios, and independently of the consid-

eredmaximum stellar mass, we found no cluster able to producemaximumparticle en-

ergies above 1 PeV. The fraction of YMSCs accelerating particles above 100 TeV is found

to be 7− 13%, while above 500 TeV it reduces to∼ 0.5− 1%, which corresponds to 3− 6

clusters. With such a small number of clusters statistical ŕuctuations are not negligible,

and multiple realizations of the galactic population of YMSCs are required to obtain a

robust estimate of the expected number of PeVatron clusters.

Aftermodeling theCRdistribution inall YMSCs,wecalculated thediffuseγ-ray emis-

sion in two speciőc regions of the Galactic plane, the őrst one deőned by 15◦ < l < 5◦

and |b| < 5◦ (named ROI1) and the second one by 100◦ < l < 25◦ and |b| < 5◦ (named
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ROI2). The diffuse γ-ray spectrum in ROI1 is available from Fermi-LAT observations,

while in ROI2, data from EGRET, Argo and Tibet-ASγ are considered. We found that in

ROI1 the computed γ-ray spectrum is below the data by a factor of∼ 2− 3 for the Bohm

scenario and ∼ 10 for the Kraichnan case at Eγ > 10 GeV. In ROI2, we obtain a dif-

fuse emission that overshoots the Argo observations by a factor ∼ 3 between 0.2 TeV

≲ Eγ ≲ 1 TeV and ∼ 6 at Eγ ≈ 1 − 2 TeV when considering the Bohm scenario. The

spectrum in the Kraichnan case is instead below the data by a factor of ∼ 2 at 0.2 TeV

≲ Eγ ≲ 1 TeV, while accounting for most of the observed ŕux at Eγ ≈ 1 − 2 TeV. With

these numbers, we conclude that the observed diffuse emission at∼ TeV energies could

be largely provided by YMSCs. We also note that full consistency with observations in

the Bohm scenario can be obtained by reducing the average target density (assumed to

be 10 cm−3) or the efficiency in CR acceleration (assumed to be 10%).

In general, the obtained γ-ray spectra do not vary much when considering differ-

ent maximum stellar masses in clusters, and different turbulence injection scales for

the Kraichnan case. However, the spectra obtained when considering a Kraichnan and

Bohm-like diffusion are signiőcantly different. Using a Kraichnan diffusion coefficient

returns adiffuseγ-ray emission characterizedby a cut-offat energies of∼ 100GeV,while

the emission in the Bohm scenario starts to fade at energies above 1 TeV. At lower ener-

gies the spectrum for the Bohm case is found to be harder than for Kraichnan. This is a

direct consequence of the interplay between advection anddiffusion, whose relative im-

portance differs in the two cases under analysis. In the Kraichnan case, diffusion starts

to dominate at energies lower than in the Bohm case. This produces a decrease of the

number of emitting particles in the wind blown bubble which causes a softening of the

γ-ray spectrum. Lastly, we explored how the diffuse γ-ray emission varies with the clus-

ter mass. Our analysis revealed that the less numerous and most massive clusters are

the primary contributors to the diffuse emission.

Several additions and improvements to the current status of the work are possible

and foreseen. At present, the mains missing ingredients in the second part of the pre-

sented work are the contribution to particle acceleration by supernova explosions and

the contribution to γ-ray emission from accelerated leptons. Both aspect are still poorly

understood and lack a őrmly established theoretical framework. Regarding the simula-

tion of the galactic population of YMSCs, our future plans include conducting a compre-

hensive consistency check of the generated population by comparing it to the observed

population of clusters in Milky Way-like galaxies. Furthermore, multiple realizations of

the Galactic population will have to be considered.

In the third and last part of the manuscript, we moved our analysis to lower ener-

gies, and we investigated the ionization rate induced by sub-GeV particles in molecular
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clouds close to YMSCs. Young clusters are expected to be surrounded by dense molec-

ular clumps, which can be either remains of the cluster parent molecular cloud or gen-

erated by the fragmentation of the swept-up shell created by the expansion of the wind

bubble. We considered a situation in which one of these clumps őnds itself embedded

within thewindblownbubble. Wemodeled the propagation of low energyCRs following

the approach of Morlino & Gabici (2015), where particles in the cloud move balistically

along the magnetic őeld while experiencing energy losses due to direct ionization. Fol-

lowing this method, the particle spectrum in the cloud is equal to the one in the wind

blown bubble for energies larger than a certain value Ebr, which describes the energy

below which losses start to be relevant. Energy losses are relevant when particles cross

several times the molecular cloud, and this condition is related to the Alfvèn velocity in

the bubble, hence, it depends on the value of plasmadensity andmagnetic őeld strength

in the bubble. ForE < Ebr, the spectrum is harder as it is modiőed by energy losses.

As a őrst trial, we considered a molecular clump of size Lc = 1 pc with two possible

values of the columndensityNc = 1022 cm−2 andNc = 1023 cm−2. We assumed the case

in which the clump is close to a YMSC of age less than 3 Myr whose wind luminosity

and mass loss rate are equal to the average values estimated from our analysis of the

Galactic population of clusters, i.e. Lw ≈ 3× 1036 erg s−1 and Ṁ ≈ 10−6 M⊙ yr−1. When

calculating the CR distribution in the wind blown bubble, we considered the scenario

where particle propagation is governed by Kraichnan like diffusion. Assuming for the

magnetic őeld in the bubble a value such that the magnetic turbulence power is 10% of

the wind luminosity, and considering a density in the bubble consistent with the mass

evaporated fromthe sweptupshell, we founda ionization rateof ζH2 ≈ 2.2×10−18 s−1 for

Nc = 1023 cm−2. This is lower than the Spitzer value by almost one order of magnitude.

Even when compared with more recent estimates, presented in Phan et al. (2018), our

ionization rate is still lower by a factor of a few.

When considering a lower column density of the cloud, we found a ionization rate of

ζH2 ≈ 9.2×10−18, which is consistent within a factor of a fewwith both the Spitzer value

and the estimates given by Phan et al. (2018). We noted that the ionization rate obtained

can substantially differ by varying the energy at which the losses become important.

As this value depends on the magnetic őeld and density inside the bubble, which are

highly uncertain parameters, we also made predictions for the ionization rate by taking

into account a broad range of magnetic őeld and density values. In general, low (high)

magnetic őeld and high (low) density produced lower (higher) ionization rates than the

Spitzer value.

After studying the case of a generic cluster, we focused on the speciőc case of Cygnus

OB2 and estimated the expected ionization rate for the nearby molecular cloud DR21.

To this end, we used the CR distributions in Cygnus OB2 calculated for a Kraichnan and
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Bohm like diffusion that best őt the observed γ-ray emission. We found the ionization

rates to be ζH2, K ≈ 1.88× 10−18 s−1 and ζH2, B ≈ 1.08× 10−18 s−1 for the Kraichnan and

Bohm cases respectively. These values are consistent within a factor of a few with the

ionization rate estimated by observations of theHCO+ and equal to ζDR21
H2

≈ 3.1×10−18

s−1 (Hezareh et al., 2008).

These ionization rates are obtained considering a density in the bubble of 8 cm−3,

which is the average density observed near Cygnus OB2 and inferred from HI and CO

observations. This value of density is considerably high. Given the signiőcant variation

observed in the ionization rate by varying the density within the bubble, we also inves-

tigated a scenario where the density is kept constant at 0.58 cm−3 and 1.77 cm−3 for the

Kraichnan and Bohm scenarios respectively. These values are chosen so that the γ-ray

spectrum remains unchanged if the efficiency for CR acceleration is őxed to 10% of the

wind luminosity. The chosen densities are in better agreement with the expected value

assuming that the material inside the bubble is composed of the mass evaporated from

the swept-up shell. We found for this new scenario ionization rates of ζH2 ≈ 5.98×10−17

s−1 and ζH2 ≈ 6.27× 10−18 s−1 for the Kraichnan and Bohm cases respectively. The ion-

ization rate for the Kraichnan case is more than one order of magnitude higher than the

value inferred fromobservations. This seems to favor the Bohmcase, or in general, a dif-

fusion coefficient in the systemwith an energy dependence stronger than theKraichnan

case.

The work presented in this last part is still at an early stage of development. Nev-

ertheless, the results obtained are promising and underline the importance of having a

parallel modelization of the γ-ray emission together with the ionization rate induced by

low-energy CRs. Indeed, the combination of these two pieces of information can pro-

vide a powerful consistency check for any model of CR acceleration and propagation.

Furthermore, the capability of understanding the ionization rate of clouds close to YM-

SCs is crucial to assess the relative importance of the feedback channels that govern the

star formation process.

At present, the main limitation of this work is given by the absence of the contribu-

tion to the ionization rate induced by primary leptons. As a future step, we plan to utilize

X-ray and radio data from Galactic surveys by eROSITA and MeerKAT to conduct a sys-

tematic analysis of the environment surrounding YMSCs. This will enable us to obtain a

more reliable estimation of the magnetic őeld within the wind-blown bubbles of stellar

clusters, which will lead to even more solid estimates of the ionization rate.

Nowmore than ever themodelization of YMSCs asCRaccelerators and γ-ray sources

is of primary importance. In the coming years, thanks to the new generation of γ-ray

observatories, such as CTA, ASTRI Mini Array, and SWGO, the importance of YMSCs as

high-energy sources is bound to increase. TheCTAandASTRIobservatorieswill perform
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deep surveys of the Galactic plane, which, combined with extended surveys in other

bands, such as those of MeerKAT and eROSITA, will provide a valuable set of informa-

tion for the systematic study of these sources. Eventually, multi-band analyses will be

the key to study particle acceleration in YMSCs and evaluate their contribution to the

generation of Galactic CRs. All these studies will hopefully soon bring us closer to the

solution of the century-long enigma of the origin of CRs. In parallel, a campaign of ob-

servations and investigation of the ionization rate inmolecular clouds in close proximity

to YMSCs would provide a signiőcant cross-check for the presence of accelerated parti-

cles. These observations could also provide insights into the star formationmechanism

and improve our understanding of feedback mechanisms associated with the presence

of freshly accelerated CRs in the vicinity of clusters.
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A.1 γ-ray emission as a tracer of CRs

The detection of high-energy radiation from a given object in the sky is direct proof of

the presence of energetic particles. CRs may produce γ-rays through different possible

radiation processes that depend on the type of emitting particles. Energetic hadrons

interacting with the ISMmatter may undergo the following nuclear interactions:

p+ p→ p+ p+ π0

p+ p→ p+ n+ π+

p+ p→ p+ p+ π+ + π−

where p are protons and π are pions1. The production of neutral pions is themain chan-

nel to generate hadronic γ-ray emission, as these subsequent decays according to π0 →
γ + γ. Clearly, the creation of neutral pions is only possible if the energy of a proton

is sufficiently high. The proton energy threshold (Eth) can be obtained through a few

straightforward calculations of particle kinematic (Rybicki & Lightman, 1986), and is:

Eth = 2mπc
2 +

m2
π

2mp

c2 ≈ 280 MeV (1)

wheremπ is the pion mass.

1It is worth noting that charged pions are also created as a result of nuclear interactions. Thesemesons
can then decay, producing neutrinos that propagate straight to Earth. Neutrino astronomy can therefore
be considered as an additional probe of the presence of CRs (Spiering, 2012), with the fundamental and
important difference from γ-ray astronomy that neutrinos can only be created via a hadronic interac-
tion channel, so the detection of neutrinos is a smoking gun for the presence of hadronic CRs. Unfortu-
nately, given the low interaction cross-section of neutrinos and the low ŕuxes expected at high-energy,
this branch of astronomy remains affected by low statistics and hence particularly challenging, requiring
massive detectors and very long exposure times.
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Given a distribution of CRs (fCR), it is possible to calculate the expected γ-ray ŕux

(ϕγ) from π0 production within a certain volume V as:

ϕγ(Eγ) =
1

4πd2

∫︂ ∫︂

V

cfCR(Ep, r)n(r)
dσ(Ep, Eγ)

dEp

dEpdV, (2)

where d is the distance of the considered volume, σ is the cross-section for γ-ray produc-

tion from π0 decay, n is the number density of the target medium, and Ep with Eγ are

the CR kinetic energy and the γ-ray energy respectively. Kafexhiu et al. (2014) provides

an analytical prescription for the cross-section, based on empirical őts of published re-

sults fromp-p interactions at particle colliders and outcomes ofMontecarlo predictions

based on the StandardModel. The full expression results rather cumbersome, but it can

be brieŕy described as the product of two contributing terms:

dσ

dEγ

(Ep, Eγ) = A(Ep)× F (Ep, Eγ) (3)

whereA(Ep) = max(dσπ/dEp) is the maximum value of the pion production cross sec-

tion, while F (Ep, Eγ) is a term describing the spectrum of produced γ-ray as a function

of the proton energy. Fig.1 shows the cross section as a function ofEγ for different values

of the parent proton energy. Notice that a proton is able to produce a γ-ray with amaxi-

mum energy of∼ 0.1Ep. This is particularly important as the detection of γ-rays with a

certain energyE ′
γ implies the presence of hadrons with energies of at least∼ 10E ′

γ .

Leptons produce γ-rays through the InverseCompton (IC) process. Thismechanism

consists in the scattering of high energy electron with a low energy photon, resulting

from one side in an average energy gain for the photon, and an average energy loss for

the electron. If in the electron rest frame the photon energy is hν ≪ mec
2, with h, ν and

me as the Planck constant, photon frequency and electron mass respectively, then, the

process is mediated by Thomson cross section (σT ). If, instead, hν ≃ mec
2 the cross-

section decrease and is described by the Klein-Nishina formula (Klein & Nishina, 1929).

In case of an electron colliding with an isotropicmonochromatic radiation őeld with

frequency ν0, under the assumption of Thomson regime, the average frequency (νc) of

the upscattered photons and the radiative power emitted by the electron are (Rybicki &

Lightman, 1986):

νc =
4

3
γ2ν0 (4)

and
dEIC

dt
=

4

3
σTβ

2γ2U2
ph (5)

where γ is the electron relativistic Lorentz gamma factor, and Uph is the radiation őeld

energy density. In general, the outgoing photon will not have a single characteristic fre-
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Figure 1: Differential cross section for γ-ray production for different protons energy of 1 GeV, 10
GeV, 100 GeV, 1 TeV, 10 TeV, and 1 PeV. The cross-section is calculated using the recipe of

Kafexhiu et al. (2014), considering the speciőc case where the trend at energies higher than 100
GeV is obtained using the Montecarlo SIBYLL.

quency, but rather a possible spectrum of frequencies, which makes the calculation of

the IC spectrum non-trivial. However, one can with good accuracy assume that all pho-

tons are upscattered with the speciőc frequency given by Eq. 4, in which case the IC

spectrum from a given volume V can be written as:

ϕIC(Eγ) =
1

4πd2

∫︂ ∫︂

V

dEIC

dt
fe(Ee, r)δ(ν − νc)dEedV (6)

where fe is the distribution of emitting electrons and Ee is the energy of the electrons.

In the case of the Klein-Nishina regime, Eq. 5 cannot be used, and the previous expres-

sion is no longer valid. The complete treatment becomes then quite involved, with the

full solution in this regime given by Blumenthal & Gould (1970). Yet, in the speciőc case

where the target radiative őeld is represented by a black body, a simple analytical ap-

proximation is still possible in any scattering regime. This solution has been developed

by Khangulyan et al. (2014) and consists of approximating the energy losses as:

dEIC

dt
= q1(Trad)Giso(Ee, Trad) (7)
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with

Giso(Ee, Trad) =

(︃

mec
2

kBTrad

)︃2
cisoY (Ee, Trad)

1 + 12
π2 cisoY (Ee, Trad)

ln

(︃

1 +
π4Y (Ee, Trad)

135ciso

)︃

, (8)

q1(Trad) =
4

3
σT cUph

135

16π4
, (9)

and

Y (Ee, Trad) =
4EekBTrad
(mec2)2

(10)

where Trad is the black body temperature, kB is the Boltzmann constant, and ciso = 4.62.

The IC ŕux is then easily obtained by using Eq.6 with the new expression for the emitted

power.

A.2 Ionization of molecular clouds by low energy CRs

Differently from ionizing radiation, low-energy CRs can penetrate deep within the core

of gas clumps, providing ionizationof clouds, possiblyheating thedense coldgas (Galli&

Padovani, 2015), and indirectly inducing chemical reactions in the ISM, generating com-

plex molecular compounds (Dalgarno, 2006). As YMSCs are expected to be surrounded

by the dense molecular envelope of the parent GMC, we will focus through this section

on the ionization ofmolecular clouds (MC). The ionization processes inMCs have been

exhaustively investigated by Padovani et al. (2009). There is a plethora of interactions

that can lead to the ionization ofH2
2, namely, proton-induced ionization3:

pCR +H2 → pCR +H+
2 + e (11a)

pCR +H2 → H +H+
2 (11b)

pCR +H2 → pCR +H +H+ + e (11c)

pCR +H2 → pCR + 2H+ + 2e (11d)

or ionization induced by CR electrons:

eCR +H2 → eCR +H+
2 + e (12a)

eCR +H2 → eCR +H +H+ + e (12b)

eCR +H2 → eCR + 2H+ + 2e . (12c)

2MCs also harbor a fraction of helium, which can be likewise ionized (see Padovani et al. (2009))
3Also nuclei may induce ionization but, for the sake of simplicity, as hadron induced process, we will

only consider ionization generated by protons.
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Themolecular hydrogen ion (H+
2 ) production rate from the sole contribution of protons

and electrons through direct ionization (Eq. 11a and Eq. 12a) and electron capture (Eq.

11b) processes can be calculated as:

ζH2 =
∑︂

k

∫︂ Emax

I(H2)

cfk(Ek)[1 + ϕk(Ek)]σ
ion
k (Ek)dEk +

∫︂ Emax

0

cfp(Ep)σ
e.c.
p (Ep)dEp (13)

where the index k account for the consideredCR species (electrons or protons), I(H2) =

15.603 eV is the ionization potential of H2, and σion and σe.c are the direct ionization and

electron capture cross sections respectively (see Padovani et al. (2009) and references

therein). The quantity ϕk(Ek) is a correction factor accounting for the ionization in-

duced by a population of secondary electrons created by direct ionization, and can be

calculated as:

ϕk(Ek) =
1

σion
k (Ek)

∫︂ Emax

I(H2)

P(Ek, E
′
e)σ

ion
e (E ′

e)dE
′
e (14)

with the term P(Ek, E
′
e) describing the probability that a secondary electron with en-

ergy E’e is created during a primary ionization by a particle with energy Ek. To estimate,

instead, the electron production rate, one also needs to account for the contribution of

dissociative ionization (Eq. 11c and Eq. 12b) and double ionization (Eq. 11d andEq. 12c)

processes:

ζe =
∑︂

k

∫︂ Emax

I(H2)

cfk(Ek)[1 + ϕk(Ek)]σ
ion
k (Ek)dEk

+
∑︂

k

∫︂ Emax

Ediss.ion.

cfk(Ek)[1 + ϕk(Ek)]σ
diss.ion.
k (Ek)dEk

+2
∑︂

k

∫︂ Emax

Edoub.ion.

cfk(Ek)[1 + ϕk(Ek)]σ
doub.ion.
k (Ek)dEk

(15)

where σdiss.ion. and σdoub.ion. are the cross sections for the dissociative and double ioniza-

tion process. While we mention them for completeness, generally, these two ionization

processes can be safely neglected in comparison to the direct ionization, as the cross

section are a factor 10−100 below σion.

Creation ofH+
2 ions in a dense environment can trigger an intricate chain of chemi-

cal gas phase based reactions with the formation of complex molecules, such as for ex-

ample, DCO+ and HCO+ (D stands for the deuterium isotope). The detection of these

species through molecular radio emission lines can be used to assess the value of ζH2

(Caselli et al., 1998; Vaupré et al., 2014). In a steady-state regime, the abundances of

DCO+ andHCO+ are set by the followingmain reactions (Guelin et al., 1977;Caselli et al.,
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1998):

kCR +H2
ζH2−−→ kCR +H+

2 + e (16a)

H+
2 +H2

κ
H

+
2−−→ H+

3 +H (16b)

H+
3 + CO

κH−→ HCO+ +H2 (16c)

HCO+ + e
β′

−→ CO +H (16d)

H+
3 + e

β−→ 3H (orH2 +H) (16e)

H +H
κ′

−→ H2 (16f)

H+
3 +HD

κf−−⇀↽−−
κ−1
f

H2D
+ +H2 (16g)

H2D
+ + CO

κD−→ DCO+H2 (16h)

DCO+ + e
β′

−→ CO +D (16i)

H2D
+ + e

κe−→ 2H +D (orH2 +D orHD +H) (16j)

H +D
κ′′

−→ HD (16k)

H2D
+ + CO

κ′
D−→ HCO+ +H2 (16l)

H+
3 +D

κ′
f−−⇀↽−−

κ′−1
f

H2D
+ +H (16m)

CO+ +HD
κ
CO+−−−→ DCO+ +H (16n)

where the parameters appearing over the arrows denotes the creation (or destruction)

rates for each chemical compound (see Vaupré et al. (2014)). The ionization rate ζH2 can

then be analytically expressed in terms of the abundance ratiosRD = [DCO+]/[HCO+]

andRH = [HCO+]/[CO] (Wootten et al., 1979; Guelin et al., 1982):

RD =
[DCO+]

[HCO+]
≃ 1

3

x(H2D
+)

x(H+
3 )

≃ 1

3

κfx(HD)

κe + x(e) + δ + κ−1
f /2

(17)

RH =
[HCO+]

[CO]
=
κHx(H

+
3 )

β′x(e)
≃ κH
x(e)[2βx(e) + δ]β′

ζH2

nH

(18)

where κf , κe, κH , β, β′, are the reaction rates4 occurring in the chemical networks of

Eq.16, δ ≈ δH+
3
≈ δH2D+ is the total destruction rate of H+

3 orH2D+ due to reactionswith

neutral species such as CO andO, and x(X ) = nX/nH denotes the fractional abundance

of a given specieX with number density nX . Inversion of Eq. 18 gives the expression for

4Note that the reaction coefficients actuallymediate collisional processes, and are consequently (some
of them) dependent on the kinetic temperature of the gas (Caselli et al., 1998).
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ζH2 (Caselli et al., 1998):

ζH2 = [2βx(e) + δ]
RHx(e)β

′nH

κH
≃
[︃

7.5× 10−4x(e) +
4.6× 10−10

fD

]︃

x(e)nHRH (19)

where fD is the depletion factor of C and O, deőned such that 1/fD is the fraction of C

and O in the gas phase, and

x(e) =

[︃

κfx(HD)

3RD

− δ

]︃

≃ 2.7× 10−8

RD

− 1.2× 10−6

fD
(20)

Assuming we know the depletion factor, ζH2 is easily obtained as RD and RH can be

readily estimated from observation through the ratios of molecular rotational lines.

As a őnal remark, it is essential to emphasize that the value of ζH2 does not return any

information on the spectral shape of the CR distribution since the spectral information

is lost in the integral in Eq. 13. However, one could use low-energy γ-ray emission to

retrieve the CR spectrum, in this way, the value of the ionization rate can be employed as

a cross-check tohave a comprehensively self-consistent estimate of theCRdistribution.
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