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The presence of Enterococcus
faecalis in saliva as a risk factor
for endodontic infection
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Prasanna Neelakantan3, Gianni Pozzi1 and Simone Grandini1

1Unit of Periodontology, Endodontic and Restorative Dentistry, Department of Medical Biotechnology,
University of Siena, Siena, Italy, 2Department of Endodontics, Faculty of Dentistry, Mansoura University,
Mansoura, Egypt, 3Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong, Hong
Kong SAR, China
Aim: The aim of the present study was to investigate and correlate the prevalence

of Enterococcus faecalis in saliva and in root canals with different pulpal and

periapical conditions.

Methodology: Sixty-seven patients were divided into five groups based on

pulpal and periapical tissue status: healthy vital teeth (HVT, n=7), healthy treated

teeth without lesion (HTT, n=9), irreversible pulpitis (IP, n=13), necrosis (N, n=18),

and post-treatment apical periodontitis (PTAP, n=20). Saliva, rubber dam,

sterility control and pre-treatment root canal samples were collected and

microbiologically processed by culture method. The phylogenetic relationship of

E. faecalis isolates collected from root canals and saliva were investigated by whole

genome sequencing. Fisher’s exact test was used to correlate the presence of E.

faecalis in root canals or saliva with clinical and/or radiographic findings. Linear/

logistic regression analyses were performed to establish the relationship between

the presence of E. faecalis in root canals, saliva, and the status of periapical tissues.

Results: E. faecalis was found in 18 root canal and saliva samples. E. faecalis root

canal isolates were recovered with the highest frequency from post-treatment

apical periodontitis. The occurrence of E. faecalis in saliva was strongly

associated with its detection in the root canals (P < 0.001). The pretreatment

presence of E. faecalis in root canals was associated with significantly higher

odds of having periapical lesions (OR=11.03; 95% CI, 1.27-95.70; p < 0.05). Saliva

and root canal isolates from the same patient were highly correlated at the

phylogenetic level (Jaccard index >0.95).

Conclusion: This pilot study confirms the role of E. faecalis in developing peri-

radicular lesions in secondary endodontic infections and suggests that saliva

could be the main source of infection. Further studies are needed to investigate

the exact origin of this bacteria and its true role in the pathogenesis of secondary/

persistent endodontic infections.

KEYWORDS

apical periodontitis, endodontic infections, enterococcus faecalis, phylogenetic
analysis, risk factor, saliva, whole-genome sequencing (WGS)
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Introduction

The role of bacteria in the initiation and progression of apical

periodontitis has been widely demonstrated (Kakehashi et al., 1965).

Bacteria can invade the root canal system via different pathways such

as carious, periodontal lesions and cracks (Siqueira and Rôças, 2009).

Microbial profiling of endodontic infections revealed compositionally

unspecific, yet differentially abundant microbiota depending on

clinical diagnosis (Manoil et al., 2020). While primary infections

are caused by microorganisms that initially invade and colonize

necrotic root canals, secondary and persistent infections are caused

by microorganisms that enter root canals as a result of professional

intervention or survive the chemo-mechanical debridement and

persist within the root canal environment (Wong et al., 2021).

Enterococcus faecalis is a facultative anaerobic gram-positive

bacterium which has been frequently recovered from secondary/

persistent endodontic infections (Rôças et al., 2004; Sedgley et al.,

2006b; Bouillaguet et al., 2018). The contribution of E. faecalis to

endodontic treatment failures is attributed to its ability to withstand

nutrient scarcity encountered in root-filled teeth (Evans et al., 2002;

Stuart et al., 2006) and tolerance to antimicrobials employed during

endodontic treatment (Ali et al., 2020a; Ali et al., 2020b). The ability

of E. faecalis to form dense biofilms on root canal walls, by a biofilm-

associated pili (Ebp) and its collagen-binding protein (Ace), make

this microorganism able to invade dentinal tubules and root canal

complexities and contributing to be recalcitrant to endodontic

disinfectants and intracanal dressings (Zhang et al., 2015; Hahn

and Hanford, 2021; Momenijavid et al., 2022). Also many other

virulence factors and its predisposition to be resistant to some

antibiotics contribute to persistence and recovery of E. faecalis

from endodontic failures (Aas et al., 2005; Gomes et al., 2021).

Given that endodontic microbiota is derived from oral microbiota

under the influence of specific ecological conditions of root canal

environment (Wong et al., 2021), and despite the recovery of E.

faecalis from root-filled teeth with post-treatment diseases, E. faecalis

is not a typical member of commensal oral microbiota (Aas et al.,

2005). It is less likely that E. faecalis occurs in advanced carious

lesions, and primary endodontic infections (Martin et al., 2002).

Therefore, the origin of E. faecalis recovered from root canals has

been questioned, and its association with their respective

counterparts in saliva was studied (Zehnder and Guggenheim,

2009). A significant association was found between the presence of

E. faecalis in saliva and root canals with post-treatment apical

periodontitis (Wang et al., 2012). Similar genotype was detected in

E. faecalis isolated from saliva and endodontically treated teeth

(Delboni et al., 2017), while different genetic profiles were observed

in salivary and root canals strains from the same patient (Zhu et al.,

2010). Therefore, the origin of E. faecalis in endodontic treatment

failures was proposed to be exogenous (Vidana et al., 2011). With

such contradictory findings, the relationship between E. faecalis in

saliva and root canals remains unsolved and additional evidence is

warranted. Therefore, the aim of this study was to determine the

prevalence of E. faecalis in root canals and saliva and to investigate

whether its presence could influence the presence and dimension of

periapical lesions.
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Materials and methods

Study design

The present cohort study is reported following the

Strengthening the Reporting of Observational studies in

Epidemiology (STROBE) guidelines for cohort studies (Von Elm

et al., 2008). The research protocol was approved by the local Ethics

Committee (protocol number: 18202/2020) and was registered on

Clinicaltrials.gov (NCT04637659).
Setting and participants

Sixty-seven patients were sequentially recruited among those

attending the Unit of Endodontology and Restorative dentistry,

School of Dentistry, University of Siena between July 2020 and

November 2020 according to the following eligibility criteria:
- need for a root canal treatment or retreatment with previous

therapy aging for at least five years.

- ability and willingness to give informed consent.

The exclusion criteria were:

- presence of periodontitis (Tonetti et al., 2018).

- impossibility to isolate the operating field.

- retreatment cases with missing or calcified canals, perforation

and separated endodontic instruments in which was

impossible to reach the apex.

- administration of antibiotics within the last 3 months.

- patients with diabetes, rheumatoid arthritis, and

inflammatory bowel diseases.
The cohort of patients included in the present study was defined

once all participants read and signed a written informed consent,

according to the Declaration of Helsinki.
Variables

Clinical and radiographic assessment
For each participant, demographic characteristics (age, gender)

as well as medical and dental history were collected. Tooth position

(anterior/posterior) and type of coronal restoration (direct/indirect)

were recorded during the clinical examination; The quality of each

restoration was defined as proper or improper, according to the

“Modified USPHS ‘‘ criteria (Bayne and Schmalz, 2005). A

standardized periapical intraoral radiograph was performed to

evaluate the status through the Periapical Index (PAI) score

(Orstavik et al., 1986). Afterwards, the included teeth were

categorized into five groups according to their pulpal and

periapical status as determined by clinical and radiographic

findings: (i) healthy vital tooth (HVT) group was represented by

a clinical situation in which endodontic treatment is needed for

prosthetic reasons despite the pulp not showing any sign of
frontiersin.org
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inflammation; (ii) healthy treated tooth (HTT) group included teeth

in which the pre-existing endodontic filling material was exposed to

oral cavity with no sign of periapical lesion; (iii) irreversible pulpitis

(IP) diagnosed by sharp spontaneous pain and tenderness to

percussion or pain exacerbated by lying down or cold test (Levin

et al., 2009); (iv) pulp necrosis (N) group belonged to untreated

teeth, negative to cold test, with and without apical periodontitis;

post-treatment apical periodontitis (PTAP).

Sampling and clinical procedures
Root canal and saliva samples were collected as previously

described (Sedgley et al., 2006a). Before isolation with the rubber

dam, saliva samples from the floor of the mouth, dorsum of the

tongue and the crown of the affected tooth were collected for each

patient using three sterile ISO size 40 paper points (Dentsply-

Maillefer, Ballaigues, Switzerland). The paper points were

resuspended in 100 ml of PBS/10% glycerol and stored at -70°C

until analysis. Plaque around the affected tooth was removed using

scalers and the surfaces were brushed with pumice. Teeth were

isolated with a rubber dam and disinfected with 30% hydrogen

peroxide and 5.25% sodium hypochlorite (NaOCl), which is

inactivated by sodium thiosulphate 5%. As a sterility control,

three sterile paper points (Size 40) were rubbed on the crown of

the tooth and on the surrounding areas. After access preparation,

root canal patency was achieved with minimal instrumentation and

without using hypochlorite irrigant. In case of retreatment, coronal

gutta percha was removed by sterile Gates Glidden drills size 2 & 3

(Dentsply-Maillefer, Ballaigues, Switzerland), while the middle and

apical gutta percha were removed with endodontic files without a

chemical solvent. Irrigation was performed with sterile saline to

remove any residual material before the collection of the intracanal

sample. Once the working length was established, the pre-treatment

sample was collected using ISO size 10 K-file (Dentsply-Maillefer,

Ballaigues, Switzerland). An additional pretreatment sampling was

performed by introducing two sterile paper points (ISO size 15) into

the full working length kept for at least 60 seconds. The sample was

then transferred to PBS/10% glycerol solution. When the canal was

dry, a sterile paper point moistened with sterile saline was used to

acquire the sample. In multi-rooted teeth, a single root canal was

chosen, based on the presence of periapical radiolucency and/

or exudation.
Laboratory assessment

Isolation and identification of Enterococci
Ten ml of PBS/10% glycerol from each sample were plated on

Brain Heart Infusion (BHI) agar containing 5% horse blood. The

plates were incubated in 5% CO2 at 37°C for 48 hours and

monitored daily for the presence of microbial growth. Putative

enterococcal colonies were isolated on BHI agar/blood and

identified with a latex agglutination test (Oxoid™ Streptococcal

Grouping Kit, Thermo Fisher, Hampshire, United Kingdom).

Group D colonies were then identified on a MALDI Biotyper

(Bruker Daltonics, Bremen, Germany) and by ribosomal RNA
Frontiers in Cellular and Infection Microbiology 03
operon sequencing (Cuscó et al., 2018). Colonies identified as E.

faecalis were frozen at -70°C in BHI/10% glycerol.

High molecular weight DNA extraction
E. faecalis strains were streak plated on BHI agar/blood,

incubated overnight at 37°C and checked for purity. About ten

single colonies were inoculated in BHI broth and the starter cultures

of exponentially growing bacteria (OD590 of 0.3-0.4) were frozen at

-70°C with 10% glycerol. Bacteria were inoculated 1:50 (vol:vol)

from starter cultures in 10 ml of BHI broth and incubated at 37° C

until an OD590 of 1.0 was reached. Samples were then centrifuged at

6600 x g for 5 minutes. Bacterial pellets were washed with 10 ml of

sterile 1X TE buffer (Tris 10 mM-EDTA 1 mM) and resuspended in

7.5 ml of Raffinose buffer (50 mM Tris pH 8, 5 mM EDTA, 20%

Raffinose). DNA extraction was carried out as described previously

(Pinzauti et al., 2022). The DNA pellet was resuspended in 100 ml of
saline. Genomic DNA was quantified using a Qubit 2.0 fluorometer

(Invitrogen, Whaltan, Massachusetts, USA) and a NanoPhotometer

device (Implen, Westlake Village, USA) before molecular analysis

and whole genome sequencing.

Sequencing and bioinformatic analysis
Whole genome sequencing (WGS) was performed employing

Oxford Nanopore technology. Following manufacturers ’

instruction, the sequencing library was prepared using a ligation

sequencing kit (SQK-LSK108) and barcode expansion kits (EXP-

NBD104/114) for sample multiplexing. The sequencing run was

performed on the GridION x5 platform (Oxford Nanopore

Technologies). Nanopore reads were filtered using the tool

Filtlong (v. 0.2.0) (https://github.com/rrwick/Filtlong) removing

reads shorter than 1,000 bases (–min_length 1000) and getting

rid of the 5% worst (low quality) reads (–keep_percentage 95).

Samples were also sequenced with Illumina technology at

MicrobesNG (Birmingham, UK) (https://microbesng.com/) which

performed library preparation and sequencing of paired end 250 bp

reads on a HiSeq2500. Raw Illumina reads were quality checked at

MicrobesNG: reads were trimmed using Trimmomatic (v. 0.30)

(Bolger et al., 2014) and analyzed with FastQC (v. 0.11.5) (http://

www.bioinformatics.babraham.ac.uk/projects/fastqc).

High quality complete genomes were de novo assembled using

Unicycler (v 0.4.7) (Wick et al., 2017), with both Nanopore and

Illumina reads as an input. Phylogenetic relationships among

sequenced genomes were explored using PopPUNK (v. 2.4.0)

using the ‘fit-model lineage’ parameter for data fitting (Lees et al.,

2019). PopPUNK exploits the Jaccard index (J) to establish the

similarity between k-mer data sets (oligonucleotide sequences of k

length) of two genome sequences (0<J<1, with J=1 describing two

genome sequences sharing the same k -mers) (De Giorgi

et al., 2022).
Power analysis

The detection rate of E. faecalis in culture medium was reported

to be 2% and 71% in primary and secondary endodontic infections
frontiersin.org
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respectively (Guo et al., 2011). Therefore, setting the level of

significance at alpha=0.05, the power of the study resulted to be

above 90%.
Statistical analysis

All analyses were performed using a statistical software (STATA

BE, version 17.1, StataCorp LP, Texas, USA), setting the level of

significance at 5%. Continuous variables were expressed as Mean

(SD), while categorical variables were expressed as number of

observations (percentage - %). Fisher’s exact test was used to

investigate the association between clinical and microbiological

variables. Simple linear/logistic multilevel regression models

were built in order to evaluate the association between E. faecalis

presence in the canal before treatment/E. faecalis presence

in saliva and tooth vitality, presence of periapical lesion

and PAI score, respectively. Multiple multilevel regression

models were obtained by adjusting the crude estimates for

confounders (i.e. proper/improper restoration, type of restoration,

tooth position).
Results

Participants and samples

Sixty-seven patients (36 males and 31 females), aged from 26 to

90 (mean ± SD = 56 ± 1.67), were included in the study. A total of

79 teeth in the recruited patients were sampled. Eleven samples

were discarded due to sampling or laboratory errors, and one saliva

sample was repeated in the same patient after 4 months after

endodontic therapy. Therefore, a total of 67 teeth were included

in the final analysis. E. faecalis was recovered from 11 (16.42%)

and 7 (10.45%) root canal and saliva samples, respectively.

The highest frequency was from the PTAP group (30%), followed

by N (22.2%) and HTT (16.6%) groups. E. faecalis was not detected

in IP and HVT groups. Descriptive statistics of patients’

characteristics, and clinical and microbiological assessments are

shown in Table 1.
Outcome data

Clinical and microbiological variables
Results of the association between clinical and microbiological

variables are shown in Table 2. The presence of E. faecalis in root

canals before the endodontic treatment (pre-treatment) was

significantly associated with the presence in saliva (p<0.001) and

with the presence of radiologically evident periapical lesions

(p<0.05). The tooth position, type and quality of coronal

restorations were not significantly associated with the presence of

E. faecalis in any of the samples.
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Linear/logistic regression analyses
The combined effect of the variables that were related to the

presence of E. faecalis in pre-treatment samples were investigated

using a logistic regression model (Table 3). The presence of E. faecalis

in root canal samples before the treatment significantly increased the
TABLE 1 Descriptive statistics of patients’ characteristics.

Variable Mean ± SD/Proportion (%)

Age 55.69 ± 1.67

Gender

Females 31 (45.56%)

Male 36 (54.44%)

Groups

HVT 7 (10.45%)

HTT 9 (13.43%)

IP 13 (19.40%)

N 18 (26.87%)

PTAP 20 (29.85%)

Lesion

Present 49 (73.13%)

Absent 18 (26.87%)

PAI score

0 18 (26.87%)

1 16 (23.88%)

2 7 (10.45%)

3 20 (29.85%)

4 4 (5.97%)

5 2 (2.99%)

Position

Anterior 26 (38.81%)

Posterior 41 (61.19%)

Restoration type

Indirect 46 (68.66%)

Direct 21 (31.34%)

Saliva

Present 7 (10.45%)

Absent 60 (89.55%)

Canal pre-treatment

Present 11 (16.42%)

Absent 56 (83.58%)
SD, standard deviation; HVT, healthy vital tooth; HTT, healthy treated tooth; IP, irreversible
pulpitis; N, necrotic tooth; PTAP, post-treatment apical periodontitis; PAI score, periapical
index score. Saliva +, proportion of saliva samples positive for E. faecalis; Canal pre-treatment,
proportion of samples in the canal before treatment positive for E. faecalis.
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odds of having a secondary endodontic infections (OR=2.94; 95% CI

[1.47, 11.59]; p<0.05) while its presence in saliva was associated with

higher odds of identifying E. faecalis in root canals (OR=3.70; 95% CI

[1.031, 19.229]; p<0.05) and to develop a secondary/persistent

infection (OR=3.07; 95% CI [1.67, 6.88]; p<0.05). The presence of

Enterococcus faecalis in root canals significantly increased the odds of

periapical lesion (OR=11.03; 95% CI [1.273, 95.704]; p<0.05).

However, this was not the case when E. faecalis was identified in

saliva (OR=1.97; 95% CI [0.333, 11.674]; p<0.454). Finally, the

presence of E. faecalis in pretreatment samples increases the odds of

a higher PAI index score (MD=1.031; 95% CI[0.091, 1.971]; p<0.05).
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Whole genome sequencing and phylogenetic
relationships of E. faecalis isolates

Seventeen out of 18 E. faecalis strains were sequenced using both

Illumina and Nanopore technologies (n= 17) or only with Nanopore

(n=14). One strain was not vital and could not be sequenced. Genomes

were assembled and the whole genome sequences were used to

investigate the phylogenetic relationships among different isolates

with PopPUNK (Figure 1). Core genome analysis and whole genome

analysis identified five major clusters. Analysis of phylogenetic

distances among isolates using the Jaccard index (J) with different k-

mer lengths indicated that saliva and root canal isolates of E. faecalis
TABLE 2 Inferential statistics and Fisher’s test values.

Variable/E. faecalis in sample Saliva (yes/no) p value Pre-treatment (yes/no) p value

Group

HVT (n=7) 0/7 0.103 0/7 0.139

HTT (n=9) 0/9 2/7

IP (n=13) 0/13 0/13

N (n=18) 5/13 3/15

PTAP (n=20) 2/18 6/14

Lesion

Present (n=49) 6/43 0.665 11/49 0.023*

Absent (n=18) 1/17 0/18

PAI score

0 (n=18) 1/17 0.071 0/18 0.030*

1 (n=16) 0/16 3/13

2 (n=7) 0/7 0/7

3 (n=20) 4/16 6/14

4 (n=4) 1/3 2/2

5 (n=2) 1/1 0/2

Quality of restoration

Proper (n=10) 1/9 0.132 0/10 0.195

Improper (n=57) 6/51 11/57

Type of restoration

Direct (n=46) 1/45 0.721 7/39 0.730

Indirect (n=21) 6/15 4/17

Position

Anterior (n=26) 4/22 0.257 5/21 0.738

Posterior (n=41) 3/38 6/35

Pre-treatment sample

E. faecalis present 5/7 0.001** — —

E. faecalis absent 6/60 —
fron
HVT, healthy vital tooth; HTT, Healthy treated teeth; IP, irreversible pulpitis; N, necrotic tooth; PTAP, post-treatment apical periodontitis; Dash symbol, not measured; PAI score, periapical index
score. The saliva and pre-treatment columns report the number of saliva (n=67) and pre-treatment samples (n=67) positive/negative for the presence of E. faecalis in the categories described within each
line. The p value columns report the result of Fisher’s exact test used to investigate the association between variables reported in lines with those reported in columns. Bold value denote statistical
significance (*p<0.05,**p<0.001).
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TABLE 3 Linear/logistic regression analyses for the association between E.faecalis in the root canal/saliva and PAI score with clinical variables,
respectively.

Variable Presence of Enterococcus faecalis in root canal before treatment

N
Crude
ORs

95% CI
p-

value* N Adjusted† ORs

95% CI
p-

value*Lower Upper Lower Upper

Secondary infection groups
67

3.6 1.5 13.63.1 0.049* 57 2.95 1.5 11.6 0.023*

Presence of periapical lesion
67

9.3 77.6 12.4 0.039* 57 11.0 1.2 95.7 0.029*

Presence of Enterococcus faecalis in saliva

Secondary infection groups
67

0.9 0.16 5.26 0.938 67 3.07 1.67 6.88 0.040*

Presence of periapical lesion
67

1.9 0.3 10.6 0.460 67 1.9 0.3 11.6 0.454

PAI score

N
Crude
ORs

95% CI

p-value* N Adjusted† ORs

95% CI

p-value*Lower Upper Lower Upper

Enterococcus faecalis in pre-treatment
samples

67 1.08 0.1 2.0 0.022* 67 1.03 0.1 1.9 0.032*
F
rontiers in Cellular and Infection Microbiolo
gy
 06
 fro
Abbreviations: ORs, odds ratios; CI, confidence interval; secondary infection group (PTAP,HTT).
Bold value denote statistical significance at* p<0.05, †Adjusted for tooth position, type and proper/improper restoration.
FIGURE 1

Phylogenetic relationships among E. faecalis isolates. Different colors indicate different genomic clusters: ten population clusters were identified
using core genome sequences, 5 clusters contain a single genome, while another 5 contain either 2 or 3 genomes, notably all coming from the
same patient. The phylogenetic tree was generated based on whole genome sequences with branch lengths indicating the number of nucleotide
substitutions per site (scale bar). Patient ID and source of the sample are indicated on the right. The genome of the reference laboratory strain
OG1RF was used as an outgroup.
ntiersin.org

https://doi.org/10.3389/fcimb.2023.1061645
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Gaeta et al. 10.3389/fcimb.2023.1061645
retrieved from the same patient, BE15 and BE43, BE16 and BE17, BE7

and BE8, BE32 and BE33 were highly correlated (J>0.95). Moreover,

the strains BE11 and BE32 were recovered from the saliva of the same

subjects at 2 different visits 4 months apart, and share a J index of 0.987

(k=29). The strains BE5 and BE52 share a J index of 0.8 although they

were recovered from root canals of different subjects.
Discussion

The present study aimed to assess the prevalence and correlation

between E. faecalis isolates from root canals, with different pulpal and

periapical conditions, and saliva to better understand the origin of E.

faecalis in endodontic infections. This study analyzed the association of

E. faecalis presence in root canals before treatment with (i) the status of

periapical tissues, and (ii) clinical characteristics such as type, quality

and location of restorations. Previous studies investigated the

prevalence of E. faecalis in failed endodontic treatment and persistent

infections (Zhu et al., 2010; Wang et al., 2012; Delboni et al., 2017), and

recovered E. faecalis from primary endodontic infections (Rôças et al.,

2004; Sedgley et al., 2006a; Guo et al., 2011). This study included

clinical conditions ranging from healthy pulp to teeth with post-

treatment apical periodontitis, classifying each condition into

primary or secondary/persistent endodontic infection groups as

previously established (Delboni et al., 2017). A cultural approach was

used to isolate E. faecalis from saliva and endodontic samples, this

allowed to recover strains for further molecular characterization and to

avoid PCR-based techniques, which could be influenced by

contamination and by the presence of extracellular DNA or DNA

from dead bacterial cells (Siqueira, 2002; Gomes et al., 2015). Recently,

Next Generation Sequencing (NGS)-based studies revealed an

unspecific composition of endodontic microbiota (Wong et al.,

2021), and challenged the role of E. faecalis in the etiology of

persistent/secondary root canal infections (Rogers et al., 2010;

Brundin et al., 2014) even if a recent 16S rRNA amplicon

sequencing study detected high abundance of E. faecalis OTUs in

secondary apical periodontitis (Bouillaguet et al., 2018). E. faecalis was

not identified in root canals with healthy vital pulp or irreversible

pulpitis, coherently with the reported absence of E. faecalis in carious

lesions close to the pulp (Martin et al., 2002). On the other hand, a

more recent NGS-based study identified the genus Enterococcus in the

microbiome of root canals with irreversible pulpitis, albeit at a very low

relative abundance (Siqueira et al., 2016). According to our study, the

prevalence of E. faecalis in necrotic root canals was 22%. This

percentage was essentially in line with a previous study, wherein the

prevalence of E. faecalis was 26% and 32% when identified by culture-

and PCR-based methods, respectively (Zandi et al., 2018). The

prevalence of E. faecalis in primary root canal infections was even

lower (7.5%) when investigated using the checkerboard DNA-DNA

hybridization (Zahran et al., 2021). These findings collectively support

a relatively low occurrence of enterococci in primary endodontic

infections. This could be explained by the fact that enterococci are

transient members of oral microbiota (Wang et al., 2012), given that

endodontic microbiota are derived from oral microbiota influenced by

the specific ecological conditions of root canal system (Cogulu et al.,

2007). It is also possible that microbial species predominant in primary
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endodontic infections can inhibit the proliferation of E. faecalis, yet

such assumption should be investigated in future studies. Our study

revealed that E. faecalis was identified by 30% in secondary/persistent

endodontic infections, which lies in agreement with previous

sequencing-based studies, which reported a prevalence of E. faecalis

equal or greater than 30% in these infections (Siqueira et al., 2002;

Zehnder and Belibasakis, 2015). The higher prevalence of E. faecalis in

secondary/persistent endodontic infections group compared to

primary infections in this study (30% vs 22%) agrees with a previous

systematic review, which significantly correlated E. faecalis with

persistent infections (Zhang et al., 2015). Adaptation to

environmental conditions of root-filled teeth and tolerance to

intracanal disinfection could explain the higher occurrence of E.

faecalis in post-treatment apical periodontitis (Evans et al., 2002). It

has been demonstrated that mechanical instrumentation and exposure

to endodontic irrigants increased the number and adhesion forces of E.

faecalis to dentine and root canal filling materials respectively (Kishen

et al., 2008; Vengerfeldt et al., 2014; Keskin et al., 2017). Our study

reported a 10% prevalence of E. faecalis in saliva samples. Previous

studies, both using cultural and molecular methods, reported similar

values of prevalence ranging from 19 to 21% (Wang et al., 2012;

Delboni et al., 2017). Isolation of E. faecalis from saliva samples could

be also linked with the isolation of this pathogen from multiple oral

sites (Delboni et al., 2017), which supports the assumption that oral

cavity could be a potential reservoir of E. faecalis. In contrast to our and

previous studies, E. faecalis was never identified in saliva of patients

seeking endodontic retreatment (Zhu et al., 2010). In addition, a

significant association was observed between the presence of E.

faecalis in saliva and root canals, as demonstrated previously (Wang

et al., 2012), while contradicting an earlier study (Vidana et al., 2011).

The higher odds of identifying E. faecalis in root canals when it exists in

saliva supports a possible role of E. faecalis in saliva as a risk factor for

root canal infection with this pathogen. A higher prevalence of E.

faecalis in saliva and subgingival samples from patients with chronic

periodontitis compared to healthy subjects was reported (Xu et al.,

2019), and suggests that periodontal infections could favor the

colonization of E. faecalis as observed in endodontic-periodontal

lesions (Guo et al., 2011). For this reason, in our study, subjects with

periodontitis were excluded. Our study also agrees with the study by

Wang et al. (2012), wherein tooth position, quality and type of

restorations were not significantly associated with the presence of E.

faecalis in root canals despite differences in the demographic

characteristics of the investigated populations. Our results

demonstrated that the odds of developing a periapical lesion were

significantly increased when E. faecalis was detected in root canals.

These results could be explained by several studies, which

demonstrated the role of E. faecalis and its virulence factors (such as

extracellular proteases and cytolysin) in local inflammation and

alveolar bone destruction in apical periodontitis (Souto and

Colombo, 2008; Guerreiro-Tanomaru et al., 2013). Our results

correlate with the study by Molander et al., wherein enterococci were

recovered from 32% of teeth with radiographically verified apical

periodontitis versus only 5% in teeth with no apical periodontitis

(Molander et al., 1998), while other studies revealed no significant

association of enterococci with diseased periapical tissues (Kaufman

et al., 2005; Zoletti et al., 2006). Although it is well-established that AP
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is of bacterial etiology, it is important to consider that multiple local

and systemic factors predispose the incidence of periapical lesions and

affect the healing of periapical tissues in endodontically-treated teeth

(Kirkevang et al., 2007; Holland et al., 2017). Our pilot findings showed

that two genetically related salivary isolates of E. faecaliswere recovered

from the same subjects at four months apart, which could support the

assumption that this species could persist in the oral cavity for a long

time frame, as observed in repeated oral rinses after the ingestion of

enterococci-rich food and in mature biofilms recovered from intraoral

dental splints (Razavi et al., 2007). We demonstrated genetic

relatedness of four pairs of salivary and endodontic E. faecalis isolates

from the same patient, this supports the hypothesis that E. faecalis in

saliva could serve as a potential source of infecting root canals. A

similar finding was also reported for E. faecalis strains isolated from

saliva, pulp chamber and root canals of endodontic patients (Delboni

et al., 2017). These findings can be explained by the possible transition

of E. faecalis from oral cavity into root canals during or after

endodontic treatment or less likely via carious lesions. We also found

a pair of genetically different E. faecalis in saliva and root canals of the

same patient (BE51 and BE52). Interestingly, strain BE52 was

genetically related to BE5, which was isolated from the root canal of

a different patient. These findings suggest that similar strains of E.

faecalis can be present in different individuals as observed by Pinheiro

et al (Pinheiro et al., 2006), which could be related to bacterial intake by

exogenous sources such as food (Al-Ahmad et al., 2010). Future studies

should be focused on investigating the genetic profiles of E. faecalis

strains longitudinally collected from the same patient, and their

association with food intake. It seems also worthy to explore the

long-term occurrence of E. faecalis in the oral cavity in a larger cohort,

and to investigate the factors which govern the long-term survival of E.

faecalis and its integration into oral biofilms. The mechanisms which

explore the role of E. faecalis in the pathogenesis of AP should also

be investigated.
Conclusion

The findings of this study confirmed the presence of E. faecalis

in saliva and root canals especially those with post-treatment apical

periodontitis. The significant association and genetic relatedness of

E. faecalis in saliva and root canals suggest that the presence of E.

faecalis in saliva is a risk factor for root canal contamination with

this pathogen. The latter could increase the risk of developing a

periapical lesion. The present study shifts the focus back to the role

of E. faecalis in the pathogenesis of endodontic infections.
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