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Abstract: A goodness-of-fit test for one-parameter count distributions with finite
second moment is proposed. The test statistic is derived from the L1-distance of a
function of the probability generating function of the model under the null hypothesis
and that of the random variable actually generating data, when the latter belongs
to a suitable wide class of alternatives. The test statistic has a rather simple form
and it is asymptotically normally distributed under the null hypothesis, allowing a
straightforward implementation of the test. Moreover, the test is consistent for alter-
native distributions belonging to the class, but also for all the alternative distributions
whose probability of zero is different from that under the null hypothesis. Thus, the
use of the test is proposed and investigated also for alternatives not in the class. The
finite-sample properties of the test are assessed by means of an extensive simulation
study.
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1. Introduction

Count data naturally arise in many applied disciplines such as actuarial science, medicine,
biology and economics, among many others. The Poisson distribution is likely to be the most
popular model for such type of data mainly for its simplicity. Nevertheless, observations may
exhibit over-dispersion, under-dispersion, zero-inflation or heavy tails, thus precluding the
use of the Poisson model as a suitable model. A plethora of count distributions have been
introduced that can model these features (e.g., Johnson et al. 2005). Classical examples are
the Negative Binomial for over-dispersion and the zero-inflated Poisson for excesses of zeroes.
The Poisson-Tweedie family of distributions, which has been studied by several authors with
different parametrization (e.g., El-Shaarawi et al. 2011; Barabesi et al. 2018; Baccini et al.
2016; Barabesi and Pratelli 2014), is able to fit a wide range of mean-variance ratio and tail
heaviness. Moreover, in order to model over-dispersed data, Tsylova and Ekgauz (2017) and
Castellares et al. (2018) introduced the one-parameter Bell family of distributions on the
basis of the well-known Bell series expansion (Bell 1934). These laws have many appealing
properties, since they are members of the one-parameter exponential family and are infinitely
divisible. A further distribution which has many interesting applications in the setting of
queueing theory and branching processes (Johnson et al. 2005) is the Borel law (Borel 1942).
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luca pratelli@marina.difesa.it (Luca Pratelli).
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A challenging aspect of data analysis consists in testing the goodness-of-fit to a parametric
family of count distributions. Many testing procedures dealing with count data are based
on the properties of the probability generating function (p.g.f.) and on the corresponding
empirical p.g.f. Indeed, the p.g.f. fully characterizes the distribution, it is sometimes simpler
than the corresponding probability mass function (p.m.f.) and possesses convenient features,
since it is a real-valued continuous function always defined in the range [0, 1]. The use
of the p.g.f. in testing the fit of discrete distributions has a long-standing tradition (e.g.,
Kocherlakota and Kocherlakota 1986; Rueda et al. 1991). In particular, Rueda et al. (1991)
introduced a test for the Poisson distribution with known parameter, extended by Rueda and
O’Reilly (1999) to the case of unknown parameter and to the negative Binomial distribution.
As to testing Poissonity, Nakamura and Pérez-Abreu (1993) proposed a test based on the
empirical p.g.f., while Meintanis and Nikitin (2008) and Puig and Weiß (2020) introduced
tests based on different characterizations of the p.g.f. against alternatives belonging to a large
family. In a more general framework, Jiménez-Gamero and Batsidis (2017) presented a test
statistic based on a distance between the empirical p.g.f. and the p.g.f. of the model under the
null hypothesis, together with a weighted bootstrap estimator of its distribution. Moreover,
Jiménez-Gamero and Alba-Fernández (2019) introduced a computationally convenient test
for the Poisson–Tweedie distribution, while Jiménez-Gamero and Alba-Fernández (2021)
suggested a test for the Geometric distribution.
In this paper, a novel goodness-of-fit test for families of one-parameter count distributions
with finite second moment is proposed. The test stands in the long tradition of testing
procedures based on distances, such as the Pearson chi-squared test. In particular, the
proposed test statistic is justified by the L1-distance of a suitable function of the p.g.f. of
the model under the null hypothesis and the p.g.f. of the random variable actually generating
data, when the derivative of the ratio of the p.g.f.s has constant sign. Therefore, given the
distribution specified under the null hypothesis, the natural class of alternative distributions
contains those ensuring the derivative constant sign and, for the corresponding hypothesis
system, the test is proven to be consistent. The test statistic has a manageable expression and
depends on the empirical p.g.f. solely through its value in zero, thus avoiding the complexities
of handling the whole empirical functional. In addition, the test statistic is proven to have
an asymptotic normal distribution, which allows for a straightforward implementation of
the test, without demanding intensive resampling methods. Moreover, the test can be also
adopted for the very general hypothesis system with alternatives not necessarily belonging
to the class, even though in this case the consistency is ensured only if the probability of
getting zero is different under the null and alternative hypothesis.
Section 2 contains some preliminaries about the hypothesis system and the distance crite-
rion. In Section 3, the new goodness-of-fit test is proposed and its asymptotic properties are
proven. Section 4 deals with the test statistics for some well-known families of count distri-
butions. In Section 5 the asymptotic behaviour of the proposed test is investigated under
contiguous alternatives. A Monte Carlo simulation to assess the finite-sample performance
of the test is described in Section 6. Some concluding remarks are given in Section 7.

2. Preliminaries

Let Θ be a subset of R, {Mθ}θ∈Θ a family of distributions concentrated into N0 with
finite second moment and pθ the corresponding p.m.f. Without loss of generality, let assume
Mθ({0}) 6= 0, i.e. the singleton {0} is not negligible with respect to Mθ. Examples of
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widely applied families of type Mθ are the Poisson family {P(λ)}λ∈R+ , the Geometric
family {G(p)}p∈]0,1[, the Bell family {Be(θ)}θ>0 and the shifted Borel family {Bo(λ)}λ>0.
When interest is in assessing if the random variable (r.v.) X is distributed according to the
model {Mθ}θ∈Θ, i.e. H0 : X ∼ Mθ for some θ ∈ Θ, a convenient parametrization may be
achieved by using the first moment µ, in order to derive the asymptotic properties of suitable
test statistics more easily by means of limit theorems. In particular, if h : θ 7→

∑∞
n=0 npθ(n)

is a strictly monotone function, the model is parametrized as Mh−1(µ). The Geometric,
the shifted Borel and the Bell family can be parametrized through µ since p = (µ + 1)−1,
λ = µ

1+µ and θ = h−1(µ), where h−1 is the inverse function of θ 7→ θeθ.
Let f represent the p.g.f. of the r.v. X and gµ be the p.g.f. under the modelMh−1(µ). There
exist various proposals in literature (e.g., Sim and Ong 2010 and references therein) for
quantifying discrepancy between f and gµ and a further sensible measure could be based
on the ratio f/gµ or on the corresponding derivative (f/gµ)′. Indeed, since( f

gµ

)′
=

f

gµ

(f ′
f
−
g′µ
gµ

)
,

the derivative could be considered as a “weighted”version of the original ratio, where the
weight is given by the difference of the normalized variation of the single p.g.f.s. In literature
the normalized variation is used to give an interesting characterization of infinitely divisible
p.g.f.s (see Theorem 4.2 in Steutel and Van Harn 2003). Moreover, the difference of the
normalized variation (with the appropriate sign) could be more effective to detect small
discrepancies between f and gµ. Obviously, if X is distributed according to Mh−1(µ), then
(f/gµ)(s) = 1 and (f/gµ)′(s) = 0 for any s ∈ [0, 1]. Hence, denoting by

Dµ(s) =
( f
gµ

)′
(s),

the L1([0, 1]) distance of Dµ(s) from the null function can be considered, since such a
distance is zero under H0 while positive values evidence departures from H0. Assuming that
f and gµ are such that Dµ(s) is non-negative or non-positive for any s ∈ [0, 1], the L1([0, 1])
distance is defined as∫ 1

0

|Dµ(s)|ds =
∣∣∣ ∫ 1

0

Dµ(s)ds
∣∣∣ =

∣∣∣ f
gµ

(1)− f

gµ
(0)
∣∣∣ =

∣∣∣gµ(0)− P (X = 0)

gµ(0)

∣∣∣ (1)

and thus a reasonable test statistic for assessing H0 could be based on suitable estimators
of µ and P (X = 0).
From (1), it is also natural to consider the class ∆Mh−1(µ)

of count distributions (which

are not in H0), depending on the model specified under H0, such that Dµ(s) has constant
sign for any s ∈ [0, 1], and the corresponding hypothesis system H0 : X ∼ Mh−1(µ), H1 :
X ∼ ∆Mh−1(µ)

. Considering a fairly wide class of alternatives has already been exploited in

literature (see e.g. Meintanis and Nikitin 2008, Puig and Weiß 2020). Also in this setting
the class ∆Mh−1(µ)

is rather wide: for example, for the geometric family the class contains

many widely applied distributions such as the Poisson, the Binomial, the Negative Binomial
and the Neyman type A distribution.
It must be pointed out that previous hypothesis system arises in many contexts where
the assessment of the null hypothesis may be difficult. In particular, H0 may be hard to
assess when f is equal to gµ0

w and w is in turn a p.g.f. in such a way that f constitutes
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a “perturbation”of gµ0 , i.e. f nearly resembles gµ0 when w(0) is close to one. Obviously,
Dµ0(s) is non-negative for any s ∈ [0, 1] and X is distributed as X0 ∼ Mh−1(µ0) under
H0, while X = X0 + Y under H1, where Y is a r.v. with p.g.f. w, independent of X0.
An interesting case is obtained when Y = I{Z≥1}

∑Z
n=1Xn, i.e. X0 + Y is the random

sum
∑Z
n=0Xn where (Xn)n is a sequence of independent r.v.s with Xn ∼ X0 and Z is a

non-negative integer-valued r.v. independent of Xn for any natural n.
The null hypothesis can be difficult to assess also when f is the p.g.f. of the r.v. α-fraction
of X0 given by

∑X0

n=1 Yn, where (Yn)n are i.i.d. Bernoulli r.v.s with parameter α ∈ [0, 1],
independent of X0. Following Steutel and Van Harn (2003), the α-fraction of X0 is defined
by means of the so-called binomial thinning operator. It is worth noting that gµ0

≤ f and∑X0

n=1 Yn converges almost surely to X0 for α approaching 1. Furthermore, Dµ0
(s) is non-

positive for any s ∈ [0, 1] for X0 belonging to many families of typeMh−1(µ0), such as those
of the Binomial, the Negative Binomial, the Logarithmic, the Sibuya, the discrete stable,
the discrete Linnik.

3. The test statistics

Thanks to (1), we can introduce a family of test statistics based on estimators of µ and
P (X = 0). To this aim, given a random sample X1, . . . , Xn from X and denoting by µ̂n and

P̂n(0) the sample mean and the sample proportion of observations equal to zero, that is

µ̂n =
X1 + . . .+Xn

n
, P̂n(0) =

I{X1=0} + . . .+ I{Xn=0}

n
,

a test statistic can be based on

T̂0 =
√
n(gµ̂n(0)− P̂n(0)).

In the following proposition we prove that the asymptotic distribution of T̂0 under the null
hypothesis does not rely on peculiar characteristics of the class ∆Mh−1(µ)

. Then, we propose

its use for assessing the much more general hypothesis system H0 : X ∼Mh−1(µ) for some
µ ∈ R+, H1 : X � Mh−1(µ) for all µ ∈ R+, even if its interpretation as deriving from a

L1-distance is lost. Referring to this more general hypothesis system, T̂0 can be rewritten
as

T̂0 =
√
n(ψ0(µ̂n)− P̂n(0)),

where ψ0 : µ 7→ Mh−1(µ)({0}) and its asymptotic distribution is derived under some mild
conditions on ψ0.

Proposition 3.1. Let ψ0 be a C1 function with bounded first-order derivative. Then, under
the null hypothesis, T̂0 converges in distribution to N (0, σ2) as n → ∞, where µ = E[X]
and

σ2 = Var[ψ′0(µ)X − I{X=0}]

= (ψ′0)2(µ)Var[X] + 2ψ′0(µ)µψ0(µ) + ψ0(µ)(1− ψ0(µ)).
(2)

Moreover, if X ∼ ∆Mh−1(µ)
or, more in general, if r0 = ψ0(µ) − P (X = 0) 6= 0, then |T̂0|

converges in probability to ∞.
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Proof. Owing to the Delta Method

T̂0 =
√
n(ψ0(µ̂n)− ψ0(µ) + ψ0(µ)− P̂n(0))

=
√
n(ψ′0(µ)(µ̂n − µ) + ψ0(µ)− P̂n(0)) + oP (1)

=
τ(X1) + . . .+ τ(Xn)√

n
−
√
nr0 + oP (1),

where τ is the function defined by x 7→ ψ′0(µ)(x− µ)− (I{X=0} − P (X = 0)).
Under H0, r0 = 0, E[τ(X)] = 0 and E[o2

P (1)] is o(1) since |ψ0(µ̂n)−ψ0(µ)| ≤ |µ̂n−µ|. Then,

under H0, T̂0 converges in distribution to N (0,Var [τ(X)]) by applying the Central Limit

Theorem to τ(X1)+...+τ(Xn)√
n

. Moreover, since

Var[τ(X)] = Var[ψ′0(µ)X − I{X=0}]

= (ψ′0)2(µ)Var[X] + Var[I{X=0}]− 2ψ′0(µ)Cov[X, I{X=0}]

and
Cov[X, I{X=0}] = −µψ0(µ)

the first part of the proposition is proven.

Now, let X be a r.v. such that r0 6= 0. Since τ(X1)+...+τ(Xn)√
n

+oP (1) is bounded in probability

and
√
n|r0| converges to ∞, then |T̂0| converges in probability to ∞. The second part of the

proposition is so proven.

It is worth noting that σ2 > 0 when ψ′0(µ) = 0. Moreover, if ψ′0(µ) 6= 0, σ2 = 0 iff there
exists a real number c such that ψ′0(µ)X − I{X=0} = c almost surely. Since P (X = 0) is not
negligible, σ2 = 0 iff X = −I{X 6=0}/ψ

′
0(µ). Thus, σ2 > 0 if X takes more than two values,

as it happens for all the distributions considered in the following sections, and therefore it
is not restrictive to consider σ2 > 0.
In order to obtain a test statistic, σ2 can be estimated by means of the plug-in estimator

σ̂2
n = (ψ′0)2(µ̂n)v(µ̂n) + 2µ̂nψ0(µ̂n)ψ′0(µ̂n) + ψ0(µ̂n)(1− ψ0(µ̂n)) (3)

where

v(µ̂n) =

∞∑
j=0

(j − µ̂n)2ph−1(µ̂n)(j).

Since σ̂2
n converges almost surely to σ2 it follows limn σ̂

2
n > 0 almost surely. Thus the test

statistic is defined as

Zn =
T̂0

σ̂n

if σ̂n > 0 and Zn = 0 else, which is asymptotically equivalent to T̂0

σ and, thanks to Proposi-
tion 3.1, it has an asymptotic N (0, 1) distribution. It is at once apparent that the rejection
region of an α-level large-sample test is given by {|Zn| > z1−α/2}, where z1−α/2 is the
(1− α/2)-quantile of the standard normal distribution. Moreover, the test is consistent for
the alternatives in ∆Mh−1(µ)

but also for all the other alternatives not in the class for which

the probability of 0 is different from that under the null hypothesis. Requiring the proba-
bility of 0 being different may be a rather restrictive assumption even though the class of
families of distributions not in ∆Mh−1(µ)

may be narrow.
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Obviously, alternative suitable estimators of σ2 are possible for particular families of distri-
butions or by using maximum likelihood estimators of µ.

4. The test statistic for some families of distributions

4.1. Shifted Borel family

The Borel family arises in the context of queueing theory and branching processes. More
precisely, the Borel distribution (Borel 1942) describes the distribution of the total number
of customers served before a queue vanishes, given a single queue with Poisson random
arrival of customers and a constant time in serving each customer, when there is initially
one customer in the queue. The Borel distribution has parameter λ if the constant time is 1
and the constant rate of arrivals is λ. Equivalently, the Borel distribution is the distribution
of the total progeny of a Galton-–Watson branching process where each individual has P(λ)
children (e.g., Borel 1942; Janson and Luczak 2008; Johnson et al. 2005). In particular, these
distributions are concentrated on N0 when λ ≤ 1 and have finite moment of any order when
λ < 1.
In the following, the family of shifted Borel distributions {Bo(λ)}λ∈[0,1[ with values in N0

and p.m.f.

P (X = n) = e−λ(n+1) (λ(n+ 1))n

(n+ 1)!
n ∈ N0

is considered. Since µ = λ
1−λ = h(λ), then h−1(µ) = µ

1+µ . Moreover, P (X = 0) = ψ0(µ) =

e−
µ

1+µ and
T̂0 =

√
n
(
e−

µ̂n
1+µ̂n − P̂n(0)

)
.

Owing to Proposition 3.1, T̂0 converges in distribution to N (0, σ2) as n→∞, where

σ2 = Var
[ e−

µ
µ+1

(µ+ 1)2
X + I{X=0}

]
and, since Var[X] = λ

(1−λ)3 = µ(1 + µ)2, from (2)

σ2 = e−
2µ

1+µ

(
e

µ
1+µ − 1− µ

(1 + µ)2

)
and from (3)

σ̂2
n = e−

2µ̂n
1+µ̂n

(
e

µ̂n
1+µ̂n − 1− µ̂n

(1 + µ̂n)2

)
.

4.2. Geometric family

Let us consider the well-known family of Geometric distributions {G(p)}p∈]0,1]. The r.v. X
has p.m.f. given by

P (X = n) = p(1− p)n n ∈ N0.

Since µ = 1−p
p = h(p), it holds h−1(µ) = 1

µ+1 and P (X = 0) = ψ0(µ) = 1
µ+1 . Then

T̂0 =
√
n
( 1

µ̂n + 1
− P̂n(0)

)
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and T̂0 converges in distribution to N (0, σ2) as n→∞, where

σ2 = Var
[ X

(µ+ 1)2
+ I{X=0}

]
.

From Proposition 3.1, since Var[X] = 1−p
p2 = µ(1 + µ), from (2) and from (3) it follows

σ2 =
µ2

(µ+ 1)3

and

σ̂2
n =

µ̂2
n

(µ̂n + 1)3
.

4.3. Bell family

The Bell family of distributions {Be(θ)}θ>0 has been recently introduced by Tsylova and
Ekgauz (2017) and Castellares et al. (2018). Bell distributions have many interesting prop-
erties. Indeed, the Bell family belongs to the exponential family and it is infinitely divisible.
Moreover, the Poisson distribution is not nested in the Bell family but it can be approx-
imated for small values of the parameter by the Bell distribution. This family is rather
flexible for fitting a wide spectrum of count data which may present over-dispersion and it
may be an alternative model to the very familiar Poisson and Negative Binomial models in
several areas. For example, owing to its flexibility, the Bell distribution is used to model the
number of insurance claims over a fixed period of time. For further applications see Batsidis
et al. (2020).
The Bell p.m.f. with parameter θ has a very simple form and it is given by

P (X = n) =
θnBne

1−eθ

n!
n ∈ N0,

where the Bell number Bn (see Bell 1934) is the number of partitions of a set of size n and
is equal to the n-th moment of a Poisson r.v. with µ = 1. Since µ = θeθ = h(θ), h−1 does
not have closed form but simple numerical techniques can be adopted to obtain the value

of the inverse function at µ or at its estimate. Thus P (X = 0) = ψ0(µ) = e1−eh
−1(µ)

and

T̂0 =
√
n
(
e1−eh

−1(µ̂n)

− P̂n(0)
)
.

From Proposition 3.1, T̂0 converges in distribution to N (0, σ2) as n→∞, where

σ2 = Var
[ e1−eh

−1(µ)

(1 + h−1(µ))
X + I{X=0}

]
.

Moreover, since Var[X] = θeθ(1 + θ) = µ(1 + h−1(µ)), from (2) and from (3) it follows

σ2 = e1−eh
−1(µ)

(
1− h−1(µ)e1+h−1(µ)−eh

−1(µ)

1 + h−1(µ)
− e1−eh

−1(µ)
)

and

σ̂2
n = e1−eh

−1(µ̂n)
(

1− h−1(µ̂n)e1+h−1(µ̂n)−eh
−1(µ̂n)

1 + h−1(µ̂n)
− e1−eh

−1(µ̂n)
)
.
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5. Asymptotic behaviour under contiguous alternatives

The asymptotic behaviour of the test statistic Zn is investigated under suitable contiguous
alternatives, obtained by mixtures of distributions. The concept of contiguity is frequently
applied in many asymptotic settings (e.g., Van der Vaart 2000; Dhar et al. 2016; Betsch and
Ebner 2019; Kalemkerian and Fernández 2020; Meselidis and Karagrigoriou 2020 among
others). In particular, let {Al,n}l=1,...,n be a triangular array of independent events and
(Yn)n be a sequence of i.i.d. non-negative integer-valued r.v.s with E[Y 2

1 ] < ∞. Moreover,
suppose (IAl,n)l=1,...,n and Y1, . . . , Yn to be mutually independent and also independent of
the i.i.d. random variables X1, . . . , Xn, where now X1 ∼ Mh−1(µ) with µ = E[X1] and X1

takes more than two values. For l = 1, . . . , n, denote by

X ′l,n = IAl,nXl + IAcl,nYl (4)

with P (Acl,n) = λ√
n
> 0. Given the random sample X ′1,n, . . . , X

′
n,n, let

µ̃n =
X ′1,n + . . .+X ′n,n

n
, P̃n(0) =

I{X′1,n=0} + . . .+ I{X′n,n=0}

n

be the corresponding sample mean and sample proportion. It is at once apparent that also
X ′l,n is a non-negative integer-valued r.v. which converges in L2 to Xl for n approaching
infinity.
The following result is useful to highlight the discriminatory capability of the test statistic
under non-trivial contiguous alternatives.

Proposition 5.1. Let ψ0 : µ 7→ Mh−1(µ)({0}) be a C1 function with bounded first-order
derivative and

σ̃2
n = (ψ′0)2(µ̃n)v(µ̃n)− 2µ̃nψ0(µ̃n)ψ′0(µ̃n) + ψ0(µ̃n)(1− ψ0(µ̃n)).

If E[Y1] = E[X1] then σ̃2
n converges in probability to Var[ψ′0(µ)X1 − I{X1=0}] > 0 and

T̃0 − λ
(
P (X1 = 0)− P (Y1 = 0)

)
σ̃n

I{σ̃n>0}
d−→ N (0, 1) (5)

where
T̃0 =

√
n(ψ0(µ̃n)− P̃n(0)).

Proof. Consider the difference between T̃0 − λ
(
P (X1 = 0)− P (Y1 = 0)

)
and T̂0, that is

Rn = T̃0 − T̂0 − λ
(
P (X1 = 0)− P (Y1 = 0)

)
.

Note that

Rn =
√
n
(
ψ0(µ̃n)− P̃n(0)

)
−
√
n
(
ψ0(µ̂n)− P̂n(0)

)
− λ
(
P (X1 = 0)− P (Y1 = 0)

)
= ψ′0(µ̂n)(µ̃n − µ̂n)− (P̃n(0)− P̂n(0))− λ

(
P (X1 = 0)− P (Y1 = 0)

)
+ oP (1).

Since

µ̃n − µ̂n =

∑n
l=1 IAcl,n(Yl −Xl)

n
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and

P̃n(0)− P̂n(0) =

∑n
l=1 IAcl,n(I{Yl=0} − I{Xl=0})

n
,

then

Rn = ψ′0(µ̂n)

∑n
l=1IAcl,n(Yl−Xl)

√
n

−
∑n
l=1

(
IAcl,n(I{Yl=0}−I{Xl=0})− an

)
√
n

+ oP (1),

where an = λ
(
P (Y1 = 0)− P (X1 = 0)

)
/
√
n = E[IAcl,n(I{Yl=0}−I{Xl=0})].

Moreover, as

E
[(∑n

l=1IAcl,n(Yl−Xl)
√
n

)2]
=
λE[(Y1−X1)2]√

n

and

E
[(∑n

l=1 IAcl,n(I{Yl=0}−I{Xl=0})− an√
n

)2]
= Var

[
IAc1,n(I{Y1=0}−I{X1=0})

]
≤ λ√

n
,

Rn converges in probability to 0. Therefore, also Rn/σ̂n converges in probability to 0 as σ̂n
converges in probability to Var[ψ′0(µ)X1 − I{X1=0}] which is positive and

T̃0 − λ
(
P (X1 = 0)− P (Y1 = 0)

)
σ̂n

has the same asymptotic distribution of T̂0/σ̂n. As σ̃n and σ̂n are asymptotically equivalent,
since they both converge in probability to Var[ψ′0(µ)X1 − I{X1=0}], the convergence of (5)
is proven.

Remark 1. Given a family of i.i.d. Bernoulli r.v.s (Yj,l)j,l with parameter 1− λ√
n

independent

of (Xn)n, let X ′l,n =
∑Xl
j=1 Yj,l be the α-fraction of Xl, with l = 1, . . . , n. Since E[X ′l,n]− µ

is equal to −µλ/
√
n, following the same reasoning of Proposition 5.1,

T̃0 + λ
(
P (X1 = 1) + µ̃n

)
σ̃n

I{σ̃n>0}
d−→ N (0, 1).

Remark 2. In both propositions the asymptotic behaviour still holds also removing the
condition of bounded first-order derivates, even though the order of convergence of σ̂n could
be considerably reduced.

6. Simulation study

The performance of the proposed test has been assessed and compared to that of the chi-
squared goodness-of-fit test, by means of an extensive Monte Carlo simulation, when the
Geometric, Bell and Borel distributions are specified under the null hypothesis. The chi-
squared test is suitable for the general hypothesis system and, similarly to our proposal, it
is based on a test statistic having known asymptotic distribution and not requiring inten-
sive resampling methods. It is worth noting that the comparison is also meaningful since
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both tests rely on distance-based statistics. Moreover, we compared the performance of the
test with that of a recently introduced test based on bootstrap procedures and specifically
tailored for the Geometric distribution (Jiménez-Gamero and Alba-Fernández 2021).
As to the chi-squared test, it is well-known that the asymptotic approximation is usually
satisfactory if each expected frequency is large enough, with some authors suggesting the
minimum value of 5 and some others of 3. Therefore, there is no way of avoiding the arbitrari-
ness of grouping classes to compute the chi-squared statistic (e.g., Gibbons and Chakraborti
2020). Moreover, the standard implementation considers the sample maximum and the sam-
ple minimum as extreme values for the test statistic computation and thanks to simulation
studies it is well-known that this choice is not enough in order to capture a sufficient prob-
ability mass under H0. Hence, to ensure a more reliable approximation, an ad-hoc general
version of the chi-squared test is implemented. In particular, denoting by {C1, . . . , Ck} the
set of classes to be considered, C1 is the set of natural numbers smaller than the largest
integer not greater than µ−3

√
µ, Ck is the set of natural numbers greater than the smallest

integer not less than µ+ 3
√
µ and {C2, . . . , Ck−1} are the singletons not included in C1 and

Ck. Obviously, in order to implement the chi-squared test statistic, the classes Ĉ1, . . . , Ĉk
and the corresponding expected frequencies e1, . . . , ek are obtained by plugging the param-
eter estimates, also adopted in Zn, in the null distribution. In particular, the chi-squared
test statistic Qn is given by

Qn =

k∑
j=1

(nj − ej)2

ej

where nj denotes the number of observations in the class Ĉj and ej = n
∑
l∈Ĉj ph−1(µ̂n)(l).

The simulation is implemented by using R (R Core Team 2021) and, in the case of the Bell
distribution, the value of h−1(µ̂n) is obtained by using the function uniroot of the package
Stats.

6.1. Empirical significance level

First of all, we focus on empirically evaluating the actual significance level of the test.
To this purpose, fixed the nominal level α = 0.05, 5000 samples of size n = 30, 50 are
independently generated from the shifted Borel, Geometric and Bell distributions and the
empirical significance level is computed as the proportion of rejections of the null hypothesis
both for Zn and the chi-squared statistic Qn. In particular, Figure 1 and Figure 2 display the
empirical significance level for the shifted Borel and the Geometric distribution, respectively,
for values of µ varying from 0.5 to 15 by 1. Figure 3 show the empirical significance level
for the Bell distribution for probability of zero varying from 0.05 to 0.89 by 0.07.
As to the shifted Borel (Figure 1), the proposed test shows an empirical significance level
almost equal to the nominal one for any µ already for the smaller sample size. On the other
hand, the chi-squared test does not have a satisfactory behaviour even for the larger sample
size, especially for large values of µ, probably owing to the slow rate of convergence of Qn.
Considering the Geometric distribution (Figure 2), for n = 30, Zn shows conservativeness
for larger µ values while the empirical level of Qn is greater than the nominal one and
increases as µ increases. On the other hand, for n = 50 the empirical level reached by Zn is
almost indistinguishable from the nominal one and, even if the performance of Qn greatly
improves, it is not completely satisfactory especially for the larger values of µ. It is worth
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noting that under the Geometric distribution Zn has a very simple expression leading to a
straightforward implementation of the test.
From Figure 3, it is at once apparent that, when considering the Bell distribution, the
performances of both tests are quite satisfactory when P (X = 0) ranges between 0.1 and
0.8. Moreover, for P (X = 0) near to 0.9, while the empirical level of Zn remains rather close
to the nominal one, especially for n = 50, the empirical level of Qn dramatically increases.
Moreover, the empirical level of both tests is very far from the nominal one for values of the
probability close to 0 and close to 1.

6.2. Empirical power

The empirical power of the test based on Zn is investigated and compared to that of the chi-
squared test considering, under the null hypothesis, the same distributions already adopted
for assessing the empirical significance level. The power behaviour is assessed against some
common alternative distributions with various parameter values and against contiguous
alternatives, as introduced in Section 5. In order to highlight the behaviour of the pro-
posed test in the most general context, we considered alternative distributions for which
consistency holds, but not necessarily belonging to the class ensuring constant sign of the
derivative of the ratio of the p.g.f.s. Alternative distributions include overdispersed and un-
derdispersed, mixtures and zero-inflated distributions, together with distributions having
mean close to variance. In particular, as well as in Gürtler and Henze (2000) and Meinta-
nis and Nikitin (2008), we consider Poisson distribution denoted by P(λ), Mixture of two
Poisson byMP(λ1, λ2) with mixture weight 0.5, Binomial by B(k, p), Negative Binomial by
NB(k, p), Generalized Hermite by GH(a, b, k), Discrete Uniform in {0, 1, . . . , ν} by DU(ν),
Logarithmic Series by LS(θ), Generalized Poisson by GP(λ1, λ2), Zero-inflated Binomial by
ZB(k, p1, p2), Zero-inflated Negative Binomial by ZNB(k, p1, p2), Zero-inflated Poisson by
ZP(λ1, λ2), where various parameters values are considered (see Table 1 and 2). From each
distribution, 5000 samples of size n = 30, 50 are independently generated and on each sam-
ple the tests based on Zn and Qn are performed at the nominal significance level α = 0.05.
The empirical power of each test is computed as the proportion of rejections of the null
hypothesis. Table 1 reports, for each model specified under null hypothesis and for each
alternative distribution, the empirical powers achieved by the test based on Zn and Qn,
respectively, for n = 30, while Table 2 for n = 50.
Not surprisingly, none of the two tests shows better performance with all models and all
alternative distributions. Indeed, the power crucially depends both on the model specified
under the null and alternative hypothesis and on the set of parameter values for alternatives
in the same class. In particular, when under the null hypothesis the shifted Borel distribution
is considered, the performance of both tests is rather satisfactory even with n = 30, but the
proposed test seems to be superior. If the Geometric distribution is specified under H0, the
power of both tests generally decreases and heavily deteriorates for zero-inflated alternative
distributions, with the only remarkable exception for the chi-squared test when the zero-
inflated binomial distribution is considered. Finally, a further decrease in the power of both
tests occurs for the Bell distribution, with Zn reaching unbiasedness against the generalized
Hermite alternatives only for n = 50, even thought in this case both tests show a very poor
performance.
As to the contiguous alternatives, for each distribution specified under the null hypothesis,
shrinking mixtures are obtained according to (4). In particular, the component Xl is a shifted
Borel r.v., a Geometric r.v., a Bell r.v., all having µ = 1, respectively, while Yl ∼ B(4, 0.25)



Di Noia et al./Goodness-of-fit test for count distributions 12

and λ varies from 0 to
√
n by 0.5. Figure 4 and Figure 5 show that the empirical power is

rather satisfactory for both tests already for n = 50 with a remarkable increase for n = 100,
with the best performance achieved with shifted Borel component. However, the empirical
power of Zn is higher for any value of λ, any component and both sample sizes.
Finally, Figure 6 and Figure 7 show the empirical power under alternatives obtained by
means of the binomial thinning for n = 50 and n = 100. Since the thinning operator
preserves the law in most of the cases, we report the Borel case in which the law is not
preserved and the Geometric case in which the law is well-known to be preserved. In both
cases for n = 50, µ is fixed at 15 and λ varies from 0 to 6.5 by 0.5 while, for n = 100, µ is
fixed at 15 and λ varies from 0 to 9 by 0.5. Coherently with the theoretical results, in the
Geometric case the empirical power of both tests remains constantly close to the nominal
level for both sample sizes. On the other hand, in the Borel case the empirical power of
both tests start to increase when λ increases but Zn performs better than Qn and shows a
satisfactory behaviour for n = 100.
Recently, Jiménez-Gamero and Alba-Fernández (2021) proposed a test statistic Tn for the
Geometric distribution based on linear regression on order statistics which presents a com-
petitive behaviour with respect to already existing tests. The bootstrap estimators of the
null bootstrap distribution of Tn are based on the probability density function of the normal
law with zero mean and variance β. Indeed, their test statistic Tn depends on the values of
the parameter β. The authors recommend to take β = 1 or β = 1.5. Table 3 contains the
empirical powers of Zn under the same alternative distributions considered in that paper,
together with those reported by the authors for Tn when β = 1. Among the alternatives
distributions, the Neyman type A distribution is denoted by NA(λ1, λ2) and the Discrete
Weibull by DW(q, b). Notwithstanding Zn is compared to Tn, which is specifically tailored
for the Geometric distribution, the empirical powers are rather similar for most of the alter-
natives. Exceptions are the Binomial distribution or the Zero-inflated Poisson distribution,
where the performance of both tests more heavily depends on the parameters values.

7. Discussion

A huge literature deals with testing continuous distributions, while a few proposals have
been developed for testing the fit of discrete distributions. Among these, many are tailored
to deal with particular distributions and so they are of limited applicability, while there is
an emerging need of tests allowing to specify an extremely broad class of distributions under
the null hypothesis. Undoubtedly, the chi-squared test is the most widely adopted, notwith-
standing the arbitrariness of its implementation due to the requirement on the frequency
minimum values. Similarly to the chi-squared test, the proposed test shows considerable
flexibility as it allows to specify any count distribution with finite second moment under
the null hypothesis and can be considered deriving from a L1 distance for the class of al-
ternative distributions for which Dµ(s) has constant sign. The resulting test statistic has
a simple expression, depending on the empirical p.g.f. only through the probability of zero
occurrence, and an asymptotic normal distribution. Moreover, it must be pointed out that
the test can be adopted for a much broader class of alternative distributions. Indeed, the
test is consistent for the alternatives in the class but also for all the alternatives for which
the probability of zero is different from that under the null hypothesis. The test performance
are rather satisfactory even for moderate sample sizes, also compared to that of the test by
Jiménez-Gamero and Alba-Fernández (2021), specifically tailored for the Geometric distri-
bution. The test shows some criticalities when an inflation of zeroes occurs, which could be
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overcome introducing a family of test statistics, indexed by a parameter h, depending on the
cumulative distribution function at h instead of on the probability in zero. Further research
will be devoted to this last issue and to the use of alternative estimators involved in the
implementation of the statistic, in order to improve the performance of the test. Finally, the
generalization of the test to families of count distributions indexed by a k-variate parameter
will be investigated.
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Table 1
Empirical power (percent) with 5% nominal significance level for n = 30.

Model under H0

Alternative shifted Borel Geometric Bell

Z30 Q30 Z30 Q30 Z30 Q30

P(0.5) 56.0 47.0 25.2 12.4 18.0 10.9

P(1) 94.7 91.4 57.7 38.9 39.3 20.2

P(2) 100.0 100.0 88.0 77.5 54.4 26.1

MP(1, 2) 99.0 97.8 62.4 43.4 31.7 14.3

MP(1, 3) 99.0 97.9 45.7 34.7 13.5 6.4

MP(1, 4) 98.3 96.8 26.6 26.6 5.3 6.7

B(4, 0.25) 99.4 98.9 85.9 72.4 73.6 50.4

B(30, 0.1) 100.0 100.0 97.8 97.2 60.2 34.4

NB(4, 0.75) 94.2 89.5 39.8 24.8 17.4 8.4

NB(10, 0.9) 94.7 90.7 51.2 32.1 30.2 13.5

GH(1, 1.25, 2) 100.0 100.0 43.0 62.3 4.0 6.1

GH(1, 1.5, 2) 100.0 100.0 44.7 69.8 3.3 7.2

DU(3) 99.0 100.0 61.5 94.9 29.2 67.9

LS(0.6) 100.0 100.0 100.0 100.0 100.0 100.0

LS(0.8) 100.0 100.0 100.0 99.4 99.8 97.7

GP(1, 0.1) 90.4 84.4 38.7 23.5 21.5 9.9

GP(3, 0.25) 100.0 100.0 75.5 68.5 10.1 6.0

ZB(5, 0.9, 0.2) 93.3 100.0 2.8 100.0 33.6 100.0

ZNB(5, 0.9, 0.1) 36.7 30.4 11.7 6.6 7.9 5.5

ZP(1, 0.2) 65.2 60.3 18.3 12.7 9.8 5.4
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Table 2
Empirical power (percent) with 5% nominal significance level for n = 50.

Model under H0

Alternative shifted Borel Geometric Bell

Z50 Q50 Z50 Q50 Z50 Q50

P(0.5) 77.8 70.4 37.0 24.7 28.9 16.8

P(1) 99.6 99.0 79.7 64.2 60.4 34.9

P(2) 100.0 100.0 98.7 96.4 78.7 50.6

MP(1, 2) 100.0 99.9 83.7 70.0 49.5 25.0

MP(1, 3) 100.0 100.0 68.3 54.1 19.6 9.0

MP(1, 4) 100.0 99.9 42.4 40.4 5.4 7.8

B(4, 0.25) 100.0 100.0 97.6 95.2 92.7 78.8

B(30, 0.1) 100.0 100.0 100.0 100.0 87.1 69.2

NB(4, 0.75) 99.7 98.4 58.9 41.2 26.5 12.7

NB(10, 0.9) 99.7 98.9 72.3 54.3 47.1 24.6

GH(1, 1.25, 2) 100.0 100.0 67.9 85.6 5.4 8.7

GH(1, 1.5, 2) 100.0 100.0 72.4 91.6 5.0 9.2

DU(3) 100.0 100.0 85.5 100.0 49.5 97.6

LS(0.6) 100.0 100.0 100.0 100.0 100.0 100.0

LS(0.8) 100.0 100.0 100.0 100.0 100.0 100.0

GP(1, 0.1) 98.7 96.7 58.7 39.2 31.7 14.7

GP(3, 0.25) 100.0 100.0 95.3 91.3 20.9 8.8

ZB(5, 0.9, 0.2) 99.2 100.0 3.4 100.0 53.0 100.0

ZNB(5, 0.9, 0.1) 53.3 48.3 15.7 10.1 10.9 6.7

ZP(1, 0.2) 86.0 81.2 26.7 20.3 14.5 7.8
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Table 3
Empirical power (percent) with 5% nominal significance level of tests for the Geometric distribution for

n = 20 and n = 40.

Alternative Geometric

Z20 T20 Z40 T40

P(0.5) 14 13 29 24

P(1) 42 37 70 68

P(1.5) 60 63 88 91

ZP(2, 0.8) 44 21 83 44

ZP(1, 0.1) 25 23 44 43

ZP(2, 0.2) 14 26 24 48

NA(5, 0.1) 9 9 17 15

NA(5, 0.2) 25 22 44 42

NA(5, 0.3) 35 35 59 65

DW(1.4, 0.4) 16 15 32 28

DW(1.4, 0.6) 27 23 48 46

DW(1.4, 0.8) 28 32 51 60

B(10, 0.05) 17 16 36 29

B(10, 0.1) 14 46 33 79

B(10, 0.15) 74 75 96 98

NB(5, 0.89) 13 12 26 22

NB(5, 0.83) 26 24 46 44

NB(5, 0.75) 38 38 67 71
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Fig 1. Empirical significance level under the shifted Borel distribution for n = 30 (left panel) and n = 50
(right panel). In the abscissa µ values.
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Fig 2. Empirical significance level under the Geometric distribution for n = 30 (left panel) and n = 50
(right panel). In the abscissa µ values.
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Fig 3. Empirical significance level under the Bell distribution for n = 30 (left panel) and n = 50 (right
panel). In the abscissa values of P (X = 0).
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Fig 4. Empirical power under contiguous distributions for n = 50. In the abscissa λ values.
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Fig 5. Empirical power under contiguous distributions for n = 100. In the abscissa λ values.
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Fig 6. Empirical power under α-fraction distributions for n = 50. In the abscissa λ values.
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Fig 7. Empirical power under α-fraction distributions for n = 100. In the abscissa λ values.
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