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Abstract

Consider a set of agents who play a network game repeatedly. Agents may not know the network. They 
may even be unaware that they are interacting with other agents in a network. Possibly, they just under-
stand that their optimal action depends on an unknown state that is, actually, an aggregate of the actions of 
their neighbors. In each period, every agent chooses an action that maximizes her instantaneous subjective 
expected payoff and then updates her beliefs according to what she observes. In particular, we assume that 
each agent only observes her realized payoff. A steady state of the resulting dynamic is a selfconfirming 
equilibrium given the assumed feedback. We identify conditions on the network externalities, agents’ be-
liefs, and learning dynamics that make agents more or less active (or even inactive) in steady state compared 
to Nash equilibrium.
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1. Introduction

Social networks can be quite complex. Think about friendship networks or networks of peo-
ple interacting online (such as Twitter, Facebook, Instagram, and so on). These networks often 
consist of thousands (or millions) of interacting agents or firms, and agents rarely know how 
the network is shaped.1 In this paper, we provide a novel approach to analyze how incomplete 
information about the network affects behavior and learning processes. We propose a framework 
in which agents may not know how the network affects their payoffs, how the network is shaped, 
or even that they are interacting in a network.

The standard solution concept used to study the behavior of agents in network games is Nash 
equilibrium, with the motivation that learning and adaptation converge to a profile of actions 
in which every player best responds to the actions of the other players. Nash equilibrium action 
profiles are limit outcomes of learning paths when agents have perfect feedback about the payoff-
relevant aspects of others’ behavior. Yet, as we shall argue, such perfect feedback hypothesis may 
be too strong for some social networks applications and, if learning is based on imperfect feed-
back, non-Nash action profiles may result as the steady-state limits of learning paths. Indeed, 
such limits under (possibly) imperfect feedback are characterized by the selfconfirming equilib-
rium concept. With this, we analyze the effects of milder conditions on information feedback.

In our analysis we assume that the only feedback agents receive is their realized payoff. This 
implies that they do not always identify the payoff-relevant aspects of the actions of others, 
represented by a payoff state.

We analyze how agents use the feedback they receive to update their conjectures about the 
payoff state and best respond to them, and we characterize their limit behavior under different 
settings of local and global externalities. We study conditions under which agents are more or 
less active (or even inactive) in steady state compared to Nash equilibrium. These conditions are 
based on the network structure and on the type of externalities, on the conjectures that agents 
have, and on the rules that they use to update their conjectures. Thus, in some applications, 
knowing these conditions, a social planner or the owner of the network can try to change the 
beliefs of people to induce them to increase their activity levels.

1.1. Preview of the model and results

To be more specific about our modelling approach, let us introduce an example that will guide 
us through the whole discussion. Consider an online social network with many users, like Twitter, 

1 For example, Breza et al. (2018) provide evidence from Indian rural villages on the fact that people have limited 
knowledge about the social networks of personal relations in which they are embedded, at odds with many of the existing 
theoretical models of strategic interactions in networks. Actually, even if the decision makers in our model play a game, 
we often call them ‘agents’ instead of ‘players’ when we want to emphasize that they need not reason strategically to 
choose their actions.
2
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and a simultaneous-moves game in which each user i decides her level of activity ai ≥ 0 in the 
social network. The payoff that agents get from their activity depends on the social interaction. 
We start considering the case in which only local externalities are at play, and then extend the 
model to the case in which there are also global externalities. In particular, active user i receives 
idiosyncratic externalities – that can be positive or negative – from the other users with whom 
she is in contact in the social network. The externality from user j to user i is proportional to the 
time that they both spend on the social network, ai and aj . Sticking to a quadratic specification, 
which yields linear best replies, we assume that the payoff function of i is2

ui(ai,a−i ) = αiai − 1

2
a2
i + ai

∑
j∈I\{i}

zij aj . (1)

In equation (1), I is the set of agents, or individuals, in the social network, ai is the activity 
level of i ∈ I , a−i is the profile of activities of all the other users in I , and αi > 0 represents 
the individual pleasure of i from being active on the social network in isolation, which results in 
the bliss point of activity in autarchy. For each j ∈ I\ {i}, parameter zij represents the intensity 
(absolute value) and type (sign) of the externality from j to i. We say that j affects i, or that j is 
a peer (or a neighbor) of i, if zij �= 0.

The network described by the matrix Z of all the zij ’s is assumed to be exogenous. As a first 
approximation, this fits a directed online social network like Twitter or Instagram, where users 
do not have full control on who follows them.3

Under this interpretation, i receives positive or negative externalities from those who follow 
her proportional to her activity. We do not assume that player i knows all the zij ’s. She may 
not know them either because she cannot observe who is following her,4 or because she knows 
her followers but she does not know the sign or intensity of their externality. The payoff of i
represents both the pleasure that i gets from participating in the platform and what i can indirectly 
observe about her own popularity. We consider that i cannot choose the style of what she writes, 
since she just follows her exogenous nature. In this interpretation, ai represents both the amount 
of time that i spends on the platform and the amount of posts that i writes, and this can make her 
more or less appreciated, according to how her style combines with the (typically unobserved) 
tastes of each of her followers. In our setting, player i may also set ai = 0. Indeed, we interpret 
Z as a network of opportunities of interaction, with players deciding endogenously whether they 
want to be active or inactive. When they are inactive, not only the network becomes irrelevant 
for them, but they also become irrelevant for the payoffs of other players.

2 This is the class of linear–quadratic network games originally analyzed by Ballester et al. (2006), as we discuss in 
the next section. We use boldface symbols to denote vectors (in this case, action profiles) and matrices.

3 An endogenous directed network in which player i decides who to follow (the zji entries of matrix Z) but not who 
is following her (the zij entries of matrix Z) seems to us in line with our assumption of exogenous network. That is 
because, in this modification of our model, a player affects the payoff of those that she follows but her payoff is not 
affected by their choices, including, if the network were endogenous, who they follow. So, endogenizing Z would mean 
to endogenize choices (link choices) that are payoff-irrelevant for the players.

4 In many platforms, for users with many followers it is not practical to keep track of the list of followers and, even if 
possible, the effective interactions are driven by many opaque algorithmic decisions, like whom the algorithm decides to 
show the messages. There are online social networks, like Reddit, which actually do not provide this information at all to 
their users. Reddit, in particular, provides a measure to each user, called karma, which is apparently based on how many 
other people follow – and how much they like – what that user posts. However, the algorithm on which this measure is 
based is not public.
3
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To analyze learning dynamics and their steady states, we have to specify what agents observe 
after their choices, at the end of any given period. Continuing the running example of activity on 
Twitter, user i, typically, does not observe the sign of the externalities and the activity of others. 
However, she gets indirect measures of her level of appreciation that come, for instance, from her 
conversations and experiences in the real world, where her activity on Twitter affects her social 
and professional real life. If the players are small firms using Twitter for advertising, they will 
observe their actual profits. Players of this game may have wrong beliefs about the details of the 
game they are playing (e.g., the structure of the network, or the value of the parameters) and about 
the actions of other players. Consequently, they update their beliefs in response to the feedback 
they receive, which is assumed to be their realized payoff, and maximize their instantaneous 
expected payoff given such updated beliefs. This updating process yields learning paths that do 
not necessarily converge to a Nash equilibrium of the game.

Next we also consider an extra global term in the payoff function:

ui(ai,a−i ) = αiai − 1

2
a2
i + ai

∑
j∈I\{i}

zij aj + γ
∑

k∈I\{i}
ak . (2)

We can interpret this extra term γ
∑

k∈I\{i}
ak as an additional utility that i gets, regardless of being 

active or inactive. So, while local network effects impact an individual’s marginal utility from 
activity in the network, global network effects do not impact this marginal utility. Moreover, in 
this case, what agents can learn radically changes with respect to the previous case without global 
externalities, because the presence of the global term makes it harder to identify the impact of 
neighbors on one’s own realized payoff.

Although we let agents be largely unaware of the nature and extent of network externalities, 
we rely on the following minimal maintained assumption: each agent knows how her payoff (util-
ity) and information feedback depend on her action and on a payoff state, which in turn depends 
on other agents’ actions in the given network (but the agent may ignore the latter dependence). 
With this, each agent best responds to her conjecture about the payoff state, observes her realized 
payoff, and – in equilibrium – her conjecture must be consistent with the feedback received, that 
is, confirmed. Note that conjectures may be confirmed without being correct. A profile of ac-
tions and conjectures satisfying these requirements forms a selfconfirming equilibrium (SCE), 
whereby agents best respond to conjectures that can be wrong, but are nonetheless believed to be 
true, as they are consistent with the available evidence.

In our analysis, we assume that agents observe only their realized payoff. Given the assumed 
properties of the payoff functions, it follows that there exists a discontinuity at activity level 0 
in what agents learn from their feedback. In particular, we show that if externalities are only 
local (i.e., positive or negative peer effects) as in equation (1), an active player i is always able 
to exactly infer from her feedback the realized payoff state xi =∑

j∈I\{i} zij aj (e.g., how good 
it is for her to have a Twitter account), even if she may have a wrong conjecture about how 
many neighbors she has or what her neighbors chose. Indeed, we say that in a selfconfirming 
equilibrium active agents have correct shallow conjectures about the payoff state, but possibly 
wrong deep conjectures about the parameters and the actions of others. Actually, agents may even 
be unaware that the payoff state is determined by others within an interactive network structure; 
in this case, they do not hold deep conjectures.

Conversely, an inactive agent receives uninformative feedback, because inactivity makes pay-
off independent of the state. If – given her conjecture – she finds it subjectively optimal to be 
4
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inactive, such lack of information about the payoff state creates an “inactivity trap,” allowing 
her possibly wrong conjecture to persist. Furthermore, if there are only non–negative local ex-
ternalities (hence, strategic complementarities), the inactivity of some agents also induces the 
remaining agents to be (weakly) less active than what they would be in Nash equilibrium. Ac-
tually, for the application to online social networks, such inactivity trap seems to be perceived 
by the platforms, to the point that many of them, after some period of inactivity of agents, start 
sending emails about what is happening on the online social network to provide a positive signal 
and make agents more prone to be active again.5

Since network games without global externalities are easier to analyze and relevant in their 
own right, we first study this special case and then extend the analysis to games with both local 
and global externalities. When agents observe only their realized payoff, the presence of global 
externalities impacts the way in which conjectures are confirmed or revised. Recall that in our 
setting a game is not solely characterized by the best-reply functions, but also by the structure 
of the payoff/feedback functions. This implies that additional SCE action profiles are possible 
compared to the case with only local externalities. Indeed, we show that the SCE action profiles 
studied for the latter special case correspond to the equilibria of games with local and global 
externalities, in which agents have correct conjectures about the global aggregate. But there are 
other SCEs in which conjectures about global aggregates are wrong. For the sake of simplic-
ity, we focus on the case of positive local and global externalities, in which being inactive is 
dominated. Even in this simple case, agents may have a continuum of confirmed conjectures 
about the relative size of the two externalities. Indeed, there are multiple SCEs because, even if 
they are active, players may have false but confirmed conjectures making them choose actions 
that are not objective best replies. In detail, we find that active agents are not able to perfectly 
infer the size of the local externality due to the confound induced by the global externality: 
the realized payoff, a one-dimensional feedback, does not allow to retrieve a two-dimensional 
(local-global) externality. In particular, since we assume positive externalities, we show that 
agents’ perception of their role in the network determines whether in an SCE they are more 
or less active than predicted by Nash equilibrium. Thus, overall activity and (possibly) welfare 
are higher if agents think that (externalities are positive and that) they are more linked than in 
reality.

The paper is structured as follows. In Section 2 we discuss the related literature. Section 3
presents the basic framework and equilibrium concept. In Section 4 we analyze network games 
with only local externalities, whereas in Section 5 we analyze a more general model that accounts 
for global externalities. Section 6 concludes.

We devote appendices to proofs and technical results. Appendix A analyzes properties of 
feedback and selfconfirming equilibria in a class of games including as a special case the linear–
quadratic network games that we consider in the main text. Appendix B reports existing and 
novel results in linear algebra, that we use to find sufficient conditions for unique and interior 
Nash equilibria in network games. Appendix C contains the proofs of the results presented in the 
main text.

5 For example, in November 2019, Twitter sent emails to all its inactive users, under the justification of permanently 
remove inactive accounts. Source: The Verge.
5
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2. Related literature

We model interactions through linear–quadratic network games. We focus on this class of 
games because it has well-known properties, and it has been used for modelling a variety of 
environments where strategic interaction is local and can be described by a network structure, as 
surveyed by Zenou (2016) and Bramoullé and Kranton (2016). Moreover, these games belong 
to the larger class of nice games (Moulin, 1984), for which we provide in Appendix A some 
general results. Bramoullé et al. (2014) show that other payoff functions lead to the same best-
reply functions, hence, to the same Nash equilibria of linear–quadratic network games. However, 
we focus on selfconfirming equilibria (SCE), and, since realized payoffs affect feedback, the 
entire payoff function is relevant, not just the corresponding best-reply function. Thus, we rely 
in our analysis on the specific original payoff function of network games, as introduced in the 
economic literature by Ballester et al. (2006).

We call “selfconfirming equilibria” the steady states of learning processes when static or dy-
namic games are played recurrently, independently of the specific assumptions about feedback 
(monitoring) at the end of each one-period play. This concept encompasses what used to be called 
“conjectural equilibrium” as well as the original “selfconfirming equilibrium” of Fudenberg and 
Levine (1993). In an SCE, agents best respond to confirmed conjectures that may be inconsistent 
with sophisticated strategic reasoning. The latter has been added to SCE relating it to rationaliz-
ability. See Section IV of Battigalli et al. (2015) and the relevant references therein for a more 
detailed discussion of different versions of these concepts. Here we focus on SCE, while we 
analyze SCE with rationalizable conjectures in the appendix of our working paper version. Lip-
nowski and Sadler (2019) apply a concept akin to rationalizable SCE for games where feedback 
about the behavior of others is described by a network topology: agents have correct conjectures 
about the strategies of their peers (neighbors), but their payoff may depend on the whole strategy 
profile and it is not observed ex post. We instead assume that agents observe (only) their realized 
payoff and that the network describes how the payoff of each agent is affected by the actions of 
her neighbors (with global externalities, there is also an influence of other players on own pay-
offs not mediated by the network structure). We interpret the recent model of Bochet et al. (2020)
as another interesting application of the SCE concept to a network game where agents observe, 
besides their realized payoff, the behavior of their neighbors. In their game, agents play a Tullock 
contest with incomplete information about the structure of externalities. The equilibrium concept 
that they use is, actually, a refinement of SCE whereby agents wrongly believe that they compete 
for a local rather than a global resource.

McBride (2006) applies SCE to games of network formation with asymmetric information. In 
his model, agents observe (only) the private information of other agents they link to, and possibly 
of agents to whom they are indirectly linked. We instead assume that the network is exogenous 
and actions are activity levels. We allow for information incompleteness, but – with the partial 
exception of Section 5 – we do not assume that agents are necessarily aware of the states of nature 
(e.g., the possible network structures), hence we do not assume that agents necessarily reason 
about them.6 Frick et al. (2022) apply a refinement of rationalizable SCE to analyze a model with 
asymmetric information and assortative matching. The refinement is obtained by assuming that 

6 De Martí and Zenou (2015) consider network formation games where players do not know the externalities in the 
network, which are random, but their analysis concerns Bayesian-Nash equilibria, and players have correct ex–ante 
beliefs.
6



P. Battigalli, F. Panebianco and P. Pin Journal of Economic Theory 212 (2023) 105700
agents neglect the assortativity of matching when they make inferences from feedback. Foerster 
et al. (2021) share elements of Lipnowski and Sadler (2019) and of McBride (2006). As in the 
former, agents observe the behavior of those with whom they are linked; furthermore, they also 
observe public links. As in the latter, theirs is a model of network formation. They assume that 
beliefs satisfy a kind of rationalizable SCE condition. Unlike those papers, however, Foerster et 
al. (2021) do not explicitly analyze the equilibria of a non-cooperative game, but rather adopt a 
reduced-form notion of stability akin to Jackson and Wolinsky (1996).

3. Framework

3.1. Network games

Consider a finite set of agents (or players) I , with cardinality n = |I | and generic element i. 
Agents are located in a network Z ∈ RI×I , here expressed as an adjacency matrix, with zii = 0
for each i in I . Each agent i ∈ I chooses an action ai from a compact interval Ai = [0, āi].7
For each i ∈ I , A−i := ×j �=iAj denotes the set of feasible action profiles a−i = (

aj

)
j∈I\{i} for 

players different from i. For each i ∈ I , we posit two compact intervals Xi := [xi, x̄i] ⊂ R and 
Yi := [0, ȳi] ⊂ R+ of payoff states for i, with the interpretation that i’s payoff is determined by 
her action ai , the interaction between ai and state xi , and the additive term yi according to the 
quadratic utility function

vi : Ai × Xi × Yi → R,
(ai, xi, yi) �→ αiai − 1

2a2
i + aixi + yi .

(3)

Payoff state xi is determined by the actions of i’s neighbors – the agents with non-zero weight 
in adjacency matrix Z – according to the linear aggregator8

�i : A−i → Xi ,
a−i �→ ∑

j �=i zij aj . (4)

Since the codomain of �i is [xi, x̄i], we are effectively assuming that

xi ≤
∑

j∈N−
i

zij āj , x̄i ≥
∑

j∈N+
i

zij āj ,

where N−
i := {

j ∈ I : zij < 0
}

denotes the set of neighbors of player i that have a negative effect 
on the payoff state of i, and N+

i := {
j ∈ I : zij > 0

}
denotes the set of neighbors of player i that 

have a positive effect on the payoff state of i.
We also consider a non–strategic global externality, that is, a payoff state yi determined by all 

the co-players’ actions according to the proportional aggregator:

gi : A−i → Yi

a−i �→ γ
∑
j �=i

aj , (5)

7 Note that in the network literature it is common to assume Ai = R+. For the case of local externalities with com-
plementarities, we consider constraints on the parameters so that assuming an upper bound on actions is without loss of 
generality for the analysis of Nash equilibria and of selfconfirming equilibria without global externalities. When exter-
nalities are global the upper bound may become binding, and we discuss this issue below in the paper.

8 In principle, we can allow for non–linear aggregators as in Feri and Pin (2020). However, in this paper, we focus on 
the linear case. In Appendix A we provide results for the non-linear case.
7
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where γ ≥ 0. Since the codomain of gi is [0, ȳi], we are assuming that γ
∑
j �=i

āj ≤ ȳi . The special 

case of no global externalities obtains if γ = 0 and every player i knows it, or at least knows 
that yi = 0.

With this, we derive the payoff function

ui : Ai × A−i → R,
(ai,a−i ) �→ vi (ai, �i (a−i ) , gi (a−i )).

Since yi does not interact with ai , xi = �i (a−i ) is the payoff-relevant state that i has to guess in 
order to choose a subjectively optimal action. We let

ri (xi) :=
⎧⎨
⎩

0, if xi ≤ −αi ,
αi + xi , if −αi < xi < āi − αi ,
āi , if xi ≥ āi − αi .

(6)

denote the continuous and piecewise linear best-reply function of player i ∈ I . Note that, since 
αi > 0, we may have ri (xi) = 0 only if xi < 0.

We assume that the game is repeatedly played by agents maximizing their instantaneous pay-
off. Each agent i knows her utility function vi : Ai × Xi × Yi → R as specified in eq. (3), hence 
also its domain Ai ×Xi ×Yi = [0, āi] ×[xi, x̄i] × [0, ȳi] and the “stand-alone” parameter αi , but 
we do not assume that the aggregators parameters (Z, γ ) are known.9 Actually, for most of our 
analysis it does not even matter that agents understand that payoff states aggregate the actions of 
others according to eq.s (4) and (5). After each play, agents get an imperfect feedback about the 
payoff states. Specifically, we assume that each agent observes only her realized utility/payoff. 
What agent i learns in a given period after choosing action ai and observing her realized payoff 
v̂i is that (xi, yi) ∈ {(x′

i , y
′
i

) : vi

(
ai, x

′
i , y

′
i

)= v̂i

}
, that is,

(xi, yi) ∈
{ {(

x′
i , y

′
i

) : y′
i = v̂i

}
, if ai = 0,{(

x′
i , y

′
i

) : αiai − 1
2a2

i + aix
′
i + y′

i = v̂i

}
, if ai > 0.

In words, if i is inactive she can infer yi but has no clue about xi , if she is active she obtains joint 
information about yi and xi that she cannot disentangle.

If there are no global externalities, that is, if each i knows that yi = 0, then being inactive 
reveals nothing, because vi (0, xi,0) = 0 independently of xi , while being active reveals that

xi = v̂i − αiai + 1
2a2

i

ai

= v̂i

ai

− αi + 1

2
ai .

With the aforementioned assumptions about feedback, the interactive situation is represented 
by the mathematical structure

NG = 〈
I, (Ai,Xi, Yi, vi, �i, gi)i∈I

〉
,

determined by eq.s (3), (4), and (5), which we call linear-quadratic network game with just 
observable payoffs, or simply network game.

To choose an action, a subjectively rational agent i must have some deterministic or prob-
abilistic conjecture about the payoff state xi . Yet, her post-feedback update about xi depends 
on what she thinks about yi , because she gets imperfect joint feedback about both. Therefore, 

9 Except for the case of no global externalities, see above.
8
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we model how i forms conjectures about xi and yi . We refer to conjectures about the states xi

and yi as shallow conjectures, as opposed to deep conjectures, which concern the specific net-
work topology Z, the global externality parameter γ (when positive ), and the actions of other 
players a−i . In our equilibrium analysis it is sufficient to focus on deterministic shallow conjec-
tures.10 Indeed, for each i ∈ I and every probabilistic conjecture μi ∈ � (Xi × Yi), there exists 
a corresponding deterministic conjecture 

(
x̂i , ŷi

) ∈ Xi × Yi that justifies the same action a∗
i as 

the unique best reply.11 Deep conjectures are relevant for the analysis of strategic thinking, e.g., 
reasoning based on common belief in rationality, but our equilibrium concept does not rely on 
strategic thinking (with the partial exception of Section 5.1).

3.2. Selfconfirming equilibrium

We analyze a notion of equilibrium that characterizes the steady states of learning dynamics 
and therefore relaxes the mutual-best-reply condition of the Nash equilibrium concept. Recall 
that our approach allows for the possibility of agents being unaware of many aspects of the 
game. In equilibrium, agents best respond to (deterministic) shallow conjectures consistent with 
the feedback that they receive given the true parameter values (Z, γ ).

Definition 1. A profile 
(
a∗
i , x̂i , ŷi

)
i∈I

∈ ×i∈I (Ai × Xi × Yi) of actions and (shallow) determin-
istic conjectures is a selfconfirming equilibrium (SCE) at (Z, γ ) if, for each i ∈ I ,

1. (subjective rationality) a∗
i = ri

(
x̂i

)
,

2. (confirmed conjecture) vi

(
a∗
i , x̂i , ŷi

)= vi

(
a∗
i , �i

(
a∗−i

)
, gi

(
a∗−i

))
.

The two conditions require that: 1) each agent best responds to her own conjecture; 2) the 
conjecture in equilibrium must belong to the ex post information set, so that the expected 
payoff (feedback) coincides with the realized payoff (feedback) given a∗

i , xi = �i

(
a∗−i

)
, and 

yi = gi

(
a∗−i

)
, where the aggregators �i and gi are determined by Z and γ as in (4) and (5) re-

spectively. We say that a∗ = (
a∗
i

)
i∈I

is a selfconfirming action profile at (Z, γ ) if there exists a 
corresponding profile of conjectures 

(
x̂i , ŷi

)
i∈I

such that 
(
a∗
i , x̂i , ŷi

)
i∈I

is a selfconfirming equi-
librium , and we let ASCE

Z,γ denote the set of these action profiles. Also, we denote by ANE
Z the set 

of (pure) Nash equilibria of the game (hence neglecting the non-strategic global externalities), 
that is,

ANE
Z := {

a∗ ∈ ×i∈IAi : ∀i ∈ I, a∗
i = ri

(
�i

(
a∗−i

))}
.

Since, the joint best-reply function a∗ �→ (
ri
(
�i

(
a∗−i

)))
i∈I

is a continuous self-map on the 
compact and convex subset ×i∈I [0, āi] ⊆ RI , Brouwer Fixed Point Theorem implies that a 
Nash equilibrium exists. Hence, we obtain the existence of selfconfirming equilibria. Indeed, 
a Nash equilibrium a∗ corresponds to a selfconfirming equilibrium with correct conjectures (
a∗
i , x̂i , ŷi

)
i∈I

= (
a∗
i , �i

(
a∗−i

)
, gi

(
a∗−i

))
i∈I

. To summarize:

Remark 1. For every Z and γ , there is at least one Nash equilibrium, and every Nash equilibrium 
is a selfconfirming action profile at (Z, γ ):

10 Assuming that each player i knows that yi = 0, if there are no global externalities..
11 See the analysis in Appendix A.1.
9
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∅ �= ANE
Z ⊆ ASCE

Z,γ .

In the following sections we study selfconfirming equilibria and learning, first when there are 
only local externalities, and then when also global externalities are considered.

4. Local externalities

In this section, we analyze the set of selfconfirming equilibria and the learning paths in linear-
quadratic network games with just observable payoffs and without global externalities, that is, 
when γ = 0 and each player knows it, or at least knows that yi = 0. Several proofs are derived 
from the results in Appendix A, which refers to the case of generic network games with feedback, 
and from the results in Appendix B. The proofs themselves are collected in Appendix C. In 
subsection 4.1 we characterize the set of selfconfirming equilibria at (Z, 0), ASCE

Z,0 , relating 
them to the Nash equilibria of auxiliary reduced games and we classify equilibria according to 
the set of active agents. In subsection 4.2 we provide properties of Z that imply uniqueness of 
active agents’ equilibrium actions. In subsection 4.3 we analyze learning paths.

4.1. Nash equilibrium and structure of the SCE set

Let I0 denote the set of players for whom being inactive is justifiable (that is, undomi-
nated):12

I0 := {i ∈ I : ∃ xi ∈ Xi, ri (xi) = 0} = {
i ∈ I : αi + xi ≤ 0

}
.

Also, for each non-empty subset of players J ⊆ I , let ANE,J
Z denote the set of Nash equilibria of 

the auxiliary game with player set J obtained by imposing ai = 0 for each i ∈ I\J , that is,

ANE,J
Z =

{
a∗
J ∈ ×j∈J Aj : ∀j ∈ J, a∗

j = rj

(
�j

(
a∗
J\{j},0I\J

))}
,

where 0I\J ∈ RI\J is the profile that assigns 0 to each i ∈ I\J . If J = ∅, let ANE,J
Z = {∅} by 

convention, where ∅ is the pseudo-action profile such that (∅,0I ) = 0I .13 We relate the set of 
selfconfirming equilibria to the sets of Nash equilibria of such auxiliary games.

Proposition 1. In a linear-quadratic network game with just observable payoffs, and without 
global externalities, the set of selfconfirming action profiles at (Z,0) is

ASCE
Z,0 =

⋃
J :I\J⊆I0

ANE,J
Z × {

0I\J
}

,

that is, in each selfconfirming action profile a∗, a subset I\J of players for whom being inactive 
is justifiable choose 0, and every other player chooses the best reply to the actions of her co-
players. Therefore, in each selfconfirming action profile a∗ and for each player i ∈ I ,

12 This definition is motivated by Lemma 1 in Appendix A, in which we analyze also the more general case of proba-
bilistic conjectures and we explain why restricting attention to deterministic conjectures is without loss of generality.
13 As we do in set theory with the empty set, when we consider functions whose domain is a subset J of some index 
set I , it is convenient to have a symbol for the pseudo-function with empty domain. For example, if J ⊆ I = N , such 
functions are (finite and countably infinite) sequences and ∅ denotes the empty sequence.
10
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a∗
i = 0 ⇒ xi ≤ −αi ,

a∗
i > 0 ⇒

⎛
⎝αi +

∑
j∈I

zij a
∗
j > 0 ∧ a∗

i = min

⎧⎨
⎩āi , αi +

∑
j∈I

zij a
∗
j

⎫⎬
⎭
⎞
⎠ . (7)

Note that, if being inactive is justifiable for every agent (I0 = I ), then 0I ∈ ASCE
Z,0 . In the polar 

opposite case, being inactive is unjustifiable for every agent (I0 = ∅) and the SCE action profiles 
coincide with Nash equilibrium (NE) profiles. Thus, the SCE set can be characterized by means 
of the NE of the auxiliary games in which only active agents are considered. If, for example, for 
every given set J ⊆ I there is a unique NE of the corresponding auxiliary game (Proposition 2
provides sufficient conditions), then |ASCE

Z,0 | = 2|I0|, because for each J with I\J ⊆ I0 there is 
exactly one SCE where the set of active agents is J . Since each auxiliary game has at least one NE 
(see Remark 1), 2|I0| is a lower bound on the number of SCE’s. If we assume strategic substitutes, 
then the Nash equilibria for each auxiliary game in which only agents in J ⊆ I may be active, 
can be characterized as in Bramoullé et al. (2014). Note that in this case, some of the agents 
in J can be active and some inactive. It is also interesting to note that, if the local externalities 
are all non–negative (strategic complementarities), agents will always be (weakly) less active in 
any SCE compared to the NE.14 Appendix A.3 discusses the equilibrium characterization for the 
general case of non linear-quadratic network games.

4.2. Relative uniqueness

We now list and briefly discuss some properties of the weighted adjacency matrix Z that 
will be used throughout the text but are not maintained assumptions.15 In what follows, we will 
assume some of these properties to retrieve sufficient conditions for the existence and stability 
of selfconfirming equilibria. In particular, they imply the uniqueness of SCE actions relative 
to any given set J of active players. We refer to Appendix B for a deeper discussion of these 
assumptions and their implications.

Assumption 1. Matrix Z of size n has bounded values, i.e., for each i, j ∈ I , |zij | < 1
n

.

This assumption simply states that there is no agent who has a link with an excessive weight 
compared to the size of the network.

Assumption 2. Matrix Z has the same sign property, i.e., for each i, j ∈ I , sign(zij ) =
sign(zji), where the sign function can have values −1, 0 or 1.

This assumption requires a sort of symmetry in the way two agents influence each other. 
Namely, the local externalities they impose on each other must be both positive or both nega-
tive.16 The next assumption, instead, requires that all local externalities are strictly negative.

14 We are also implicitly assuming high enough upper bounds on the actions, so that the NE is indeed unique. On this, 
see previous footnote 7.
15 That is, they appear explicitly among the hypotheses of some of the subsequent propositions.
16 This sign condition is used in Bervoets et al. (2019) to prove convergence to Nash equilibria in network games, under 
a particular form of learning.
11
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Assumption 3. Matrix Z is negative, i.e., for each i, j ∈ I , zij ≤ 0.

The following assumption provides some conditions on the spectral properties of the network. 
Recall here the spectral radius ρ(Z) of Z is the largest absolute value of its eigenvalues.

Assumption 4. Matrix Z is limited, i.e., ρ(Z) < 1.

This assumption, which is quite common in the network literature, states that the network 
should not be excessively tight or densely interconnected. In fact, ρ(Z) serves as a measure of 
this connectedness, as it falls between the minimum and maximum sums of the entries in each 
row. Note that Assumption 1 implies Assumption 4.

In some cases, we can write Z = WZ0, where W is a diagonal matrix, and Z0 ∈ {0, 1}I×I is 
the basic underlying topology of the network. Whenever this is the case, matrix Z represents a 
basic network combined with an additional idiosyncratic effect by which every agent i weights 
the effects of others on her. These effects are modeled by the parameter wi (the ith entry in the 
diagonal of W).17 The next assumption adds a symmetry condition on Z0.

Assumption 5. Matrix Z is symmetrizable, i.e., it can be written as Z = WZ0, with W diagonal 
and Z0 symmetric. Moreover, W has all strictly positive entries in the diagonal.

Note that if Z is symmetrizable then all its eigenvalues are real. Moreover, since W has all 
strictly positive entries in the diagonal, Assumption 5 implies that the sign condition (Assump-
tion 2) holds.

Our final assumption is discussed in Bramoullé et al. (2014) and combines Assumptions 4 and 
5 above.

Assumption 6. Matrix Z = WZ0 is symmetrizable-limited, i.e., Z is symmetrizable and the ma-
trix Z̄, whose entries are defined, for each i, j ∈ I , as z̄ij = z0,ij

√
wiwj , is limited.

Our previous results about the characterization of selfconfirming equilibria state that we can 
choose any subset J ⊆ I0 of agents and have them inactive in an SCE. However, we cannot 
ensure that the other agents are active, because their best response in the reduced game could be 
to stay inactive, since the Nash equilibrium of the reduced game in which only agents in I\J
are considered may have both active and inactive agents. The next result goes in the direction of 
specifying under what sufficient conditions this does not happen. Given the matrix Z, and given 
J ⊆ I , we call ZJ the submatrix which has only rows and columns corresponding to the elements 
of J .

Proposition 2. Consider a linear-quadratic network game and a subset of players J ⊆ I such 
that I\J ⊆ I0 (that is, αi + xi ≤ 0 for each i /∈ J ). Suppose that ZJ satisfies at least one of the 
three conditions below:

17 Then the payoff of i ∈ I at a given profile a of the original game is

ui (a) = αiai − 1

2
a2
i + aiwi

∑
j∈I

z0,ij aj = αiai − 1

2
a2
i + ai

∑
j∈I

zij aj .
12
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Table 1
Selfconfirming equilibria of the network from Fig. 1, with positive (resp., negative) externalities of intensity 0.2 (resp., 
−0.2). Columns correspond to subsets of active players. The unique Nash Equilibrium is in bold.

All {1,2,3} {1,2,4} {1,3,4} {2,3,4} {1,2} {1,3} {1,4} {2,3} . . . ∅
a1 0.1257 0.1 0.125 0.128 0 0.1 0.1 0.125 0 0
a2 0.1603 0.1346 0.15 0 0.144 0.12 0 0 0.1154 0
a3 0.0412 0.731 0 0.720 0.1 0 0.1 0 0.0729 0
a4 0.1336 0 0.125 0.14 0.12 0 0 0.125 0 0

1. it has bounded values (Assumption 1);
2. it is negative and limited (Assumptions 3 and 4);
3. it is symmetrizable–limited (Assumption 6).

Then, the following statements hold:

• the auxiliary game with player set J has a unique and strictly positive Nash equilibrium: 
ANE

J = {
aNE
J

}
with aNE

j > 0 for all j ∈ J ;

• (aNE
J , 0I\J ) is a selfconfirming equilibrium at (Z,0).

Proposition 2 provides sufficient conditions to have sets of active and inactive players in a 
selfconfirming equilibrium. In particular, if any of the three conditions is satisfied for every subset 
of I , and if being inactive is justifiable for all the players (I0 = I ), then the set of SCE’s has the 
same cardinality as the power set 2I , that is 2n. The first sufficient condition about (sub)matrix ZJ

is novel, while the other two were obtained respectively by Ballester et al. (2006) and Stańczak 
et al. (2006), and by Bramoullé et al. (2014).

We provide below an example with mixed externalities.

Example 1. Proposition 2 provides alternative sufficient conditions for an interior Nash Equi-
librium (NE) in the auxiliary game with player set J . Fig. 1 provides an example of game that 
does not satisfy any of them, but still has a unique interior NE. We set αi = 0.1 for each player 
i. Every blue arrow represents a positive externality of intensity 0.2. The two red arrows repre-
sent negative externalities of intensity −0.2. This network game has a unique NE, and 16 SCE’s. 
Table 1 shows them all (redundant doubletons and singletons are omitted).

4.3. Learning paths

Definition 1 of selfconfirming equilibrium and the characterization stated in Proposition 1
identify steady states: if agents’ conjectures are confirmed (not contradicted) by the feedback 
they receive, these conjectures will not change in the next interactions. However, we may wonder 
how agents get to play SCE action profiles and if these profiles are stable.18

We first point out that SCE has solid learning foundations.19 The following result is specifi-
cally relevant for this paper (see Gilli, 1999 and Chapter 7 of Battigalli et al., 2023). Consider a 

18 Throughout all our analysis, players perform adaptive learning given an exogenously fixed (but possibly unknown) 
network. For models in which players adaptively change also their links, with a quadratic payoff function analogous to 
ours, and the overall network evolve endogenously, see König and Tessone (2011) and König et al. (2014).
19 See, for example, Battigalli et al. (2019), Fudenberg and Kreps (1995), and the references therein.
13
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Fig. 1. A network with 4 nodes. Blue (resp., red) arrows represent positive (resp., negative) externalities.

temporal sequence (path) of action profiles (at )
∞
t=0. Then, if (at )

∞
t=0 is consistent with adaptive 

learning20 and at → a∗, it follows that a∗ must be a selfconfirming action profile.
To ease the analysis, we consider conjectural best-reply paths for shallow conjectures. For 

each network Z, each period t ∈ N0, and each agent i ∈ I , ai,t = ri
(
x̂i,t

)
is the best reply to 

x̂i,t . After actions are chosen, given the feedback received, agents update their conjectures. If her 
previous conjecture is confirmed, then agent i keeps it, otherwise she updates it using as new 
conjecture the one that would have been correct in the previous period. Thus,

x̂i,t+1 =
{

x̂i,t if ai,t = 0,

�i

(
a−i,t

)
if ai,t > 0,

(8)

and, from (6) we obtain

ai,t+1 = ri
(
x̂i,t+1

)=
⎧⎨
⎩

0, if x̂i,t ≤ −αi ,
āi , if x̂i,t+1 ≥ āi − αi ,
αi + x̂i,t+1, otherwise.

We will consider the possibility that the upper bound āi is reached only in the analysis of di-
verging dynamics. Given our assumptions about feedback, being inactive is an absorbing state: 
if an agent is inactive at time t she will remain so also at time t + 1. If instead the agent is active 
(ai,t > 0), feedback is such that the agent can perfectly infer the payoff state xi,t = �i

(
a−i,t

)
, 

and so she updates conjectures according to (8), which becomes the updated conjecture. This 
is a conjectural best-reply path. The result cited above implies that if the path described above 
converges, then it must converge to a selfconfirming equilibrium, i.e., a rest point where players 
keep repeating their choices.

In this subsection, we analyze the local stability of such rest points (cf. Bramoullé and Kran-
ton, 2007).

Definition 2 (Conjectural best-reply paths). A sequence of profiles of actions and shallow deter-
ministic conjectures (at , ̂xt )t∈N0 is a conjectural best-reply path if it has the following features:

1. Each player i ∈ I starts at time 0 with a belief, and beliefs are represented by a profile of 
shallow deterministic conjectures x̂0 = (

x̂i,0
)
i∈I

.

20 In a finite game, a path of play (at )
∞
t=0 is consistent with adaptive learning if for every t̂ , there exists some T such 

that, for every t > t̂ + T and i ∈ I , ai,t is a best reply to some deep conjecture μi that assigns probability 1 to the set 
of action profiles a−i consistent with the feedback received from t̂ through t − 1. The definition for compact-continuous 
games is a bit more complex (see Milgrom and Roberts, 1991, who assume perfect feedback).
14
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2. In each period t , players best reply to their conjectures: for each i ∈ I , ai,t = min{max{αi +
x̂i,t , 0}, āi}.

3. At the beginning of each period t + 1, each player i keeps her period–t shallow conjecture 
if she was inactive, and updates her conjecture to period–t revealed payoff state if she was 
active, that is, x̂i,t+1 = ui(at )

ai,t
− αi + 1

2ai,t .

Observe that the system is deterministic and the initial conditions completely determine the 
paths. From conditions (7) and (8), the system is not linear because, for each i ∈ I and t ∈N0,

x̂i,t+1 =
{

x̂i,t if x̂i,t ≤ −αi ,∑
j∈I zij aj,t if x̂i,t > −αi .

Clearly an SCE of the game is always a rest point of these learning paths. Indeed, every SCE (
a∗, x̂

)
is – trivially – the limit of the constant conjectural best-reply path starting at (a0, ̂x0) =(

a∗, x̂
)
. Furthermore, the set of inactive agents in a conjectural best-reply path can only increase:

I0
(
x̂t

)⊆ I0
(
x̂t+1

)
,

where I0
(
x̂
)

denotes the set of inactive agents given profile of conjectures x̂ = (x̂i

)
i∈I

.
We now consider the stability of such rest points.

Definition 3. A profile a∗ ∈ ASCE
Z,0 is locally stable if there exists a profile of conjectures x̂ such 

that (a∗, ̂x) is a selfconfirming equilibrium, and if there exists an ε > 0 such that, for each x̂0
with 

∥∥x̂0 − x̂
∥∥< ε (where ‖·‖ is the Euclidean norm), the conjectural best-reply path, starting at 

x̂0, has a limit and it is such that limt→∞ at = a∗.

Since (at , ̂xt )t∈N0 is determined by the initial conjectures x̂0, we analyze stability with respect 
to perturbations of x̂0. Our notion of stability with respect to conjectures relates to the standard 
notion of stability with respect to actions in the following way. First of all, since played actions 
are justified by some conjectures, the only reason for these actions to change is a perturbation of 
the justifying conjectures, but this is not a sufficient condition. If all agents are active, the two 
definitions have the same consequences in terms of stability, since a perturbation with respect to 
actions happens if and only if every agent’s conjecture is perturbed. Indeed, each active agent i
has perfect feedback about xi , and always chooses the best reply to neighbors’ actions in previous 
period. However, consider an SCE with inactive agents, who choose the null action as a corner 
solution, that is, whose subjective expected marginal utility for increasing activity is strictly 
negative. For such agents a small perturbation of their conjectures would not change their null 
subjective best reply. This is so because inactive agents have imperfect feedback and cannot infer 
the value of the local externality aggregator. This implies that if an action profile is locally stable 
with respect to action perturbations, then it is also locally stable under conjectures perturbations, 
but the converse does not hold. Specifically, forcing inactive agents to be active may lead some of 
them to be active forever. The two definitions would be equivalent under perfect feedback for all 
agents. Note finally that a temporary perturbation of shallow conjectures x̂0 has the same effect 
of a temporary shock in the parameter vector {αi}{i∈I }. By looking at the first–order conditions, 
they both induce the same effect on agents’ best reply and on payoffs.

Each SCE is characterized by a set of active agents. So, given an action profile a =
(ai)i∈I , let Ia := {i ∈ I : ai > 0} denote the set of active players at profile a. Also let I ∗

0 :={
i ∈ I : αi + x < 0

}
(a subset of I0) denote the set of agents for whom being inactive is a “corner 
i

15
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solution” for a set of conjectures with nonempty interior. For each action profile a, ZIa denotes 
the sub–matrix with rows and columns corresponding to players who are active in a. The follow-
ing result provides sufficient conditions for an SCE to be locally stable.

Proposition 3. The action profile in a selfconfirming equilibrium (a∗, ̂x), such that x̂i �= −αi for 
each i ∈ I , is locally stable if

• Assumption 4 holds for matrix ZIa∗ ;
• I\Ia∗ ⊆ I ∗

0 .

Intuitively, consider a sufficiently small perturbation of players’ conjectures. The first condi-
tion ensures that active players keep being active and their actions converge back to the unique 
Nash equilibrium of the auxiliary game with player set Ia∗ . The second condition ensures that 
inactive players keep being inactive. Next, we provide alternative sufficient conditions that allow 
to find the subsets of active agents associated to SCE’s.

Proposition 4. Consider the action profile a∗ in a selfconfirming equilibrium (a∗, ̂x) such that 
I\Ia∗ ⊆ I ∗

0 and x̂i �= −αi for each i ∈ I . If ZIa∗ satisfies at least one of the three conditions 
below:

1. it has bounded values (Assumption 1),
2. it is negative and limited (Assumptions 3 and 4),
3. it is limited and symmetrizable (Assumptions 4 and 5),

then a∗ is locally stable. Moreover, for every J ⊆ Ia∗ such that I\J ⊆ I ∗
0 , a∗∗ = (aNE

J , 0I\J ) is a 
locally stable SCE action profile, where aNE

J is the unique and strictly positive Nash equilibrium 
action profile of the auxiliary game restricted to player set J .

The proof is based on results from linear algebra. In fact, if an adjacency matrix satisfies 
one of the conditions from Proposition 4, then also every submatrix of that matrix satisfies that 
property.

We know that there may be SCE’s that are not Nash equilibria, because some agents are 
inactive even if inactivity is not a best response to the actions of others. Proposition 4 provides 
an additional observation. Under the stated conditions, for any given SCE action profile a∗ with 
set of active agents Ia∗ , any subset J ⊆ Ia∗ such that I\J ⊆ I ∗

0 is associated to a stable SCE 
where all agents in J are active, and the other agents are inactive.

The following example shows that we can reach SCE’s that are not NE’s also if the initial 
beliefs induce strictly positive actions for all agents at the beginning of the learning paths.

Example 2. Consider the case of 4 players with the network matrix Z ∈ {−0.2, 0, 0.2}I×I shown 
in Fig. 1, and, for every i, αi = 0.1. This is a case of externalities that can be positive or negative. 
Fig. 2 shows the learning paths of actions that start from different initial conditions. In one case 
(left panel) the path converges to the unique Nash equilibrium of this game (the dotted lines), 
in the other (right panel) the path makes a player inactive after two rounds and converges to a 
selfconfirming equilibrium which is not Nash.
16
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Fig. 2. Positive and negative externalities. Starting from different conjectures, given the same network (from Figure 1), 
the learning process may converge to the unique Nash equilibrium (left panel – dotted lines are the Nash equilibrium) or 
to an SCE which is not a Nash equilibrium (right panel). For active players, actions are just an upward shift of conjectures 
by amount αi . In the right panel, for the inactive player 3 the action is 0 from step 2 on.

5. Local and global externalities

In many applications the feedback that active players receive is not enough to find out the 
objectively optimal response. Users of online platforms may not understand ex post the objective 
best response to others’ activity. In our context, this means that perfect feedback may not hold 
even for active players. In particular, this is the case if players just observe their realized pay-
offs, but there may be global externalities, which introduce a confound. This implies there may 
be other equilibria besides those analyzed above. Assuming that local externalities are positive, 
the following analysis yields two important observations. First, players may be more active if 
they think that they are more linked in the network than they actually are, and this can be wel-
fare improving for the whole society. Second, agents with excessive perceived connectedness 
may prevent convergence of best reply paths to interior equilibria. Recall Definition 1 (of self-
confirming equilibrium), based on general linear-quadratic network games with just observable 
payoff (see equations (3)-(5)). We can characterize the set of SCE’s as follows:

Proposition 5. A profile of actions and conjectures 
(
a∗
i , x̂i , ŷi

)
i∈I

∈ ×i∈I (Ai × Xi × Yi) in a 
linear–quadratic network game with just observable payoffs and local and global externalities 
is a selfconfirming equilibrium at (Z, γ ) if and only if, for every i ∈ I ,

1. a∗
i = 0 implies x̂i ∈ [xi,−αi

]
and ŷi = γ

∑
j �=i a

∗
j ;

2. a∗
i > 0 implies a∗

i = min{αi + x̂i , āi} and ŷi = γ
∑

k �=i a
∗
k + a∗

i

(∑
j �=i zij a

∗
j − x̂i

)
.

We discuss how the presence of the global externality term in the utility function changes 
the characterization of selfconfirming equilibria. Although we maintain the assumption of just 
observable payoffs, with global externalities it is not anymore the case that active players have 
perfect feedback about the payoff state. Indeed, for all i ∈ I and for all pairs of realized external-
ities (xi, yi), vi (0, xi, yi) = yi . Thus, on the one hand inactive players have correct conjectures 
about the global externality, but may have incorrect conjectures about the local externality. On 
the other hand, active players are not able to determine the relative magnitude of the local effects 
with respect to the global effects. Given any strictly positive action a∗

i , the confirmed conjec-
tures condition yields (ŷi − yi) = a∗

i

(
xi − x̂i

)
. Then, in equilibrium, if agent i overestimates 

(underestimates) the local externality, she must compensate this error by underestimating (over-
estimating) the global externality. Compared to the case of only local externalities, we have that: 
17
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(i) active agents may have a wrong conjecture about the payoff state; thus, (ii) it is not possible 
to completely characterize the set of SCE’s by means of Nash equilibria of the auxiliary games 
restricted to the active players.

Yet, the analysis of Section 4 allows to identify a subset of selfconfirming equilibria, those 
where agents have correct (shallow) conjectures about the global payoff state.

Remark 2. The set of SCE action profiles of the network game with only local externalities is 
included in the set of SCE action profiles of the game with local and global externalities, that is, 
ASCE

Z,0 ⊆ ASCE
Z,γ . Specifically, if 

(
a∗
i , x̂i

)
i∈I

is an SCE of the game with only local externalities, 
then 

(
a∗
i , x̂i , ŷi

)
i∈I

with ŷi = γ
∑

k �=i a
∗
k for each i ∈ I is an SCE of the game with local and 

global externalities.

Indeed, by Proposition 1, in profile 
(
a∗
i , x̂i

)
i∈I

of the game with only local externalities, each 
inactive player has a (trivially) confirmed conjecture that makes her choose 0, and each active 
player must have a correct conjecture about the local externality. In profile 

(
a∗
i , x̂i , ŷi

)
i∈I

of the 
game with global externalities, conjectures 

(
ŷi

)
i∈I

about the these externalities are correct by 
assumption. Thus, by Proposition 5, 

(
a∗
i , x̂i , ŷi

)
i∈I

is an SCE.
Proposition 5 characterizes the set of SCEs considering only shallow conjectures. Therefore, 

it allows for the possibility that agents know very little about the situation of strategic interaction 
they are facing. As we mentioned in the Introduction, an agent i may even be unaware that 
she is interacting with other agents and that the external states xi and yi aggregate the actions 
of others. Suppose instead that each i knows that she is interacting with others and knows the 
parametric form of her payoff function, but has incomplete information about the parameter 
values. When is an SCE action profile supportable by deep conjectures? Assume that each player 
i only knows that co-players’ actions and global externalities are non-negative, while – as far 
as they know – some links zij might be negative. We can show that, for each SCE with shallow 
conjectures 

(
a∗
i , x̂i , ŷi

)
i∈I

, there is at least one corresponding profile of deep (deterministic) 

conjectures 
(

âi
−i , Ẑi , γ̂ i

)
i∈I

inducing the shallow conjectures 
(
x̂i , ŷi

)
i∈I

. For example, in SCEs 

with at least 2 active players, we can consider the case where each i believes that all co-players j
are equally active at level âi

j = â > 0. With this, we can derive corresponding conjectures about 

parameters 
(
ẑi
ij

)
j �=i

(specifying the rest of Ẑi arbitrarily) and γ̂ i that induce x̂i and ŷi . It follows 

that 
(
a∗
i , âi

−i , Ẑi , γ̂ i
)

i∈I
is an SCE with deep conjectures. In particular, if i is inactive it must be 

the case that x̂i < 0 and i must believe that some links zij are negative.
To ease the following analysis, in the remainder of this whole section, we assume that (i) each 

agent i has the same stand-alone parameter α > 0 and upper bound ā, and (ii) γ > 0 (that is, 
global externalities are real, not just a possibility in the mind of players). We assume also that 
(iii) matrix Z is non–negative, and (iv) either condition 1. or 3. of Proposition 2 is satisfied, so 
that there exists a unique NE. Finally, (v) we assume that the admissible range of possible best 
replies of each player contains the upper bound ā.

Understanding how conjectures are shaped in an SCE also allows us to shed some light on the 
efficiency properties of the SCE’s. First of all note that the problem of finding a maximizer of the 
sum of the utilities is a concave quadratic problem and there exists a bliss point. The presence of 
positive externalities makes the unique Nash equilibrium be Pareto-dominated by other actions 
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profiles. Moreover, the presence of a bliss point makes an arbitrary increase of agents’ actions 
not always welfare improving. Let us analyze these issues in detail.

Given the presence of global externalities, it is straightforward to see that the Nash equilib-
rium is inefficient. Now consider an SCE action profile aSCE (possibly aNE). This action profile 
is justified by some profile of confirmed conjectures (x̂i, ŷi )i∈I . Then, we can find another SCE, 
a′SCE ≥ aSCE , such that a′SCE yields a higher aggregate payoff than aSCE . A possible way to 
find such an equilibrium is to decrease, for each i ∈ I , the global externality (shallow) conjecture 
ŷi . To keep the confirmation condition, it is necessary to increase the local (shallow) conjectures (
x̂i

)
i∈I

, and thus to increase the best-reply actions. This, in turn, makes the local and global 
externality states (xi, yi)i∈I increase. However, this makes it necessary that the local conjec-
tures are further increased, which induces another increase in actions, and so on. The following 
proposition imposes a condition for the existence of an interior SCE.

Proposition 6. Fix a profile of local conjectures x̂. If for every pair of agents (i, j) the following 
inequality is satisfied∑

k∈I\{i,j}
zik

(
α + x̂k

)− zij

∑
h∈I\{i,j}

(
α + x̂h

)
α ≥ 0, (9)

then, for every profile of global conjectures ŷ with ŷi < ā
(
α
∑

k∈I\{i}
zij + γ n

)
for every i, there 

exists a unique SCE with local conjectures x̂ and action profile a∗, with a∗
i < ā.

The condition of the proposition imposes concavity on some fixed point equations de-
rived from the best replies functions, and then ensures existence and uniqueness of this fixed 
point. Note that such condition is always satisfied if α ≤ 1 and Z = wZ0, with w > 0, and 
Z0 ∈{0,1}I×I is the unweighted network. That is: every strictly positive zij has the same value 
for each pair of agents i and j in I . Otherwise, the larger the number of agents, the more likely 
it is that the condition is violated for some pair (i, j) for which zij is high. If the network is 
composed of just two agents, this condition is always satisfied.

To better understand the structure of the equilibrium set, we introduce additional assumptions 
about what agents know or think they know about the strategic environment. This is a way to 
restrict their conjectures. We provide some insights along two different dimensions: i) What 
happens if agents know something about the magnitude of the externalities? ii) What happens if 
agents have definite beliefs about the relative size of local with respect to global externality?

5.1. Knowledge of externalities parameters

We assume that Z = wZ0, where w > 0. This means that there is a homogeneous positive 
externality w between all connected players, so that equation (2) becomes:

ui(ai,a−i ) = αiai − 1

2
a2
i + aiw

∑
j∈I\{i}

z0,ij aj + γ
∑

k∈I\{i}
ak . (10)

We do not impose any further restriction over the network structure Z0, but we assume that 
players understand that they interact in a network and know w and γ . Given these assumptions, 
we need to slightly modify our definitions of aggregators and conjectures. In detail, aggregators 
19



P. Battigalli, F. Panebianco and P. Pin Journal of Economic Theory 212 (2023) 105700
about local and global externalities do not internalize w and γ , respectively, and the conjectures 
concern the aggregate actions of the neighbors (local) and of all other players (global).

Consider the case in which Z = wZc
0, where Zc

0 is the matrix of the complete basic network 
(i.e., z0,ij = 1 for all non-diagonal entries). Note that if all players are certain that the network is 
a complete one, then, for each i ∈ I , x̂i = ŷi , and this ensures uniqueness of the SCE with such 
complete–network conjectures. Then the SCE can just be indexed by the conjecture about the 
local externality.21 Given (w, γ ), let (ac

i (w, γ ), x̂c
i (w, γ ))i∈I denote the unique SCE in which, 

for each i ∈ I , x̂c
i (w, γ ) is the (confirmed) shallow conjecture induced by μ̄c

i ∈ {Zc
0

}× A−i , that 
is, a (confirmed) deep conjecture in which i thinks she belongs to a complete network.

Proposition 7. Consider a linear quadratic network game with global externalities, with 0 <
w < 1

n−1 , and where all agents know w and γ . Let aNE
Z0

and aNE
Zc

0
be the unique Nash equilibria 

of the game played on (wZ0, γ ) and (wZc
0, γ ), respectively. Assume also that the profile of 

upper bounds is above aNE
Zc

0
. Then, (1) for each i ∈ I , ac

i (w, γ ) is increasing in the ratio γ
w

; 

(2) lim γ
w

→0 ac(w, γ ) = aNE
Z0

; and (3) lim γ
w

→∞ ac(w, γ ) = aNE
Zc

0
.

So, independently of the basic network Z0, if all players believe to be more linked than they 
actually are and γ

w
is large, then the action profile approaches what they would choose in the NE 

of the game played on the complete network, where every player is linked to every other player.
As it will be clear from Section 5.2, this result implies that the learning paths are self–

reinforcing. Players maintain wrong conjectures about the network structure and they infer 
�i (a−i ) from the payoff that they receive as feedback, using (10). This implies that, in a con-
jectural best-reply path, as they increase their own action they infer a higher �i (a−i ) and a lower 
gi (a−i ), to which they will respond with an even higher action. Nevertheless, this process does 
not diverge to hit the upper bounds of the action profiles, and it reaches the Nash equilibrium on 
the complete network.

Proposition 7 is a limiting result. However, for some networks where NE’s and SCE’s can be 
easily computed analytically, we can show that the SCE actions converge rapidly to the actions 
of the NE for the complete network as γ /w becomes large. Fig. 3 shows how this happens when 
every player has the same number of links (regular network) and when there is a central player 
and every other player is linked only to her (star network).

In the Introduction we discussed the possible application of our model to online social net-
works, where the provider may have the possibility to affect the beliefs of the users. The previous 
result applies to the case where users know the value of the parameters w and γ , and their overall 
number n. If we further assume that the profits of the provider are positively correlated with the 
overall activity on the platform, the provider may have an incentive to make people feel more 
connected than they actually are. So, if γ

w
is large (which means, in our interpretation, that most 

of the payoff for the agents is obtained from using the platform per se, and not from actual 
interaction), and if these parameters are known to the users, companies make more profit by let-
ting players think that they have a lot of followers. With this application in mind, in the end of 
this section we will extend the discussion about the implications of biased beliefs on aggregate 
welfare.

Proposition 7 is based on the assumption that players know the values of γ and w. However, 
if they have wrong beliefs about γ , overestimating it, their actions would even exceed those of 

21 The discussion below about conjectured ratios will make this point clear.
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Fig. 3. The panels show the SCE common activity level as a function of parameter γ when each agent thinks she is 
connected to every other agent. Both cases have parameters α = 0.1, w = 0.04 and n = 20. The left panel is for the 
regular network with common degree 8: in blue we have the action that would be played in the NE of the complete 
network; in yellow the NE of the regular network; in green the SCE action. The right panel is for the star network: in blue 
we have the action that would be played in the NE of the complete network; in yellow and purple the NE action profiles 
for the center and the spokes, respectively, in the star network; in green and red the SCE action profile for the center and 
the spokes, respectively.

Table 2
Simulations for the case of α = 0.1, w = 0.2, and γ = 1. 
Columns refer to 1) NE of the line network; 2) Nash equi-
librium of complete network; 3) SCE in the line network in 
which each i ∈ I believes that �i

(
a∗−i

)
= γ

w gi

(
a∗−i

)
.

Line NE Complete Network NE SCE
a1 0.130 0.167 1.569
a2 0.152 0.167 1.679
a3 0.130 0.167 1.569

the NE of the complete network. This is shown in the next example, where agents do not know 
the true value of γ and, overestimating the ratio between local and global externalities, they play 
actions that are much above the action that they would play in the NE of the complete network.

Example 3. Consider three agents in a star network (i.e., a line). Let agent 2 be the center. Then, 
for every SCE, �2

(
a∗−2

)
is proportional to g2

(
a∗−2

)
, always with the same ratio γ

w
, while this is 

not true for agents 1 and 3. We assume that each agent thinks that the network is complete, so 
every i ∈ I thinks that �i

(
a∗−i

)
is proportional to gi

(
a∗−i

)
. In this case agents 1 and 3 believe to 

be more linked than they actually are. Table 2 provides the Nash equilibria for the actual network 
and for the complete network, and the selfconfirming equilibrium actions for some specification 
of the parameters.

This numerical exercise shows that, when agents overestimate the impact of local externali-
ties, we get a multiplier effect that makes SCE actions increase at a level even larger than what 
would be predicted in a complete network by Nash equilibrium. This follows from how agents 
misinterpret their feedback. In particular, thinking to be in a complete network makes agents 1
and 3 overestimate local externalities. Take for instance agent 1. Given any a−1, she chooses a 
subjective best reply higher than the objective best reply since she overestimates the local ex-
ternality. This high action has the effect of increasing the global externality term for agent 3. 
Agent 3, by overestimating the local externality, partly attributes this higher global externality 
to the local externality term, and chooses an action larger than predicted by Nash equilibrium. 
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The choice of agent 3 increases in turn the global externality perceived by agent 1, and so on. At 
the same time agent 2, as neighbors choose higher actions, increases her own action level. This 
effect goes on and gives rise to a multiplier effect. The limit of such a conjectural best reply path 
is a selfconfirming equilibrium in which actions are almost ten times larger than the complete 
network NE actions

We call ci := x̂i

ŷi
the conjectured ratio of player i with respect to local and global externalities. 

Then, given a profile (ci)i∈I , one can rewrite the SCE conditions as a non-linear system of n
equations in n unknowns solved either for (x̂i)i∈I or (ŷi)i∈I , and characterize the set of SCE’s 
given the imposed restrictions. This is what we will use in the next section when studying the 
learning paths.

5.2. Learning with global externalities

We now study conjectural best reply paths with global externalities. To simplify the analysis, 
we assume a fixed conjectured ratio for each agent. Differently from Section 5.1, we do not 
assume agents to know anything about the parameters characterizing the strategic environment. 
In each period, there are infinitely many profiles of feasible pairs 

(
x̂i,t , ŷi,t

)
i∈I

consistent with 
agents’ feedback. For each i ∈ I , and each period t ∈ N , let vi,t = ui(ai,t , a−i,t ) be the realized 
payoff that agent i observes. Then, given vi,t−1, and considering that agents perfectly recall their 
past actions, ŷi,t is uniquely determined as a function of x̂i,t . In particular, if at each time period t
agent i’s conjectures x̂i,t and ŷi,t are consistent with the feedback received at the previous period, 
we obtain

ŷi,t+1 = vi,t − αiai,t + 1

2

(
ai,t

)2 − ai,t x̂i,t+1.

Then, we can focus on the path of x̂i,t , given by

x̂i,t+1 = vi,t − ŷi,t+1

ai,t

− αi + 1

2
ai,t . (11)

In this case, active agents do not have perfect feedback, because players’ conjectures are 
bi–dimensional, but feedback (the realized payoff) is one–dimensional. This brings also indeter-
minacy to the updating rule that players use. To avoid bifurcations at each time period t , we need 
to use simplifying assumptions on conjectures. We define, for each i ∈ I and each t ∈N0,22

ci,t := x̂i,t

ŷi,t

, (12)

and in the following we assume that this conjectured ratio is constant along paths of learning 
dynamics for each player i.

Assumption 7. For each i ∈ I and for each t ∈N , ci,t = ci,t+1 = ci .

From equation (11) we get the following learning path, for each agent at each time period:

x̂i,t+1 = xi,t + yi,t

ai,t

− ŷi,t+1

ai,t

, (13)

22 In doing so, we implicitly assume that players think there are active co-players. This is a reasonable assumption, 
because under positive externalities any best response should be at least α.
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where xi,t and yi,t are the true realized values of the payoff states. Plugging in ci = x̂i,t

ŷi,t
we get, 

for each t and i,

x̂i,t+1 = ci

1 + ciai,t

(
ai,t xi,t + yi,t

)
. (14)

Note that the true ratio of player i at time t is

c′
i,t := xi,t

yi,t

,

with c′
i,t ∈

[
0,

∑
j �=i zij

γ

]
. For this reason, we also assume that the conjectured ratio of each player 

i is such that ci ∈
(

0,

∑
j �=i zij

γ

]
, and this specifies the set of all admissible conjectured ratios.

With this, the learning dynamic from (13) can be written as

x̂i,t+1 = ciyi,t

a∗
i,t c

′
i,t + 1

a∗
i,t ci + 1

, (15)

which implies that the conjecture x̂i,t+1 is correct only if ci = c′
i,t .

Assuming non-binding upper bounds, we look at best responses ai,t+1 = αi + x̂i,t+1, and 
study the existence and characterization of the steady state of this learning process. Recall that 
yi,t = γ

∑
j �=i aj,t . To find a fixed point we look at the system of n equations, one for each i,

Hi(a∗, c) := αi + ci

⎛
⎝γ

∑
j �=i

a∗
j

⎞
⎠ a∗

i c′
i + 1

a∗
i ci + 1

− a∗
i = 0. (16)

For comparison, we also study the system of equations that yield the Nash equilibrium of this 
network game, that is, for each i:

Fi(a∗) := αi +
∑
j �=i

zij a
∗
j − a∗

i = 0. (17)

Let A ⊂ [α, ∞)I denote the set of the solutions of system (16). We have the following result.

Proposition 8. If the system defined by (17) admits a solution a∗ with non–negative entries, then 
for each profile c of conjectured ratios also the system defined by (16) admits a solution. More-
over, there is a homeomorphism � between the set of all profiles c and A. The homeomorphism 
� is strictly monotone with respect to the lattice order on the domain of all profiles c and the 
codomain A.

The assumption of non–negative solutions implies a unique NE of the game, and we refer to 
Proposition 2 for sufficient conditions for uniqueness. This result provides information only on 
the steady states of our learning paths. It is important because it establishes a one–to–one function 
between profiles of conjectured ratios and SCEs: there is one and only one SCE strategy profile 
for each profile c but there may SCEs that do not result from the hypothesized learning paths. 
The homeomorphism also provides continuity in the initial conjectures, as a marginal change in 
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Fig. 4. Simulations showing the homeomorphism of Proposition 9 for the case of 3 nodes, as discussed in Example 4. 
The left panel shows vectors of conjectured ratios. The central panel shows the corresponding SCE conjecture profile 
x̂ when the network is a line (the node that has conjectured ratio 1 in the red dots is the central node). The right panel 
shows the corresponding SCE conjecture profile x̂ when the network is a complete triangle.

the conjectured ratios will result in a marginal change in the resulting SCE, even if this function 
may be highly non–linear, as shown in the example below.

Example 4. Under the conditions of Proposition 9, we use equation (14) to express learning 
paths converging to the SCE implicitly defined by (16). This allows us to provide a graphical 
illustration of Proposition 8, for the case of three nodes. We do this for the case of a line network 
(where each of the two links is bidirectional), and for the case of a complete network. We consider 
equation (10), with γ = 1 and w = 0.2. Fig. 4 shows the results. We can start from any pattern of 
conjectured ratios for the three nodes. The left panel shows the profile of conjectured ratios when 
at least one node has maximal conjectured ratio (the three faces of the cube have different colors, 
according to which node has the maximal centrality). The central panel shows the corresponding 
SCE conjecture profile x̂ when the network is a line (the node that has conjectured ratio 1 in the 
red dots is the central node). The right panel shows the corresponding SCE conjecture profile 
x̂ when the network is a complete triangle. The figure suggests that homeomorphism � (from 
Proposition 8) is highly non–linear, because of the self-reinforcement process in beliefs that we 
discussed in Example 3. The figure also shows that, as stated by Proposition 8, homeomorphism 
� respects the lattice order on the two sets.

Monotonicity implies that increasing the conjectured ratio of one player will have a weakly 
monotonic effect on the action of that player and those of other players in the corresponding SCE. 
A final caveat to keep in mind is that the homeomorphism is implied by the particular learning 
path that we are assuming, which is based on constant conjectured ratios. Considering the paths 
in this special case, in the following proposition we show that if local and global externalities are 
not too large, the learning paths always converge.
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Proposition 9. If, for each player i ∈ I , 0 < ciγ (n − 1) <
∑

j �=i zij < 2, then the paths defined 
by (15) always converge to the unique solution of (16), which is locally stable.23

It should be noted that if γ = 0, i.e., global externalities are objectively absent, the assump-
tions of Proposition 9 are more general than assuming | ∑j �=i zij | < 1, which in turn implies that 
Assumption 4 holds and hence that the learning paths converge. That is because we are focusing 
on a precise learning path in which players act as if global externalities were present. Moreover, 
in a game with γ > 0, if for some players the conjectured ratios are too high, the learning paths 
defined by (16) may not converge to an interior solution, but rather hit the upper bounds of the 
feasible action profiles.

Proposition 8 tells us that a non–negative shift in each conjectured ratio will always result in a 
non–negative shift of each agent’s action in the resulting SCE. However, Proposition 9 gives an 
implicit warning. Too high conjectured ratios may imply that the sufficient conditions for stability 
are lost, and convergence to the virtual SCE that we would have without upper boundaries may 
not occur. Note also that, summing up equation (2) for all the players, the aggregate welfare is 
maximized if a∗ solves the following linear system of equalities

∀i ∈ I , a∗
i = αi + (n − 1)γ +

∑
j∈I\{i}

(zij + zij )a
∗
j .

To better understand this aspect, consider the online social networks application we often 
referred to. The results of this last subsection apply to the case where agents do not know the 
parameters of the model and their own total number, but have only a conjecture about the ra-
tio of the benefits from just using the platform, and from the actual strategic interaction on the 
platform. Social platforms like Facebook and Twitter often provide information to users about 
the activity of their peers. The social platform Reddit does not show to users their followers, 
but only a measure of popularity called karma. A rationale for this marketing strategy may 
be that these companies want to change the beliefs of players, making them feel more impor-
tant (i.e., more followed) in the social network. Even a benevolent social planner may want to 
set the conjectured ratios to the level for which the social optimum is achieved. However, ac-
cording to our model, if conjectured ratios are too high, the learning paths may diverge. For 
example, in the context of the model and from the assumptions of Proposition 9 a conjectured 

ratio is too high if ci ≥
∑

j �=i zij

γ (n−1)
, because in this case learning can lead to SCE where the activity 

of some player i hits her upper bound ai and the strategy profile is inefficiently high for the 
players.

This is shown in the following example.

Example 5. We replicate the same exercise that we did in Example 4, but only for the case of 
the complete triangle. However we do it for a wider range of conjectured ratios. Fig. 5 shows 
that in this case there may be combinations of conjectured ratios that prevent convergence of the 
learning paths to interior equilibria.

23 Definition 3 of local stability extends naturally to the case of learning with global externalities with paths of the form 
(at , ̂xt , ̂yt )t∈N .
0
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Fig. 5. Simulations showing the homeomorphism of Proposition 9 for the case of 3 nodes, as discussed in Example 5. 
The left panel shows vectors of conjectured ratios. With respect to Figure 4, we allow for higher values of conjectured 
ratios. Black dots represent cases for which the learning paths diverge. The right panel shows the corresponding SCE 
conjecture profile x̂ when the network is a complete triangle, and when the learning paths are converging.

6. Conclusion

In this paper we offer a novel approach to network games. A key application of network games 
is in modelling large societies with millions of agents–nodes and non regular distributions of 
connections. It is natural to assume that players may ignore the complete structure of the network; 
this prevents them from performing sophisticated strategic reasoning possibly leading to a Nash 
equilibrium. Instead, they just best respond to some subjective beliefs affected by the information 
feedback they receive. We analyze simple conjectural best-reply paths and show that in some 
cases they converge to stable Nash equilibria. However, we also characterize those situations in 
which stable action profiles are not Nash equilibria, but rather selfconfirming equilibrium action 
profiles in which some (if not all) players have wrong beliefs and yet the feedback they receive 
is consistent with such beliefs.

One natural application of this approach is to directed online social platforms like Twitter 
and Instagram, where links need not to be reciprocated. Using a linear–quadratic structure for 
the payoff function we have also laid the ground for a tractable welfare analysis of the model. 
However, policy implications are not straightforward if we want to consider the long run benefits 
of connections and not only the instantaneous payoffs of the users of those platforms.
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Appendix A. Selfconfirming equilibria in parameterized nice games with aggregators

In this section we develop a more general analysis of selfconfirming equilibria in a class of 
games that contains the linear-quadratic network games with just observable payoffs studied in 
the main text. To ease reading, we make this section self-contained, repeating some definitions 
from the main text. We write this section focusing on local externalities, because the analysis that 
follows mainly concerns best-replies, that are not affected by the presence of global externalities. 
Thus, all the considerations about best-replies in this section also apply to the case of games with 
both local and global externalities.

A parameterized nice game with aggregators and feedback is a structure

G = 〈
I,Z, (Ai, �i, vi, fi)i∈I

〉
where

• I is the finite players set, with cardinality n = |I | and generic element i.
• Z ⊆ Rm is a compact parameter space.
• Ai = [0, āi] ⊆ R+, a compact interval, is the action space of player i with generic element 

ai ∈ Ai .
• Xi = [

xi, x̄i

]⊆ R, a compact interval, is the space of payoff states for i.
• �i : A−i ×Z → Xi (where A−i = ×j∈I\{i}Aj ) is a continuous parameterized aggregator of 

the actions of i’s co-players such that its range �i (A−i ×Z) is connected.24

• vi : Ai × Xi → R is the utility function of player i, which is strictly quasi-concave in ai

and continuous,25 and from which we derive the parameterized payoff function

ui : Ai × A−i ×Z → R,
(ai,a−i ,Z) �→ vi (ai, �i (a−i ,Z)).

Thus, xi = �i (a−i ,Z) is the payoff relevant state that i has to guess in order to choose a 
subjectively optimal action. With this, for each Z ∈ Z , 

〈
I,
(
Ai,ui,Z

)
i∈I

〉
is a nice game (cf. 

Moulin 1984), and 
〈
I,Z, (Ai, ui)i∈I

〉
is a parameterized nice game. We let

ri : Xi → Ai

xi �→ arg max
ai∈Ai

vi (ai, xi)

denote the best-reply function of player i. The Maximum theorem implies that ri is contin-
uous.

• Let M ⊆ R be a set of “messages,” fi : Ai ×Xi → M is a continuous feedback function that 
describes what i observes (a “message,” e.g., a monetary outcome) after taking any action ai

given any payoff state xi .

On top of the formal assumptions stated above, we maintain the following minimal informal 
assumption about players’ knowledge of the game:

24 Since the range of each section �i,Z must be a compact interval, we require that the union of the compact intervals 
�i,Z

(
A−i

)
(Z ∈ Z) is also an interval, which must be compact because Z is compact and �i continuous.

25 That is, vi is jointly continuous in (ai , xi ) and, for each xi ∈ [xi , x̄i

]
, the section vi,xi

: [0, āi

]→ R has a unique 
maximizer a∗

i
(that typically depends on xi ), it is strictly increasing on 

[
0, a∗

i

]
, and it is strictly decreasing on 

[
a∗
i
, āi

]
. 

Of course, the monotonicity requirement holds vacuously when the relevant sub–interval is a singleton.
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• Each player i knows vi and fi .

Unless we explicitly say otherwise, we instead do not assume that i necessarily knows Z, or 
function �i , or even that i understands that her payoff is affected by the actions of other players. 
However, since i knows the feedback function fi : Ai × Xi → M and the action she takes, what 
i infers about the payoff state xi after she has taken action ai and observed message m is that

xi ∈ f −1
i,ai

(m) := {
x′
i : fi

(
ai, x

′
i

)= m
}
.

A.1. Conjectures

If player i only knows the feedback function fi , but does not know how the payoff state xi is 
determined, then she just forms a conjecture about xi . If instead i knows that xi is determined 
by the actions of others given parameter Z through the aggregator �i , then i forms a conjecture 
about (a−i ,Z).

Definition 4. A shallow conjecture for i ∈ I is a probability measure μi ∈ � (Xi). A deep
conjecture for i is a probability measure μ̄i ∈ � (A−i ×Z). An action a∗

i is justifiable if there 
exists a shallow conjecture μi such that

a∗
i ∈ argmaxai∈Ai

∫
Xi

vi (ai, xi)μi (dxi) ;

in this case we say that μi justifies a∗
i . Similarly, we say that deep conjecture μ̄i ∈ � (A−i ×Z)

justifies a∗
i if the shallow conjecture induced by μ̄i (μi = μ̄i ◦ �−1

i ∈ � (Xi)) justifies a∗
i .

The following lemma summarizes well known results about nice games (see, e.g., Battigalli 
et al., 2023) and some straightforward consequences for the more structured class of nice games 
with aggregators considered here. We include the proof to make the exposition self-contained.

Lemma 1. The best-reply function ri : Xi → Ai is continuous, hence its range ri (Xi) is a com-
pact interval, just like Xi . Furthermore, for each a∗

i ∈ Ai , the following are equivalent:

• a∗
i is justifiable,

• a∗
i ∈ ri (Xi) (that is, a∗

i is justified by a deterministic shallow conjecture),
• there is no ai such that vi

(
a∗
i , xi

)
< vi (ai, xi) for all xi ∈ Xi (that is, a∗

i is not dominated 
by any other pure action).

Proof. With a slight abuse of notation, we let ri (μi) denote the set of best replies to (shallow) 
conjecture μi :

ri (μi) := arg max
ai∈Ai

∫
Xi

vi (ai, xi)μi (dxi) .

By the Maximum theorem μi �→ ri (μi) has a closed graph, which – under the stated assumptions 
– is equivalent to upper hemi-continuity. By strict quasi-concavity, the restriction of the best-reply 
correspondence to the domain Xi of deterministic conjectures is single-valued; hence, it must be 
a continuous function.
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Fix any closed (hence, compact) sub-interval C ⊆ Xi . Let NDi,p (C) denote the set of actions 
that are not strictly dominated by other pure actions. By inspection of the definitions, it holds 
that

ri (C) ⊆ ri (�(C)) ⊆ NDi,p (C) .

We prove that NDi,p (C) ⊆ ri (C), that is, Ai\ri (C) ⊆ Ai\NDi,p (C), which therefore implies 
the thesis. Since ri is a continuous function on Xi ⊇ C and C is compact and connected, ri (C)

is compact and connected as well, hence, it is a compact interval. Therefore, it is enough to show 
that all the actions below min ri (C) or above max ri (C) are dominated. Fix any ai < min ri (C), 
by strict quasi-concavity,

∀xi ∈ C, vi (ai, xi) < vi (min ri (C) , xi) ≤ vi (ri (xi) , xi) .

Therefore, every ai < min ri (C) is strictly dominated by min ri (C). A similar argument shows 
that every ai > max ri (C) is strictly dominated by max ri (C). Since there are no other actions 
outside ri (C), this concludes the proof. �
Corollary 1. Suppose that the aggregator �i is onto. Then, an action of player i is justifiable if 
and only if it is justified by a deterministic (Dirac) deep conjecture.

Proof. The “if” part is trivial. For the “only if” part, fix a justifiable action a∗
i arbitrarily. By 

Lemma 1, there is some xi ∈ Xi such that a∗
i = ri (xi). Since the aggregator �i is onto, there is 

some (a−i ,Z) ∈ �−1
i (xi) such that

a∗
i ∈ arg max

ai∈Ai

ui (ai,a−i ,Z) .

Hence a∗
i is justified by the deep conjecture δ(a−i ,Z), that is, the Dirac measure supported by 

(a−i ,Z). �
With this, from now on we mostly restrict our attention to (shallow, or deep) deterministic 

conjectures.

A.2. Feedback properties

Definition 5. Feedback fi satisfies observable payoffs (OP) relative to vi if there is a function 
v̄i : Ai × M →R such that

vi (ai, xi) = v̄i (ai, fi (ai, xi))

for all (ai, xi) ∈ Ai × Xi ; if the section v̄i,ai
is injective for each ai ∈ Ai , then we say that fi

satisfies just observable payoffs (JOP) relative to vi . Game G satisfies (just) observable payoffs 
if, for each player i ∈ I , feedback fi satisfies (J)OP relative to vi .

If fi satisfies JOP, we may assume without loss of generality that fi = vi , because, for each 
action ai , the partitions of Xi induced by the preimages of vi,ai

and fi,ai
coincide:

Remark 3. Feedback fi satisfies JOP relative to vi if and only if

∀ai ∈ Ai ,
{
v−1
i,ai

(u)
}

=
{
f −1

i,ai
(m)

}
. (18)
u∈vi,ai
(Xi) m∈fi,ai

(Xi)
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Proof. (Only if) Fix ai ∈ Ai . Since fi satisfies JOP relative to vi , vi,ai (Xi) = (
v̄i,ai

◦ fi,ai

)
(Xi)

(by OP), for each u ∈ vi,ai (Xi) there is a unique message mai,u = v̄−1
i,ai

(u) (by injectivity of 
v̄i,ai

), and

v−1
i,ai

(u) = {xi ∈ Xi : vi (ai, xi) = u}
= {xi ∈ Xi : v̄i (ai, fi (ai, xi)) = u}
= {

xi ∈ Xi : fi (ai, xi) = mai,u

}= f −1
i,ai

(
mai,u

)
,

which implies eq. (18).
(If) Suppose that eq. (18) holds. For every ai ∈ Ai and m ∈ fi,ai (Xi) select some ξi (ai,m) ∈

f −1
i,ai

(m). Let

D :=
⋃

ai∈Ai

{ai} × fi,ai (Xi) .

With this,

ξi : D → Xi

is a well defined function. Domain D is the set of action-message pairs for which the definition 
of v̄i matters. Define v̄i as follows:

v̄i (ai,m) =
{

vi (ai, ξi (ai,m)) if (ai,m) ∈ D,
0 otherwise.

By construction, eq. (18) implies that

∀ (ai, xi) ∈ Ai × Xi , v̄i (ai, fi (ai, xi)) = vi (ai, xi) .

Hence, OP holds. Furthermore, for all ai ∈ Ai , m′, m′′ ∈ fai (Xi),

m′ �= m′′ ⇒ ξi

(
ai,m

′) �= ξi

(
ai,m

′′)
⇒ vi

(
ai, ξi

(
ai,m

′)) �= vi

(
ai, ξi

(
ai,m

′′))
⇒ v̄i

(
ai,m

′) �= v̄i

(
ai,m

′′)
where the first and the second implications follow from eq. (18) (ξi

(
ai,m

′) and ξi

(
ai,m

′′) be-
long to different cells of the coincident partitions, hence yield different utilities), and the third 
holds by construction. Therefore, v̄i,ai

is injective for every ai , which means that JOP holds. �
Definition 6. Feedback fi satisfies observability if and only if i is active (OiffA) if section fi,ai

is injective for each ai > 0 and constant for ai = 0. Game G satisfies observability by active 
players if OiffA holds for each i.

Remark 4. If a network game is linear-quadratic and satisfies just observable payoffs, then it 
satisfies observability by active players.

Proof. By Remark 3 JOP implies that, for each ai ∈ Ai ,{
v−1
i,ai

(u)
}

u∈vi,ai
(Xi)

=
{
f −1

i,ai
(m)

}
m∈fi,ai

(Xi)
.

The linear-quadratic form of vi implies that, for every xi ∈ Xi ,
30



P. Battigalli, F. Panebianco and P. Pin Journal of Economic Theory 212 (2023) 105700
v−1
i,0

(
vi,0 (xi)

)= Xi ,

∀ai > 0, v−1
i,ai

(
vi,ai (xi)

)= {xi} .

These equalities imply that fi,0 is constant and fi,ai
is injective for ai > 0, that is, NG satisfies 

observability by active players. �
Definition 7. Function fi satisfies own-action independence (OAI) of feedback about the state 
if, for all justifiable actions a∗

i , ao
i and all payoff states x̂i , xi ,

fi

(
a∗
i , x̂i

)= fi

(
a∗
i , xi

)⇒ fi

(
ao
i , x̂i

)= fi

(
ao
i , xi

)
.

Game G satisfies own-action independence of feedback about the state if, for each player i ∈ I , 
feedback fi satisfies OAI.

In other words, OAI says that if player i cannot distinguish between two payoff states x̂i and 
xi when she chooses some given justifiable action a∗

i , then she cannot distinguish between these 
two states when he chooses any other justifiable action ao

i . This is equivalent to requiring that the 

partitions of Xi of the form 
{
f −1

i,ai
(m)

}
m∈fi,ai

(Xi)
coincide across justifiable actions, i.e. across 

actions ai ∈ ri (Xi) (see Lemma 1).
The following lemma – which holds for any game, not just nice games – states that, under pay-

off observability and own-action independence, an action is justified by a confirmed conjecture 
if and only if it is a best reply to the actual payoff state:

Lemma 2. If fi satisfies observable payoffs relative to vi and own-action independence of feed-
back about the state, then for all 

(
a∗
i , xi

) ∈ Ai × Xi the following are equivalent:

1. there is some x̂i ∈ Xi such that a∗
i ∈ arg maxai∈Ai

vi

(
ai, x̂i

)
and fi

(
a∗
i , x̂i

)= fi

(
a∗
i , xi

)
,

2. a∗
i ∈ arg maxai∈Ai

vi (ai, xi).

Proof. (Cf. Battigalli et al., 2015) It is obvious that 2 implies 1 independently of the properties 
of fi . To prove that 1 implies 2 under the stated assumptions, suppose that fi satisfies OP-OAI 
and let x̂i be such that 1 holds. Let ao

i be a best reply to the actual state xi . We must show that 
also a∗

i is a best reply to xi . Note that both a∗
i and ao

i are justifiable; hence, by OAI, fi

(
a∗
i , x̂i

)=
fi

(
a∗
i , xi

)
implies fi

(
ao
i , x̂i

) = fi

(
ao
i , xi

)
. Using OP, condition 1, and OAI as shown in the 

following chain of equalities and inequalities, we obtain

vi

(
a∗
i , xi

) (OP)= v̄i

(
a∗
i , fi

(
a∗
i , xi

)) (1)= v̄i

(
a∗
i , fi

(
a∗
i , x̂i

)) (OP)= vi

(
a∗
i , x̂i

) (1)≥
vi

(
ao
i , x̂i

) (OP)= v̄i

(
ao
i , fi

(
ao
i , x̂i

)) (1,OAI)= v̄i

(
ao
i , fi

(
ao
i , xi

)) (OP)= vi

(
ao
i , xi

)
.

Since ao is a best reply to xi and vi

(
a∗
i , xi

)≥ vi

(
ao
i , xi

)
, it must be the case that also a∗

i is a best 
reply to xi . �

In the main text we defined SCE for the special case in which the feedback and utility function 
of each player coincide. More generally, a profile 

(
a∗
i , x̂i

)
i∈I

of actions and shallow conjectures 
is a selfconfirming equilibrium at Z ∈Z of the parameterized nice game with aggregators and 
feedback G if a∗

i = ri
(
x̂i

)
(best reply) and x̂i = fi

(
a∗
i , �i

(
a∗−i ,Z

))
(confirmed conjecture) for 

every i ∈ I . As in the main text (but neglecting global externalities), ASCE
Z and ANE

Z respectively 
denote the set of SCE and NE action profile of the game with parameters Z.
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Corollary 2. Suppose that the parameterized nice game with aggregators and feedback G satis-
fies observable payoffs and own-action independence of feedback about the state. Then, for each 
Z ∈Z , the sets of selfconfirming action profiles and Nash equilibrium action profiles coincide.

Proof. By Remark 1, we only have to show that ASCE ⊆ ANE . Fix any a∗ = (
a∗
i

)
i∈I

∈ ASCE

and any player i. By definition of SCE and by Lemma 1, there is some x̂i ∈ Xi such that a∗
i ∈

ri
(
x̂i

)
and fi

(
a∗
i , x̂i

)= fi

(
a∗
i , �i

(
a∗−i

))
. By Lemma 2, a∗

i ∈ ri
(
�i

(
a∗−i

))
. This holds for each i, 

hence a∗ ∈ ANE . �
Corollary 2 provides sufficient conditions for the equivalence between SCE and NE action 

profiles. Next, we give sufficient conditions that allow a characterization of ASCE by means of 
Nash equilibria of auxiliary games.

A.3. Equilibrium characterization

If ai ∈ [0, āi] is interpreted as an activity level (e.g., effort) by player i, then it makes sense to 
say that i is active if ai > 0 and inactive otherwise. Let I0 denote the set of players for whom 
being inactive is justifiable. Note that, by Lemma 1,

I0 = {i ∈ I : min ri (Xi) = 0} .

Also, for each Z and non-empty subset of players J ⊆ I , let ANE,J
Z denote the set of Nash 

equilibria of the auxiliary game with players set J obtained by letting ai = 0 for each i ∈ I\J , 
that is,

ANE,J
Z :=

{
a∗
J ∈ ×j∈J Aj : ∀j ∈ J, a∗

j = rj

(
�j

(
a∗
J\{j},0I\J ,Z

))}
,

where 0I\J ∈ RI\J is the profile that assigns 0 to each i ∈ I\J . If J = ∅, let ANE
Z,J = {∅} by 

convention, where ∅ is the pseudo-action profile such that (∅,0I ) = 0I .
Since here we focus on games without global externalities, we ease notation and let ASCE

Z
(instead of ASCE

Z,0 ) denote the set of selfconfirming action profiles given Z.

Lemma 3. Suppose that the parameterized nice game with aggregators and feedback G satisfies
observability by active players. Then, the set of selfconfirming action profiles is

ASCE
Z =

⋃
J :I\J⊆I0

ANE,J
Z × {

0I\J
}

.

Proof. Fix a∗ and let J be the set of players i such that a∗
i > 0. Fix Z arbitrarily. Suppose that 

a∗ ∈ ASCE
Z and fix any i ∈ I . If a∗

i = 0, then 0 is justifiable for i, that is i ∈ I0. If a∗
i > 0, 

observability by active players implies that fi,a∗
i

is injective, that is, action a∗
i reveals the payoff 

state, which implies that the (shallow) conjecture justifying a∗
i is correct: a∗

i = ri
(
�i

(
a∗−i

))
. 

Hence, a∗
J ∈ ANE,J

Z . Thus, a∗ =
(

a∗
J ,a∗

I\J
)

is such that a∗
i = 0 for each i ∈ I\J ⊆ I0, and 

a∗
j = rj

(
�j

(
a∗
J\{j},0I\J

))
> 0 for each j ∈ J . Hence,

a∗ =
(

a∗
J ,a∗

I\J
)

∈ ANE,J × {
0I\J

}
with I\J ⊆ I0.
Z
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Let I\J ⊆ I0 and 
(

a∗
J ,a∗

I\J
)

∈ ANE,J
Z × {

0I\J
}
. Since G satisfies observability by active 

players, for each i ∈ I\J , any conjecture justifying a∗
i = 0 (any x̂i ∈ r−1

i (0)) is trivially con-
firmed. For each j ∈ J , a∗

j > 0 is by assumption the best reply to the correct, hence confirmed, 

shallow conjecture x̂j = �i

(
a∗
J\{j},0I\J

)
. Hence, 

(
a∗
J ,a∗

I\J
)

= (
a∗
J ,0I\J

) ∈ ASCE
Z . �

Appendix B. Interior Nash equilibria

Proposition 1 shows that, given our maintained assumptions about the network game with 
feedback, selfconfirming action profiles can be characterized as Nash equilibria of auxiliary 
games with a restricted set of players, which must include all those for whom being inactive 
is unjustifiable (dominated), but may leave out any player for whom inactivity is justifiable (un-
dominated). We now provide some results about existence of these SCE’s that will be useful in 
proving Proposition 2. We first present sufficient conditions that are present in the literature for 
the existence and uniqueness of interior Nash equilibria, then we provide some original results.

In this appendix we formulate the problem with the approach of linear algebra. We consider 
a square matrix Z ∈ Rn×n such that zii = 0 for all i ∈ {1, . . . , n}. We denote by I the identity 
matrix, λmax(Z) the maximal eigenvalue of Z, ρ(Z) the spectral radius of Z (i.e., the largest 
absolute value of its eigenvalues), 1 the vector of all 1’s, 0 the vector of all 0’s, and � the strict 
partial ordering between vectors (meaning that all the entries in the first vector are coordinatewise 
strictly greater than the entries in the second vector). With this notation, the condition for the 
existence of a unique Nash equilibrium which is also interior is (I − Z)−1 · 1 � 0.

Proposition 10. Consider a square matrix Z ∈Rn×n such that (i) ρ(Z) < 1, (ii) for each i ∈ I , 
zii = 0, and (iii) for each j �= i, zij ≤ 0. Then (I − Z)−1 · 1 � 0.26

Some results can be provided also when the sign of the externalities are mixed. Recall that 
matrix Z is symmetrizable if there exists a diagonal matrix W and a symmetric matrix Z0 such 
that Z = WZ0. Note that, if Z is symmetrizable, then all its eigenvalues are real. If for all i, zii =
0, and Z is symmetrizable, we define the symmetric matrix Z̃ to be such that z̃ij = zij

√
wiwj .

Proposition 11. Consider a square matrix Z ∈Rn×n such that (i) for each i ∈ I , zii = 0, (ii) Z
is symmetrizable, and (iii) |λmax(Z̃)| < 1. Then (I − Z)−1 · 1 � 0.27

Finally, we provide below a novel alternative condition.

Proposition 12. Consider a square matrix Z ∈ Rn×n such that (i) for each i ∈ I , zii = 0 and 
(ii) for each i �= j , |zij | < 1

n
. Then (I − Z)−1 · 1 � 0.

Proof. Let B := (I − Z). First of all, by Gershgorin circle theorem, B has all eigenvalues, possi-
bly complex, with real part strictly between 0 and 2, so det (B) �= 0.

26 This is Theorem 1 in Ballester et al. (2006). The same result is in Appendix A in Stańczak et al. (2006).
27 See Section VI of Bramoullé et al. (2014), generalizing Proposition 2 therein. Note that in their payoff specification 
externalities have a minus sign, while in (3) we have a plus sign: this is why we have a condition on the maximal 
eigenvalue and not on the minimal eigenvalue.
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Consider the n vectors b1, . . . , bn given by the n rows of B, and take the hyperplane in Rn

passing by those n points:

H := {h ∈ Rn : ∃α ∈ Rn,α′ · 1 = 1 ∧ h = B′α}.
Now, consider the following vector

v := B−11.

Note that each vi is exactly the sum of the entries in ith row of B−1. However, v is also a vector 
perpendicular to H . This is because for each h ∈ H , there exists α ∈ Rn such that

h · v = (
B′α

)′ · B−11

= α′1

=
n∑

i=1

αi = 1,

which is a constant.

Now, we want to show that H does not pass through the convex region of vectors with 
all negative elements: H ∩ (−∞, 0]n = ∅. In fact, it is impossible to find w ∈ Rn, such that 
w′ · 1 = 1 and B′w � 0. Suppose, by way of contradiction, that such vector w exists. Let 
k := arg maxi∈{1,...,n}{wi} (note that wk > 0 because 

∑n
i=1 wi = 1), then, calling bk the kth row 

of matrix B, we get

bk · w = wk +
∑
j �=k

wjbjk > wk −
∑
j �=k

|wj ||zjk| > wk

⎛
⎝1 −

∑
j �=k

|zjk|
⎞
⎠> 0,

which is a contradiction.

Finally, we show that if a hyperplane H satisfies H ∩ (−∞, 0]n = ∅, then its perpendicular 
vector from the origin has all strictly positive entries, and this concludes the proof. We do so by 
induction on n.

1. n = 2: This is easy to show graphically. In the Cartesian plane the hyperplane is a line. Since 
this line does not intersect the negative hortant (−∞, 0]2, it must cross both axes in their 
strictly positive part: call these intersection points A and B . So, the segment that from the 
origin crosses this line perpendicularly will cross it in a point C that lies on the line between 
A and B .

2. Induction hypothesis: Suppose it is true for n − 1.
3. Inductive step: a hyperplane H ⊂ Rn that satisfies H ∩ (−∞, 0]n = ∅ does not pass through 

the origin. So, it has an orthogonal vector v such that v ∈ H . By assumption on H , v cannot 
have all elements non–strictly positive. So, there exists i ∈ {1, . . . , n} such that vi > 0. Let 
us take P¬i = {p ∈ Rn : pi = 0}. Call H¬i the intersection of H with P¬i . Take the vector 
v¬i that is the projection of v on P¬i . This vector has all entries equal to v, except for entry 
i which is null. Also, v¬i is perpendicular to H¬i .
By assumption on H , H¬i ∩ (−∞, 0]n−1 = ∅. Moreover, by the induction hypothesis, v¬i

has all strictly positive entries, except from entry i. Finally, since also vi > 0, the result 
follows.
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Notice that, if Z satisfies the conditions of Proposition 12, then it must also hold that 
|λmax(Z)| < 1, because of Gershgorin circle theorem. However, the condition that |λmax(Z)| < 1
is in general not sufficient to guarantee that (I − Z)−1 1 � 0. �
Appendix C. Proofs of propositions

Proposition 1

Proof. By Remark 4, NG satisfies observability by active players. Hence, Lemma 3 in Ap-
pendix A and the best-reply equation yield the result. �
Proposition 2

Proof. Conditions 1, 2, and 3 correspond, respectively, to the conditions in Propositions 12, 10, 
and 11 from Appendix B. �
Proposition 3

Proof. Let us consider separately the two sets I\Ia∗ and Ia∗ of inactive and active agents.
For every i ∈ I\Ia∗ , αi +xi < 0; thus, a∗

i = 0 is a best reply to every conjecture x̂i ∈ (xi,−αi

)
and a sufficiently small perturbation of x̂i does not make i become active.

Now, let us focus on the subset Ia∗ of active agents. For each i ∈ Ia∗ , a perturbation in x̂i

induces a change in the corresponding best reply. Let us focus on perturbations that are small 
enough so that all actions of agents in Ia∗ remain strictly positive. Since ρ(Z) < 1 is a strict 
inequality, Assumption 4 guarantees that the limiting points of the discrete path system defined 
for actions by (7) and (8) are locally stable, because the non–null eigenvalues and eigenvectors 
of the Jacobian of this system are the same eigenvalues and eigenvectors of ZIa∗ .

Thus, there is ε > 0 such that the perturbation of beliefs given by any x0 with 
∥∥x0 − x̂

∥∥< ε

is small enough so that inactive agents keep being inactive and all actions of active agents in Ia∗
remain strictly positive.

In this way, the discrete system defined for actions by (7) and (8) converges back to a∗. �
Proposition 4

Proof. For all the action profiles considered in the proposition the inactive players are choosing 
a best response for an open set of conjectures; thus, being inactive is robust to small perturbations 
of justifying non-falsified conjectures. With this, we can focus on the active agents. Note that if 
we take an active agent i from Ia∗ and we make him inactive, then the new matrix ZIa∗\{i} for 
active players is a sub–matrix of ZIa∗ obtained deleting the row and the column corresponding 
to agent i. This process can be repeated removing more active agents, which means that if we 
remove a subset J ⊂ Ia∗ of the active agents, then the new matrix ZIa∗\J is a sub–matrix of ZIa∗
obtained deleting all the rows and the columns corresponding to every agent j ∈ J .

So, given the results from Propositions 2 and 3, to prove the statement, we need to prove that 
if an adjacency matrix satisfies one of the three conditions, then also every sub–matrix of that 
matrix, which is obtained deleting one row and one column with the same index, satisfies that 
condition. By induction this will be true for every sub–matrix of that matrix, which is obtained 
deleting any subset of rows and columns with the same indices.
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For Point 1 the result is clear, because a property that holds for all the elements of a matrix 
will hold also for all the elements of a sub–matrix of that matrix.

Point 2 is based on two assumptions. Assumption 3 is still valid if we remove one column 
and one row of a matrix because it is a property of all the elements of that matrix. To check for 
Assumption 4, let us consider the following implications of the Perron–Frobenius theorem (see, 
e.g., Savchenko, 2003): (i) for a matrix with all positive entries, there exists a real eigenvalue 
(often called the Perron root) which is equal to its spectral radius; (ii) the Perron root of any 
principal submatrix of such a matrix does not exceed that of the original matrix. In our case, 
Assumption 3 implies that our matrix can be seen as a matrix with all positive elements with a 
minus sign in front, and this proves the statement.

Point 3 holds because of a generalization of the Cauchy interlace theorem applied to sym-
metrizable matrices (see Kouachi, 2016 and McKee and Smyth, 2020). We know that the mag-
nitude of the eigenvalues of the sub–matrix of a symmetrizable matrix, obtained deleting one 
row and one column with the same index, are between the magnitudes of the minimal and the 
maximal eigenvalues of the old matrix. So, the sub–matrix of a limited matrix, which is obtained 
deleting one row and one column with the same index, is limited. The resulting sub–matrix is 
also symmetrizable. That is because the original matrix was obtained as the product of a di-
agonal and a symmetric matrix, and to obtain the sub–matrix we can delete the corresponding 
rows and columns in those diagonal and symmetric matrices: the two matrices will maintain their 
properties and the result will be our sub–matrix. �
Proposition 5

Proof. Fix a an SCE (a∗
i , x̂i , ŷi )i∈I . For each i in I , rationality implies

a∗
i = min{max{0, αi + x̂i}, āi}.

Agent i then thinks that

v∗
i = αia

∗
i − 1

2

(
a∗
i

)2 + a∗
i x̂i + ŷi ,

where v∗
i denotes the realized and observed payoff, so that

ŷi = v∗
i − αia

∗
i + 1

2

(
a∗
i

)2 − a∗
i x̂i . (19)

Substituting the expression of the true actual payoff

v∗
i = αia

∗
i − 1

2

(
a∗
i

)2 + a∗
i xi + yi

into (19), we get the dependence between ŷi and x̂i :

ŷi = yi + a∗
i

(
xi − x̂i

)
.

The first and second items in the proposition are derived, respectively, if a∗
i = 0 or if a∗

i > 0. �
Proposition 6

Proof. By substituting, for each i ∈ I , the subjectively rational choice into the confirmed con-
jecture condition, we get the following:
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(
α + x̂i

)⎛⎝x̂i −
∑

j∈I\{i}
zij

(
α + x̂j

)⎞⎠=
⎛
⎝γ

∑
k∈I\{i}

(
α + x̂k

)− ŷi

⎞
⎠ . (20)

This condition holds for each i ∈ I , so that we have a non-linear system of n equations and 2n

unknowns. Still, from (20) we can provide useful insights to understand how conjectures are 
shaped in an SCE.

First of all, note that (20) is linear in ŷi . Thus, given any profile (x̂i)i∈I , there exists a unique 
profile (ŷi)i∈I consistent with the confirmed conjectures condition. Moreover, we can also com-
pute a bound for each ŷi . Indeed, for each i ∈ I , x̂i > 0. Then, since ai = α + x̂i ≤ ā, for each 
i ∈ I , and given other agents’ conjectures, it must be that yi ≤ α

∑
j∈I\{i}

zij aj + γ
∑

k∈I\{i}
ak ≤

ā
(
α
∑

k∈I\{i}
zij + γ n

)
.

Given a profile 
(
ŷi

)
i∈I

, condition (20), also allows us to characterize the corresponding SCE 
profile 

(
x̂i

)
i∈I

. Solving the second-order polynomial, we get that the only positive solution for 
each x̂i is given by

x̂i = 1

2

( ∑
j∈I\{i}

zij

(
α + x̂j

)− α

+

√√√√√
⎛
⎝ ∑

j∈I\{i}
zij

(
α + x̂j

)+ α

⎞
⎠2

+ 4γ
∑

k∈I\{i}

(
α + x̂j

)− 4ŷi

)
. (21)

Note that, at an SCE, each x̂i is increasing in others’ conjectures about local externality, and 
decreasing in own ŷi . Indeed, given ŷi , an increase in any x̂j increases j ’s action and thus it 
increases the global externality. Given that only positive externalities are considered, if ŷi is 
kept fixed, at SCE i has no other option than having a higher x̂i . On the contrary, if ŷi increases 
keeping fixed 

(
x̂j

)
j∈I\{i}, then actual local and global externalities for i are unchanged. However, 

if i thinks yi to be higher, she necessarily needs to decrease x̂i . Given that equilibrium x̂i is 
monotonically decreasing in ŷi , we can also easily compute an upper bound for x̂i by simply 
letting ŷi = 0 in (21).

By taking the second derivative of the right hand side of (21), with respect to x̂j , we obtain

∂2x̂i

∂x̂2
j

= − 2γ√

(x̂j )

3/2

⎛
⎝zij

⎛
⎝ ∑

k∈I\{i,j}
zik

(
α + x̂k

)− zij

∑
h∈I\{i,j}

(
α + x̂h

)+ α

⎞
⎠+ γ

⎞
⎠ ,

where 
(x̂j ) is an always positive quadratic expression of x̂j . If, for every couple of agents i and 
j in I , the inequality∑

k∈I\{i,j}
zik

(
α + x̂k

)− zij

∑
h∈I\{i,j}

(
α + x̂h

)+ α ≥ 0, (22)

is satisfied, then x̂i is concave in each x̂j . So, there is always a unique finite solution to the 
system where each player has the higher possible belief about x̂j . In this solution, as we assume 
that either condition 1. or 3. of Proposition 2 is satisfied, we derive a unique 

(
a∗
i

)
i∈I

with a∗
i < ā

for each i. If, x̂i is convex in some x̂j , then the process may self-reinforce and it is possible that 
a corner solution is reached. �
37



P. Battigalli, F. Panebianco and P. Pin Journal of Economic Theory 212 (2023) 105700
Proposition 7

Proof. Before proving the result we need to consider a slight modification of aggregator and 
conjectures.

Let

�̃i : A−i → X̃i ,
a−i �→ ∑

j �=i z0,ij aj
(23)

and

g̃i : A−i → Ỹi

a−i �→
∑
j �=i

aj (24)

be the equivalent of �i and gi , when we do not incorporate the parameters on which there is 
mutual knowledge. Similarly, let ˆ̃xi and ˆ̃yi be the shallow conjectures about x̃i and ỹ, respec-
tively. Then, we need to provide a definition of selfconfirming equilibrium consistent with the 
hypotheses about the knowledge of the agents. �
Definition 8. A profile 

(
a∗
i , ˆ̃xi, ˆ̃yi

)
i∈I

∈ ×i∈I

(
Ai × X̃i × Ỹi

)
of actions and (shallow) determin-

istic conjectures is a selfconfirming equilibrium at (Z0,ω, γ ) of a network game with global 
externalities with mutual knowledge of (ω, γ ) if, for each i ∈ I ,

1. (subjective rationality) a∗
i = ri

( ˆ̃xi

)
;

2. (confirmed conjecture) fi

(
a∗
i , ˆ̃xi, ˆ̃yi;ω,γ

)
= fi

(
a∗
i , �̃i

(
a∗−i ,Z0

)
, g̃i

(
a∗−i

) ;w,γ
)

.

We are now ready to prove the result.
Consider first the Nash equilibrium of the game with payoff function (10) played on a com-

plete network. For each i ∈ I , aNE
Zc,i

= ri(w
∑

k∈I\{i} aNE
Zc,k

). Because of symmetry, for each i ∈ I , 
aNE

Zc,i
= αi

1−(n−1)w
.

Given a selfconfirming equilibrium action profile ac, each player i, by perfect recall of her own 
action, can correctly infer that

ac
i wx̃i + γ ỹi = aiw

∑
j∈I\{i}

z0,ij aj + γ
∑

k∈I\{i}
ak, (25)

so that, her shallow conjectures must be such that

ac
i w

ˆ̃xi + γ ˆ̃yi = aiw
∑

j∈I\{i}
z0,ij aj + γ

∑
k∈I\{i}

ak. (26)

At the same time, by deep conjecture μ̄c
i each player i thinks to be linked with all the other 

players. Then ˆ̃xi = ˆ̃y = ˆ̃xc
i , and her shallow conjectures are such that

ac
i w

ˆ̃xi + γ ˆ̃yi = (aiw + γ ) ˆ̃xc
i . (27)

So, by (26)-(27) we have
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ˆ̃xc
i =

aiw
∑

j∈I\{i}
z0,ij aj + γ

∑
k∈I\{i}

ak

aiw + γ
.

As externalities are positive and ai > 0, γ and aiw are just weights in a weighted average. 
If γ

w
= 0, then ˆ̃xc

i = ∑
j∈I\{i} z0,ij a

c
j , i.e., conjecture ˆ̃xc

i is correct, so that ac = aNE
Z0

. Finally, 

lim γ
w

→∞ ˆ̃xc
i = ∑

k∈I\{i} ac
k so that, since upper bounds are not binding, at this limit we have 

ac = aNE
Zc

.

Proposition 8

Proof. First, we derive some properties. Recall that we assumed a common bliss point in isola-
tion: αi = α for each i ∈ I , and that ci is the conjectured ratio of i. Each equation in the system 
given by (16) can be written as an upward parabola b1a

2
i + b2ai + b3 = 0, in the following way:

Hi(a, c, γ,Z) = ci︸︷︷︸
:=b1

a2
i +

⎛
⎝1 − αci − ci

⎛
⎝∑

j∈I

zij aj,t

⎞
⎠
⎞
⎠

︸ ︷︷ ︸
:=b2

ai

−
⎛
⎝1 + ci

⎛
⎝γ

∑
j �=i

aj,t

⎞
⎠
⎞
⎠

︸ ︷︷ ︸
:=b3

= 0. (28)

So, for each i ∈ I , the solution a∗
i is such that Hi(a, c, γ, Z) = 0 lays in the right–arm of this 

upward parabola, where dHi

dai

∣∣∣
ai=a∗

i

> 0. Each Hi(a, c, γ, Z) is linear in ci .

Equation (28) holds at the unique positive solution (because b3 > 0):

a∗
i =

−b2 +
√

b2
2 + 4b1b3

2b1
, (29)

so that a∗
i can be seen as a continuous function of b1, b2 and b3. Considering that a∗

i is increasing 
in b1 (which is bounded by 1), decreasing in b2 and increasing in b3, it follows that each a∗

i

increases in each aj , with j �= i. Moreover, each a∗
i increases in ci , so that

dai

dci

∣∣∣∣
ai=a∗

i

> 0.

If b2 is bounded (from below), then a∗
i is bounded above by

lim
b1→1

−b2 +
√

b2
2 + 4b1b3

2b1
=

−b2 +
√

b2
2 + 4b3

2
,

which is in turn bounded above by 
√

b3 (because if a and b are positive, 
√

a + b ≤ √
a + √

b).

Second, we show that there is a homeomorphism. There is a continuous function that assigns 
to each c ∈ [0, 1]n an element a∗ ∈ A, because
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• either ci = 0 and then a∗
i = α, since (from (29)):

lim
ci→0

a∗
i = α;

• or ci > 0 and then each a∗
i is continuously increasing in each aj with j �= i. Also, b2 is 

bounded (from below), because the system defined by (17) admits a solution, and then also 
any linear transformation of this system will admit a finite solution, which means that b2 is 
limited.
Since b2 is bounded (from below), then a∗

i is bounded above by√√√√√1 + ci

⎛
⎝γ

∑
j �=i

aj,t

⎞
⎠.

But this upper limit is sub–linear, and then the system defined by (16) admits a finite solution.

So, applying system (16), for each c ∈ [0, 1]n, we obtain a unique profile a∗ ∈ A, and this 
function is continuous because (29) is continuous.
To analyze the relation between a∗ and c, we already know that each a∗

i is increasing in ci and 
in all the other a∗

j , with j �= i, which in turn are increasing in cj . This shows that a∗
i is strictly 

monotone with respect to the lattice order of the domain of all profiles c ∈ [0, 1]n.

Strict monotonicity and continuity imply that the function from a ∈A to c ∈ [0, 1]n is invert-
ible. �
Proposition 9

Proof. To obtain the rest points of the paths defined by (15), we consider the system derived 
from (16) for each i:

Hi(a, c, γ,Z) = α + ci

⎛
⎝γ

∑
j �=i

aj,t

⎞
⎠ ai,t c

′
i,t + 1

aici + 1
− ai = 0,

with c′
i,t =

∑
j∈I zij aj,t

γ
∑

j �=i aj,t
. We can compute its Jacobian, with respect to a. We know from the proof 

of Proposition 8 that each entry of this Jacobian is strictly positive. If we prove that each row of 
this Jacobian sums to less than 1, by the Gershgorin circle theorem we will have that the Jacobian 
is limited (as defined in Assumption 4), so that the process is always a contraction and the rest 
points are stable (see, e.g., Galor, 2007). The Jacobian J is such that, for each i, j ∈ I :{

Jij = ci

aici+1

(
γ + aizij

)
, for j �= i

Jii = ci

(
γ
∑

j �=i aj

)(
c′
i

ai ci+1 − ci
aic

′
i+1

(aici+1)2

)
− 1 , otherwise.

The sum of each row of the Jacobian is

∑
j∈I

Jij = ci

aici + 1

⎛
⎝γ

⎛
⎝∑

j �=i

aj

⎞
⎠(c′

i − ci

aic
′
i + 1

aici + 1

)
+ ai

⎛
⎝∑

j �=i

zi,j

⎞
⎠+ γ (n − 1)

⎞
⎠− 1.

(30)
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Let us analyze expression (30) with respect to ai , for any ai ≥ 0.
First note that

lim
ai→∞

∑
j∈I

Jij =
∑
j �=i

zij − 1, (31)

whose absolute value is less than one by assumption.
Moreover,

lim
ai→0

∑
j∈I

Jij = ciγ

⎛
⎝
⎛
⎝∑

j �=i

aj

⎞
⎠(c′

i − ci

)+ (n − 1)

⎞
⎠− 1. (32)

An interior maximum or minimum of the numerical expression (30), with respect to ai , must 
satisfy first order condition

−
(

ci

aici + 1

)2
⎛
⎝γ

⎛
⎝∑

j �=i

aj

⎞
⎠(c′

i − ci

aic
′
i + 1

aici + 1

)
+ ai

⎛
⎝∑

j �=i

zij

⎞
⎠+ γ (n − 1)

⎞
⎠

+ ci

aici + 1

⎛
⎝γ

⎛
⎝∑

j �=i

aj

⎞
⎠( ci

aici + 1

)(
c′
i − ci

aic
′
i + 1

aici + 1

)
+
⎛
⎝∑

j �=i

zij

⎞
⎠
⎞
⎠= 0.

The last expression can be simplified and results in

ciγ (n − 1) =
∑
j �=i

zij ,

which is independent of ai . So, the only candidates for being minima or maxima for expression 
(30) are its values in the extrema, namely (31) and (32).

Also, the sign of the first derivative of (30) with respect to ai is equal to the sign of 
∑

j �=i zij −
ciγ (n − 1). So, if ciγ (n − 1) <

∑
j �=i zij we have that (30) is strictly increasing in ai , and then 

(31) is strictly greater than (32).

The value of (31) is between −1 and 1, by assumption, because 0 <
∑

j �=i zij < 2.

The quantity in (32) is minimized by ci → 0; and c′
i → 0. In this case (32) goes to −1 from 

the right, and for every ci > 0 it will be greater than −1. This completes the proof, because we 
have shown that any row of the Jacobian J sums to a number between −1 and 1. �
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