
Received 21 May 2023, accepted 29 May 2023, date of publication 6 June 2023, date of current version 14 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3283312

Analysis and Optimization of Direct Convolution
Execution on Multi-Core Processors
MIRCO MANNINO 1, BIAGIO PECCERILLO 1, ANDREA MONDELLI2,
AND SANDRO BARTOLINI 1
1Department of Information Engineering and Mathematics, University of Siena, 53100 Siena, Italy
2Huawei Technologies Company Ltd., CB4 0WG Cambridge, U.K.

Corresponding author: Mirco Mannino (mannino@diism.unisi.it)

This work was supported in part by Huawei Technologies Research and Development (U.K.) Ltd., and in part by the Italian Ministry of
University and Research.

ABSTRACT Nowadays, convolutional neural networks are among the most widely used types of deep learn-
ing networks thanks to their usefulness in many application domains. There are many efforts to find methods
to increase their training and inference performance and efficiency. One of the most widely used technique to
implement convolution consists of flattening tensors into 2Dmatrices and carrying out the operation through
a matrix-matrix multiplication routine, which has highly optimized implementations in high-performance
libraries. However, this kind of approach uses extra time and memory to transform and store the tensors
involved. For this reason, direct convolution is becoming increasingly popular. Direct convolution can be
implemented as a series of nested loops iterating over tensor dimensions and it does not require extramemory.
In this work, we evaluate on various multi-core CPUs the performance and scalability effects deriving from
different parallelization strategies, loop organizations, and SIMD-vectorization approaches with different
compilers in relation with architectural aspects. We discuss each parameter thoroughly and distill our
findings in a set of heuristics that can be used to quickly achieve a high-performance implementation in
accordance to the underlying hardware and the characteristics of the convolutional layer at hand. By adopting
a per-layer approach, we increase performance up to 60-70% compared to a static implementation for all
the layers. Moreover, our results are comparable, or even better (up to 1.67× speedup) than matrix-matrix
multiplication-based convolution in a multi-core system.

INDEX TERMS Convolutional neural networks, direct convolution, multi-core, multi-threading, perfor-
mance evaluation.

I. INTRODUCTION AND MOTIVATION
Convolutional neural networks (CNNs) are widely used
nowadays due to the large number of areas in which they can
be applied, including computer vision [1], [2] (e.g., object
recognition and object detection), bioinformatics [3], and
natural language processing [4], [5].

State-of-the-art CNN architectures (e.g., AlexNet [6],
VGG [7]) are generally composed of several layers. Input
tensors are processed by the first layer of the convolutional
part of the network. After that, the outcome is transformed
by applying activation functions (e.g., ReLu) and pooling

The associate editor coordinating the review of this manuscript and

approving it for publication was Vlad Diaconita .

layers (e.g., MaxPooling) [8]. Several instances of these three
types of layer are used to compose a CNN architecture. The
aim of these layers is to extract more and more complex
features from the input that will be used by the final part of the
CNN to provide the network decision. Indeed, the final part
of the architecture consists of the so-called fully-connected
layer [8]. Figure 1 shows the scheme of a general CNN
architecture.

The most onerous operation, from both computation time
and energy consumption perspectives, is the convolution –
therefore, its optimization in such directions is crucial for
meeting the ever-increasing market requirements in both
training and inference activities. In a convolution, each output
element is calculated as the accumulation of several scalar

57514
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-1660-3984
https://orcid.org/0000-0002-4998-0092
https://orcid.org/0000-0002-7975-3632
https://orcid.org/0000-0002-5169-9232


M. Mannino et al.: Analysis and Optimization of Direct Convolution Execution on Multi-Core Processors

FIGURE 1. Scheme of a general CNN architecture (left). Convolutional layer example (right) represents ‘‘CONV LAYER 1.’’

FIGURE 2. Example of convolution between a 5 × 5 × 2 input tensor and
a 3 × 3 × 2 × 1 kernel tensor. The result is a 3 × 3 × 1 output tensor. The
product of elements belonging to different channels of the input and
kernel tensors are accumulated into a single output channel.

multiplications between elements read from input and kernel
tensor. Multiply-and-accumulate is the main operation per-
formed. Figure 2 shows a convolution operation example.

One of the most widely used methods to address con-
volution consists in the transformation of the involved ten-
sors into two-dimensional matrices (im2col operation). Then,
the computation is carried out by a matrix-matrix multi-
plication between the resulting matrices (gemm operation).
Finally, the tensors are converted back to their original rep-
resentation. This method is widely used since highly opti-
mized matrix-matrix multiplication routines are available
(e.g., OpenBLAS [9], Intel MKL [10]). However, even if
the computation can be accelerated, the main drawbacks of
this approach are the time needed to transform the tensors
(packing time) and additional memory needed to store the
transformed representations. Throughout the paper we use
the term im2col+gemm to refer to this method based on
matrix-matrix multiplications.

An alternative method that has been gaining increasing
attention in recent times is the so-called direct convolution.
It does not apply any transformations to the tensors and can
be implemented through a series of nested loops that wrap
an accumulation operation over the elements of the output
tensor.

Direct convolutionmay seem straightforward to implement
on CPU in a high-level language (e.g., C++). A work-
ing implementation can be obtained by simply translat-
ing the summations that make up the definition into six
nested loops. However, this approach does not necessarily
lead to the best performance achievable on a given system,

as low computational and/or memory bandwidth may still be
limiting factors. In order to reach high-performance on dif-
ferent architectures, flexibility should be taken into account:
direct convolution should be conceived as a parametric oper-
ation, with parameters affecting the execution order of some
groups of operations and their distribution/scheduling on the
available computational resources. This may lead to different
performance according to the parameters’ values, despite the
computation calculates the same result. Therefore, on a given
system, design space exploration could be done in order to
identify the set of parameters that allow achieving the best
performance.

We identify four parameters that can be varied in such
spirit. The first is the order in which loops are organized
(i.e., loop orders and loop tiling). Different loop organiza-
tions induce different memory access patterns, and different
ways of exploiting data locality, which have a well-known
impact on performance. The second is the way the work
is partitioned and assigned to parallel threads of execution.
Since every output element is computed independently of
the others, several levels of parallelism can be exploited to
gain performance. Prior works [11], [12], [13], [14] confirm
the importance of this aspect. Then, we analyze the role of
SIMD-vectorization. At the heart of a convolution operation,
we have floating-point multiply-accumulate instructions that
can be grouped in SIMD instructions for increased through-
put. Lastly, the compiler choice. Modern compilers have the
ability to apply a long list of optimizations to high-level
source code, such as instruction reordering, loop unrolling,
and auto-vectorization, and they can make a significant dif-
ference in the execution.

However, these parameters are not independent of each
other: for instance, the parallel execution effectiveness is
affected by the concurrent usage of the last-level-cache and,
therefore, by theworking-set size of inner loops (thus, by their
order). Or, as another example, compiler optimizations highly
depend on the compiler ability to recognize opportunities
based on code patterns, while different orders imply dif-
ferent code-structures. Furthermore, different machines may
require different optimal parameter sets. Consequently, the
choice of an optimal parameters’ set is a challenging prob-
lem, as well as the definition of general criteria for select-
ing candidate values based on architectural features of the
target machine.

In this work, we explore various combinations of values for
the parameters introduced above on different architectures.

VOLUME 11, 2023 57515



M. Mannino et al.: Analysis and Optimization of Direct Convolution Execution on Multi-Core Processors

Our goal is to determine experimentally which combinations
lead to the best performance in relation to the underlying
hardware. We discuss the obtained performance and gener-
alize our findings to help implementors to design direct con-
volution on their hardware. In summary, we use and combine
the following elements:

• Different loop organizations (i.e., loop orders and loop
tiling), with each being characterized by the type of data
reuse and memory access pattern;

• Different parallelization strategies, in which we explore
different ways of assigning output elements to threads
of execution;

• Different SIMD-vectorization strategies, in which we
group floating-point operations in one or more consecu-
tive SIMD instructions;

• Different compilers to study their impact in terms of
automatic optimizations, e.g., auto-vectorization;

The study presented in this work may change the way
convolution is addressed in CNNs today. We show that
an im2col+gemm implementation, despite being the most
widespread solution, is not necessarily the best choice in
terms of performance, as well as memory footprint. We con-
duct our analysis on multi-core CPUs. Where possible,
nowadays the trend is to use GPUs, FPGAs, NPUs, and
other ad-hoc accelerators for seeking higher performance/-
efficiency than CPUs [15]. GPUs’ massively parallel hard-
ware has been successfully employed in the im2col+gemm
convolution implementation, but also in direct convolution
[16], [17] recently. State-of-the-art convolutional accelerators
(e.g., [18], [19]) use specific dataflow structures that can
be seen as portions of direct convolution algorithm mapped
in hardware, since tensors are processed spatially without
applying any transformations. Although these architectures
differ substantially frommulti-core CPUs, some of the results
presented in this paper can be applied, generalized, and
extended to write efficient direct convolution on GPUs or
design ad-hoc accelerators. A full treatise covering also the
application of direct convolution to these architectures is
beyond the scope of this paper, and we will investigate it as
future work.

The main contributions of this paper can be summarized as
follows:

• We present and discuss an implementation of direct
convolution based on four parameters (loop organiza-
tion, parallelization strategy, SIMD vectorization, and
compiler choice) that can be varied in search of peak
performance;

• For each parameter, we do a thorough analysis of the
possible values, its impact on performance and read the
results in the light of architectural considerations;

• We explore different combinations of such parameters to
identify the best performing values for both full network
and per layer;

• We collect our lessons learned to help convolution
designers to select the best parameters in accordance to

the underlying hardware and the convolutional layer at
hand.

II. CNN BACKGROUND AND DIRECT CONVOLUTION
Before going into the details of loop organizations, paral-
lelization strategies, and vectorization strategies adopted, this
section provides an introduction to basic concepts of convolu-
tion, with particular attention to the implications of adopting
an implementation based on direct convolution.
In a CNN architecture, the convolutional layer is usually

the most demanding in terms of running time. It involves
an input tensor (Hi × Wi × Ci), a kernel (or filter) tensor
(Hf × Wf × Cf × Nf ), and it produces an output tensor
(Ho × Wo × Co). In each convolutional layer, the number of
kernels is the same as the output tensor’s depth (i.e., number
of channels) (Nf = Co), while each kernel’s depth is equal to
the input tensor’s depth (Cf = Ci).

Output elements are calculated as follows:

Oho,wo,co =

Hf∑
n=0

Wf∑
m=0

Ci∑
i=0

Iho·s+n,wo·s+m,i · Kn,m,i,co (1)

where O, I, and K are output, input, and kernel tensors,
respectively, and s represents the stride. The latter is a con-
volution parameter that defines the number of steps taken by
the convolution filter in both directions as it slides over the
input tensor. Another convolution parameter is the so-called
padding. It represents the number of extra rows and columns
added to the input tensor’s margins to be able to operate
seamlessly on its border. These two parameters are used to
control output tensor spatial size (i.e., height and width):

Ho =
(Hi − Hf + 2 · padding)

stride
+ 1

Wo =
(Wi −Wf + 2 · padding)

stride
+ 1 (2)

Equation 1 shows that input height and width indexes
are not used as main indexes of summations, but they are
obtained by combining the indexes of output and kernel ten-
sors. Figure 2 shows an example of a convolution operation
between a 5 × 5 × 2 input tensor and a 3 × 3 × 2 × 1 kernel
tensor, producing a 3 × 3 × 1 output tensor.

Direct convolution, that in its naive form can be imple-
mented as a series of nested loops, is a straight implemen-
tation of Equation 1. Its characterization depends on how
the loops are arranged among themselves. Notably, the order
of loops has a direct impact on memory access patterns
and utilization of computational resources. In Section III-A,
we discuss these aspects for the selected loop orders.

Moreover, each element of the output tensor can be com-
puted independently of the others, making direct convolution
highly parallelizable. There are two levels of parallelism
that can be exploited to speedup the performance of direct
convolution. The first is a coarse-grained parallelism that
can be achieved through multi-threading, exploiting multiple
cores of the CPU. The second is related to a finer-grain
spatial parallelism, obtained through SIMD instructions, that

57516 VOLUME 11, 2023



M. Mannino et al.: Analysis and Optimization of Direct Convolution Execution on Multi-Core Processors

TABLE 1. Notation of shape parameters.

Listing. 1. Loop order N.1.

Listing. 2. Loop order N.2.

allow carrying out a specific operation (e.g., addition and
multiplication) over several adjacent scalar values at once
(e.g., 8 single-precision scalar values can be simultaneously
managed using 256-bit SIMD instructions). In direct convolu-
tion, outermost loops are parallelized using a multi-threaded
approach, while innermost loops are spatially parallelized
using SIMD operations (Section III-C). The parallelization
strategy is a key contribution in the direct convolution char-
acterization. Section III-B shows the strategies used in this
work and their direct implication on their memory use.

III. DIRECT CONVOLUTION PARAMETERS
We identify four parameters tomodel direct convolution: loop
organization (i.e., loop orders and loop tiling), paralleliza-
tion strategy, SIMD vectorization, and compiler choice. This
section describes the main characteristics of each parameter.
In particular, Section III-A and Section III-B explain the loop
orders and the parallelization strategies, respectively, used
to implement the different versions of direct convolution.
Section III-C shows how the other two parameters, i.e, SIMD
vectorization and compiler choice, are related to direct con-
volution and how they are used in this work.

A. LOOP ORDERS AND LOOP TILING
As mentioned in previous sections, the order in which loops
of direct convolution are organized does not affect result
correctness. However, it changes the memory access pattern
and the usage of architectural resources.

Before presenting the orders of the loops used, it is impor-
tant to know how tensors are arranged in memory. Input and
output tensors are three-dimensional tensors, for which we
use the HWC memory layout (i.e., most local dimensions in

Listing. 3. Loop order N.3.

order are depth, width, and height), while the kernel tensor
has four dimensions and it is arranged in memory according
to the HWCN layout (i.e., most local dimensions in order are
number of kernels, depth, width and height). Table 1 shows
the notations used for the shape parameter for each type of
tensor. Since the output tensor is arranged with depth (Co)
as the most contiguous dimension in memory, it is typically
convenient to iterate through that dimension in the innermost
loop. This choice fosters data locality and easier handling
of SIMD instructions. The order of the outermost loops is
selected according to observations resulting from the use of
SIMD units and tensors’ access patterns. Three different loop
orders are analyzed, according to the following observations:
Loop order N.1 This loop order allows accessing to a differ-

ent contiguous output element during each consecutive
Wo ∗ Co iterations. According to [11], this helps not to
stall SIMD units, since every output element accessed
in one iteration does not depend on the previous output
elements. For this reason, iteration over output depth
and width are in the innermost loops. The next three
loops are used to iterate over the dimensions of each
kernel. The outermost loop is dedicated to output height
iteration (see Listing 1).

Loop order N.2 This loop order has the three innermost
loops that iterate over all the output dimensions. As in
the order N.1, the three innermost loops guarantee an
output memory access in which every element is dif-
ferent from previous iterations. What characterizes this
order of loops is the number of different consecutive
accessed elements:Wo∗Co andHo∗Wo∗Co in order N.1
andN.2, respectively. The next three loops are used, as in
order N.1, for the iteration of each kernel (see Listing 2).

Loop order N.3 This loop order is slightly different from
the previous two, since the two innermost loops are
dedicated to the iteration of output and kernel depths.
By doing so, stalling of SIMD units is more probable
but there is higher reuse of kernel data, supporting better
utilization of cache memories. The next loop is used to
iterate over output width; then height andwidth of kernel
are iterated and, finally, the outermost loop is dedicated
to output height iteration (see Listing 3).

Accessing the same output element in two consecutive
iterations produces aRead-After-Write dependency that could
be harmful when SIMD units are used [11]. SIMD units
have a higher throughput than scalar units, at the cost of a
higher latency of individual instructions. On the other hand,
accessing different elements in every consecutive iteration

VOLUME 11, 2023 57517



M. Mannino et al.: Analysis and Optimization of Direct Convolution Execution on Multi-Core Processors

FIGURE 3. Loop tiling applied to loop orders N.1, N.2, and N.3. On the
left, we show the newly-added tiling loops and the modifications of the
three innermost loops, for each order considered. On the right, we show
the elements of input, kernel, and output tensors accessed during the
first tile computation. In the example, tile size is set to 2 in all the cases.

could lead to the loss of data locality, that does not allow a
proper exploitation of cache memories. With loop orders N.1
and N.2, the same output element is accessed every Co ∗Wo
iterations, while with loop order N.3, it happens every Co
iterations. Loop order N.3 accesses output elements giving
more importance to the cache locality, since its innermost
iterations are along the most contiguous dimensions of output
and kernel tensors. On the other hand, with loop orders N.1
and N.2, there is a longer reuse distance of the same output
elements, which makes SIMD unit stall less likely.

1) LOOP TILING
Loop tiling is a well-known optimization technique used to
increase data locality in a nested loop computation. It consists
of dividing the workload in smaller blocks (i.e., tiles), aiming
to increase data locality and performance. Loop tiling imple-
mentation requires additional loops that iterate over, and
within, each tile. Loop orders N.1, N.2, and N.3 can be further
optimized using loop tiling. There are 6 dimensions that can
be used to divide the workload into smaller blocks (i.e., Ho,
Wo, Co, Hf , Wf , and Ci). The choice of the dimension (or
dimensions) to select to apply loop tiling is strongly related
to the order of the loops. Each of the proposed orders needs
a targeted tiling strategy.

FIGURE 4. Output tensor regions assigned to 4 threads using parallel-Ho,
parallel-Co and parallel-Ho+Co.

We apply loop tiling considering the innermost loops of
each order. Apply tiling along the dimensions iterated in the
innermost loop leads to an expensive overhead and, thus,
a performance decay. Loop orders N.1, N.2, and N.3 all have
the innermost loop that iterates over the depth of the output
(Co), therefore, this dimension is not used for partitioning
the workload. Having excluded the output depth dimension,
for each order we used the dimension iterated in the second
innermost loop. By using only one dimension to apply tiling,
it can happen that the workload is not reduced sufficiently to
achieve a performance increase. For this reason, we also use
the third innermost loop to apply tiling. Thus, loop orders N.1
and N.3 use tiling along output width (Wo) and input depth
(Ci), while tiling in loop order N.2 is applied along output
width (Wo) and height (Ho).
Figure 3 shows how loop orders change after tiling (on the

right) and which elements of each tensor are accessed by a
single tile (on the left). Loop orders N.1 and N.3 access the
same elements in a tile, but they differ in the order in which
elements are accessed.

Applying tiling along the input depth (loop orders N.1
and N.3) allows reducing the number of elements accessed by
both input and kernel in a single tile. Consequently, a single
output element needs to be processed by more than one tile
in order to be completed. On the contrary, apply tiling only
on output dimensions (loop order N.2) allows carrying out
the whole computation of an output element in a single tile,
avoiding accessing it again in a different tile.

B. PARALLELIZATION STRATEGY
Since every output element can be computed independently
of the others, several parallelization strategies can be used.
Changing the way a group of output elements is assigned to
each thread reflects on architectural resource utilization and
consequently on performance.

For the following discussion, we assume that T indicates
the number of available threads. We use three types of paral-
lelization strategies:
Parallel-Ho This parallelization strategy assigns to each

thread a portion of output rows. Each thread is in charge
to compute the results ofHo/T output rows, while kernel
and input tensors are accessed sequentially. In particular,
accessed input tensor region is reduced by a factor that
depends on T and the height of each kernel (Hf ), since
each output row computation requires Hf lines of the
input. Accessed kernel tensor memory is not reduced at

57518 VOLUME 11, 2023



M. Mannino et al.: Analysis and Optimization of Direct Convolution Execution on Multi-Core Processors

FIGURE 5. Memory size (bytes) of input, kernel, and output tensors accessed per thread in each parallelization strategy for 1, 2, 4, and 8 threads, using
the first three convolutional layers of AlexNet, labeled as CONV-1, CONV-2, and CONV-3. The other layers are not shown because their memory size is
similar to that of CONV-3. The figure shows also the memory size of tensors when the tiling is applied with the smallest tile sizes for each tiling strategy
considered (i.e., Ho_tile = Wo_tile = 1 and Wo_tile = Ci_tile = 1). Dashed lines represent the cache sizes of an Intel Core i9-9900K CPU (i.e., L1 = 32KB,
L2 = 256KB, and L3 = 16MB).

all, because each output channel needs a whole kernel
to be computed. Thus, each thread has to use the whole
kernel tensor.

Parallel-Co This parallelization strategy aims to reduce the
amount of kernel tensor memory accessed per thread.
In fact, in this case, the output tensor is partitioned
along the depth dimension, resulting in an assignment
of a portion of the channels to each of the available
threads. Thus, each thread computes Co/T output chan-
nels, corresponding to a total of Ho × Wo × (Co/T )
output elements. Input memory accesses do not decrease
as the number of threads increases, since the full input
tensor is required to compute a single channel of the
output.

Parallel-Ho+Co Previous parallelization strategies aim to
reduce the output elements to be computed per thread by
slicing along specific dimension of it (height or depth).
This parallelization strategy, conversely, targets a com-
bination of both. In this case, output tensor elements are
assigned to each thread by splitting the output along both
height and depth.

Figure 4 shows the output tensor portion assigned to each
thread using parallel-Ho, parallel-Co, and parallel-Ho+Co.

Additional parallelization strategies can be adopted lever-
aging the output width (Wo). However, since it is a quite
common situation to have convolutional layers with the same
output height and width (Ho = Wo) [6], [7], [20], using
Wo to parallelize leads to thread workloads similar to those
obtained with parallel-Ho, but with lower data-locality. Thus,
parallelization strategies involving the Wo are not taken into
account.

Using parallel-Ho+Co, the output elements can be parti-
tioned along two different dimensions. We choose to always
split the depth (Co) dimension into two partitions, while the
height (Ho) dimension is split according to the number of
threads. For instance, in case of 8 available threads, output
rows are divided into four portions and each thread computes
Co/2 channels of a portion of rows. Since output depth (Co)
is the most contiguous dimension in memory, splitting it
into only two partitions, and split height (Ho) dimension
according to the number of threads, allows maintaining data
locality as the number of threads increases. This is because a
higher number of threads results in more partitions along the
less contiguous dimension (output height Ho) and not along
the more contiguous one (output depth Co).
The amount of memory accessed by each thread depends

on parallelization and tiling strategies. Figure 5 shows the
amount of accessed memory (bytes) per thread, for each
type of tensor, using up to 8 threads and single-precision
values, in the first three convolutional layers of AlexNet
(i.e., CONV-1, CONV-2, CONV-3), in three different scenar-
ios: 1) no tiling; 2) tiling applied alongWo andCi, considering
the smallest tile size (i.e., Wo_tile = Ci_tile = 1); 3) tiling
applied along Ho and Wo, considering the smallest tile size
(i.e., Ho_tile = Wo_tile = 1). The dashed lines in Figure 5
show the cache sizes of an Intel Core i9-9900K CPU (i.e.,
L1 = 32KB, L2 = 256KB, and L3 = 16MB). The figure
highlights that loop execution order, tiling and parallelization
can induce different working set sizes per thread, and thus
opportunities to exploit faster average memory access time
due to reduced usage of L2 and L3 caches.
There are different situations, in terms of reduction of

memory accessed per thread, depending on the parallelization

VOLUME 11, 2023 57519



M. Mannino et al.: Analysis and Optimization of Direct Convolution Execution on Multi-Core Processors

strategy. Parallel-Ho strategy reduces the amount of mem-
ory accessed of input and output tensors, while parallel-Co
reduces the total memory accessed of output and kernel ten-
sors. Parallel-Ho+Co, being a hybrid strategy between the
other two, allows reducing the amount of accessed mem-
ory of every tensor. However, when loop tiling is not used
(No Tiling in Figure 5) the total workload is above, or at
most slightly below, the L2 cache threshold. Using tiling
(Tiling[Ho,Wo] and Tiling [Wo,Ci] in Figure 5) allows reduc-
ing the working set under the L2 threshold and, thus, achieve
higher performance. Tiling[Ho,Wo] decreases, on average,
the memory accessed of 66%, 63%, and 60% for CONV-1,
CONV-2, and CONV-3, respectively. Instead, Tiling[Wo,Ci]
allows higher memory reduction with a decrease of accessed
memory, on average, of 87%, 95%, and 95% for CONV-1,
CONV-2, and CONV-3, respectively. This is an expected
situation since, apart from initial layers, input depth (Ci)
has higher values compared to output spatial dimensions
(Ho and Wo), leading to smaller tile sizes when the former
is used for loop tiling.

C. SIMD-VECTORIZATION
Modern architectures are equipped with SIMD units that
allow applying the same operation (e.g., addition) to multiple
data elements simultaneously. SIMD unit registers, in most
common architectures, can handle 128-, 256-, and 512-bit
wide data. The number of scalar elements computed by a
SIMD instruction depends on SIMD register width and data
type used (e.g., 256-bit wide registers can operate either on 8
32-bit single-precision or 4 64-bit double-precision scalar
elements). They are very suitable for convolution and can
provide a significant performance increase. In particular, the
main operation involved in the computation is amultiply-and-
accumulate, that can be addressed through dedicated FMA
units present in the architecture. There are three main ways
to use SIMD instructions within an application [21]:
Assembly instructions Explicit assembly code of SIMD

instructions is inserted in the source code. This method
implies more effort for the programmer and a need for
more attention to memory management.

Intrinsic functions Compiler-provided type of functions
that are replaced with a sequence of low-level instruc-
tions at compile-time. They are easier to use than assem-
bly code, since there is a higher level of abstraction.

Compiler auto-vectorization By enabling optimization
flags and using specific data access patterns, compiler
can insert SIMD instructions during the compilation
phase.

Using SIMD instructions, the throughput can increase signifi-
cantly, at the cost of higher latency of individual instructions.
In computations involving multiple reads and writes of the
same addresses, e.g., the accumulation operation over the out-
put elements in direct convolution, it is important that the
access to a memory location occurs at least after a certain
number of cycles (i.e., SIMD unit latency cycles) to avoid
stalling SIMD units and hide their latency [11].

TABLE 2. Convolutional layers selected from AlexNet, ResNet and VGG.
‘‘CNN’’ column indicates the network from which the layer was extracted.
Input tuples correspond to (Hi , Wi , Ci ) and kernel tuples correspond to
(Hf , Wf , Cf , Nf ). Layers are divided into three groups, according to their
position along the CNN architecture.

Direct convolution is very suitable to use SIMD instruc-
tions: in its optimized versions [11], [12], [13], [14], there is
heavy use of them.

Another widely used technique to increase instruction
level parallelism (ILP) and, consequently, performance is
the so-called loop-unrolling. It can be implemented by repli-
cating, in the loop body, the instructions for the loop to
occur multiple times and changing the counter variables
accordingly. It aims to promote instruction level parallelism
opportunity, minimizing the total number of instructions
executed by reducing loop conditional instructions and the
number of updates of the loop counter variable. Also in this
case, it can be used in different ways: 1)manually unroll loops
in source code or 2) let the compiler unroll loops at compile
time. Although it can increase performance, excessively rely-
ing on it could be counter-productive due to an increase in
code size. In general, in modern architectures, loop unrolling
can be safely delegated to the compiler [22].

We adopt both an explicit approach in which we insert
SIMD instructions in the source code, through intrinsic
functions and loop unrolling, and an indirect one in which
we rely on compiler’s auto-vectorization capabilities. In
the first case, we use 256-bit wide registers, which can
handle 8 single-precision values at a time. Through loop
unrolling, we group 8 operations in 1 SIMD instruction
(simd-8), 16 in 2 SIMD instructions (simd-16), and 32 in
4 SIMD instructions (simd-32). In the second case, we adopt a
version in which the compiler can exploit SIMD instructions
freely (simd-auto). Since the compiler choice plays a crucial
role from a performance point of view, we include it among
the parameters to be evaluated for the implementation of
direct convolution. We analyse and discuss the performance
obtained by using three of the most widely used compilers:
GCC, LLVM, and Intel compiler.

IV. DISCUSSION AND EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
We run our experiments on Intel Core i9-9900K (Coffee
Lake) and AMD Ryzen 9 5900X (Zen 3) architectures.
Table 3 summarizes their main characteristics. In the follow-

57520 VOLUME 11, 2023



M. Mannino et al.: Analysis and Optimization of Direct Convolution Execution on Multi-Core Processors

TABLE 3. Architectures main characteristics.

FIGURE 6. Speedup, w.r.t. g++ version of loop order N.1, of selected
convolutional layers, obtained using loop orders N.1., N.2 and N.3 and
compiling with g++, clang++, and icpc.

ing experiments, we refer to these systems as Intel CPU and
AMD CPU, respectively.

We implement direct convolution in C++, using single-
precision floating-point values (4 bytes). We conduct our
experiments against convolutional layers of AlexNet [6],
ResNet [20], and VGG [7]. We show a per-layer analy-
sis and a full-network comparison against im2col+gemm
implementations. For the former, we select a subset of repre-
sentative layers from each of the CNN architectures. Table 2
shows the selected layers, divided into three groups according
to their position along the CNN architecture: initial layers
(0,2), intermediate layers (3-8), and final layers (9-11). We
explore different loop orderings, loop tiling approaches, par-
allelization strategies, and compile our code with three differ-
ent compilers: g++ version 12.1.0, clang++ version 15.0.6,
and Intel compiler (icpc) version 2022.1.0. This way, we ana-
lyze the optimization strategies put in place by each of them.

For the im2col+gemm implementations we implement
it by applying the im2col function from the popular deep
learning framework Caffe [23] for tensor transformation, and
we use expert-provided matrix-matrix multiplication routines
from openBLAS version 0.3.21 [9] and Intel MKL version
2023.0 [10], which take advantage of various optimization
techniques, such as loop unrolling and SIMD vectorization.
In each analysis, the execution time results are obtained
taking the median value of 1000 runs.

B. LOOP ORDERS
First, we analyze loop orderings, discussed in Section III-A,
in a single-threaded version, using all our compilers. In this
case, we compile with -O3 optimization flag. Figure 6 shows
the speedup with respect to g++ version of order N.1, for
all loop orders and all compilers, using both Intel and AMD
architectures.

Using clang++ and icpc, obtained results are quite sim-
ilar on both architectures. In fact, loop order N.1 is always
the best among all the orders. Although order N.1 has the
best performance, the performance of the other two orders
depends on the type of convolutional layer. Order N.3 behaves
similar to order N.1 in the initial layers, characterized by a
small number of input channels. Since the second innermost
loop of order N.3 is the one that iterates over input channels,
when their number is low, order N.1 and N.3 have similar
performance. Order N.3 seems to suffer from a high number
of input channels. Loop order N.2 shows up to 50% perfor-
mance degradation, compared to the others, in the first con-
volutional layers, which are characterized by a larger output
tensor size. Performance degradation of order N.2 is higher
(i.e., about 80-100%) in the intermediate layers, characterized
by tensors with medium spatial size and medium/high depth
values. In the final layers, the three orders achieve similar
performance.

The situation is slightly different using g++. In par-
ticular, on Intel CPU the performance is about the same
for all the tested loop orders. On AMD CPUs, only loop
order N.1 and loop order N.2 have similar performance,
while order N.3 shows a performance decay in all the layers
(about 30-50% slowdown).

Figure 6 shows that clang++ and icpc versions have a
speedup at least 4× compared to g++. This result can be
explained by looking at the assembly code generated by each
compiler. SIMD instructions are present in assembly code
generated by icpc and clang++, whereas there are none
in the one generated by g++. On Intel CPU, g++ has a
slower execution time for loop orders N.1, N.2, and N.3,
with an average of 15%, 12% and 50% performance decrease
compared to clang++ and icpc. OnAMDCPU, the execution
time of g++ versions are 43%, 29%, and 35% slower than
clang++ and icpc versions for loop orders N.1, N.2, and N.3,
respectively.

C. LOOP TILING
We analyze the effects of loop tiling on loop orders N.1, N.2,
and N.3. Tiling is applied along output width (Wo) and input
depth (Ci) for orders N.1 and N.3, while it is applied along
output height (Ho) and width (Wo) for order N.2 (as discussed
in Section III-A). For each loop order, we determine the tiling
dimension (or dimensions) along which there is maximum
speedup with respect to a non-tiled code. Table 4 shows, for
each CPU and compiler pair, the best speedups and the tiling
dimensions that provide such speedups.

Loop order N.2 is the one that benefits more from tiling,
with speedups reaching up to 2× with respect to non-tiled

VOLUME 11, 2023 57521



M. Mannino et al.: Analysis and Optimization of Direct Convolution Execution on Multi-Core Processors

TABLE 4. Speedup of loop tiling applied to selected convolutional layers, w.r.t. non-tiled version, using loop orders N.1, N.2, and N.3, compiling with g++,
clang++, and icpc. The table shows, for each combination CPU-compiler, the speedup achieved by adopting loop tiling and the dimensions on which such
loop tiling is applied (T.D., or ‘‘tiling dimensions’’ in the tables).

versions. On Intel CPU, the tiling dimension that leads to
the best results is always output height (Ho). On AMD CPU,
higher speedups are achieved when both output height (Ho)
and width (Wo) are used to reduce the workload. The only
exception is when g++ is used for compiling, as the best
speedup is obtained by applying tiling on output height (Ho)
only in most cases. Loop orders N.1 and N.3 benefit from
tiling differently depending on the compiler. Using icpc and
clang++, the results obtained are quite similar, both in terms
of speedup and preferred tiling choice. For them, applying
tiling along output width (Wo) is the best choice for initial
layers, while intermediate and final layers benefit more from
applying tiling on input depth (Ci) and output width (Wo).
With g++, the situation is slightly different, as the preferred
dimension to apply tiling is always input depth (Ci).
On Intel CPU, tiling helps to increase performance up to

1.11×, 2×, and 1.62× using loop orders N.1, N.2, and N.3,

respectively. On AMD CPU, the performance increase is up
to 1.21×, 1.41×, and 1.83× using loop orders N.1, N.2, and
N.3, respectively.

D. SIMD-VECTORIZATION
We analyze the effects of SIMD-vectorization on each
loop order for each compiler. We evaluate the per-
formance of both compiler-driven auto-vectorized code
(auto-simd) and manually-vectorized code (simd-8, simd-16,
and simd-32 implemented as described in Section III-C).
The baseline version is an implementation in which neither
SIMD intrinsics nor compiler auto-vectorization are used
(no-simd).

When auto-vectorization is disabled (i.e., no-SIMD code),
clang++ and icpc produce better code than g++ from a
performance perspective. As highlighted in Section IV-B
(Figure 6), clang++ and icpc have better average execu-

57522 VOLUME 11, 2023



M. Mannino et al.: Analysis and Optimization of Direct Convolution Execution on Multi-Core Processors

FIGURE 7. Vectorization speedup of selected convolutional layers obtained using loop orders N.1, N.2, and N.3 and compiling with g++, clang++, and
icpc. Results are normalized to the version in which auto-vectorization is disabled and no explicit SIMD instructions are inserted.

tion times with respect to g++ on both Intel and AMD
CPUs. On Intel CPU, it is 15%, 12%, and 50% better for
loop orders N.1, N.2, and N.3, respectively. On AMD
CPU, it is 43%, 29%, and 35% better for loop orders
N.1, N.2, and N.3, respectively. Figure 7 shows the rel-
ative performance achieved by both auto-vectorized and
manually-vectorized code, varying loop order and compiler.
The results are normalized against their respective no-simd
version.

1) COMPILER AUTO-VECTORIZATION
g++ is unable to auto-vectorize the code in any of the
tested cases. In fact, using clang++ and icpc, simd-auto
provides at least 4× speedup with respect to no-simd, while
g++ does not provide any performance improvement on any
configuration.

Both clang++ and icpc produce auto-vectorized code with
similar performance. We see that auto-vectorization works
better on AMD CPU, where the achieved speedup reaches
up to 8-10× with all the loop orders, with the exception of
the initial layers, where the speedup is slightly lower (5-6×).
On Intel CPU, there is more sensitivity to the choice of loop
order. The best speedups are achieved with Loop order N.1,
ranging from 5× (first layers) to 10× (intermediate and final
layers). Loop orders N.2 and N.3 have a speedup that is about
5× on both Intel and AMD CPUs.

2) MANUAL VECTORIZATION
Also with manual vectorization, the results obtained with
clang++ and icpc are similar and differ from those obtained
with g++.

Compiling with g++, both on Intel and AMD CPUs, the
degree of unrolling plays an important role. Using simd-8
there is a lower speedup, with respect to simd-auto, than
simd-16 and simd-32. This means that when simd-8 is used,
g++ is not able to fully exploit SIMD units and further
manual optimization is needed (i.e., unrolling more instruc-

tions in the innermost loop). Using simd-16 and simd-32,
performance are, on average, 1.4× better compared to simd-8.
On both CPUs, simd-16 and simd-32 achieve almost the same
performance, meaning that unrolling 32 times the innermost
loop is not beneficial for g++ compiler.

Using clang++ and icpc, there is no particular varia-
tion in performance among simd-auto, simd-8, simd-16, and
simd-32. They present almost the same speedup, with respect
to no-simd version, with values ranging from 3.5× to 9× on
Intel CPU and from 5× to 10.8× on AMD CPU.

E. PARALLELIZATION STRATEGY
We analyze the effects of parallelization strategies, discussed
in Section III-B. SIMD instructions and loop tiling are used
in these multi-threaded versions as discussed in Section IV-D
and Section IV-C, respectively. In particular, we use intrin-
sic functions, unrolling loops 32 times, and we apply tiling
according to values of Table 4.We studymulti-threaded direct
convolution using up to 8 threads on the Intel CPU and up
to 12 threads on the AMDCPU, so as to exploit the maximum
number of physical cores available to each CPU. Moreover,
we disable hyperthreading and pin each thread of execution to
a physical core in order to have all the core resources available
for a single thread.

For the sake of clarity, the following discussion focuses
more on the results obtained from versions compiled with
g++. For versions compiled with clang++ and icpc,
we highlight the most relevant results and the main differ-
ences compared to g++ when discussing the best parameter
combinations in Section V-A.

Figure 8 shows the speedups of multi-threaded direct
convolution implementations obtained by running, individ-
ually, all the selected layers, using all loop orders, and all
parallelization strategies, on AMD CPU. Compared to the
single-thread version, all the parallelization strategies are
able to give a 2× speedup when 2 threads are used. This

VOLUME 11, 2023 57523



M. Mannino et al.: Analysis and Optimization of Direct Convolution Execution on Multi-Core Processors

FIGURE 8. Speedup of each multi-threaded direct convolution implementation, obtained running selected convolutional layers and using different loop
orders (loop order N.1, loop order N.2, and loop order N.3), different parallelization strategies (parallel-Ho, parallel-Co, and parallel-Ho+Co) and
compiling with g++ on AMD CPU. The results are normalized to single-threaded version.

indicates that inter-thread interference is negligible in all the
versions analyzed. The only exception occurs with parallel-
Ho+Co in the first layer (Layer ID = 0), in which the
low number of output channels makes the threads’ workload
unbalanced.

When the number of threads increases (i.e., 4, 8,
and 12 threads), there is an increased sensitivity to the par-
allelization strategy adopted. In the initial layers, parallel-Co
and parallel-Ho+Co do not scale as the number of thread
increases. This is due to the low number of output channel
(Co), thus parallel-Ho is preferred.

With 8 threads, some layers (e.g., layer 6) achieve a
superlinear speedup due to the better resource utilization
that smaller per-core workloads permit. Using 12 threads,
there are only few situations in which a 12× speedup
is obtained (e.g., layer 8). This phenomenon is expected,
since the high number of threads increases the con-
tention of shared resources, i.e., the last level of cache,
leading to the non-achievement of ideal linear scaling
performance.

Parallel-Ho have a good scalability as long as the spatial
dimensions of the output (i.e., height and width) are big
enough (initial and intermediate layers). Indeed, when the
output height is small (e.g.,Ho = Wo = 9 in the last layer), the
thread workloads are not balanced enough to provide good
scalability results. This behaviour is common to every loop
order.

Parallel-Co obtains good scalability results especially in
the final layers. In the intermediate layers, the performance
depends on the type of loop order. Loop orders N.2 and N.3
are not suited for parallel-Co strategy, while order N.1 obtains
the better results (up to 75% higher than the other two orders).

Parallel-Ho+Co, like Parallel-Ho, shows a reduced sensi-
tivity to the loop order choice. Intermediate and final layers
show a higher scalability.

V. PUTTING IT ALL TOGETHER
After evaluating the effects of loop orders, loop tiling, SIMD-
vectorization, and parallelization for each compiler, in this
section we show how to combine all the parameters to achieve
best performance from direct convolution.
A. BEST COMBINATIONS
In the best combinations, loop tiling and SIMD-vectorization
are applied as discussed in Section IV-C and Section IV-D,
respectively. We evaluate, after applying loop tiling and
SIMD-vectorization, how loop orders and parallelization
strategies can be combined together, for each compiler.
Figure 9 shows the combinations of loop orders and
parallelization strategies that achieve the best performance
for each convolutional layer, with different number of threads
and compilers. The situation on Intel and AMD CPUs is
different.

On Intel CPU, initial layers score the best results using
parallel-Ho combined with order N.1 and N.3, for all compil-
ers. In particular, g++ is able to produce better optimization
when both order N.1 and N.3 are used, while clang++ and
icpc produces better results using only order N.1 and N.3,
respectively.

During the execution of intermediate layers, due to the
increased tensor depths compared to initial layers, all com-
pilers include parallel-Ho+Co and parallel-Co strategies in
their best combinations. In intermediate layers, g++ obtains
different best combinations than clang++ and icpc. For
g++, these include order N.1 combinedwith parallel-Ho, and
order N.3 combinedwith parallel-Ho and parallel-Ho+Co for
clang++ and icpc.
Running the last layers, the most convenient parallelization

strategy is parallel-Co. In these layers, order N.2 is for the first
time included in the best combinations of executable code
produced by clang++ and icpc, while it is never included
in the best combinations of g++.

57524 VOLUME 11, 2023



M. Mannino et al.: Analysis and Optimization of Direct Convolution Execution on Multi-Core Processors

FIGURE 9. Summary of the best parameter combinations. For each row,
letters G, L, and I indicate the best parameter combination achievable
compiling with g++, clang++, and icpc, respectively, on Intel CPUs (blue)
and AMD CPUs (red). If the same letter is repeated more than once in the
same row, it means that two or more combinations achieve the same
performance. As a consequence, blank cells identify configurations that
are surpassed by others performance-wise. Considering the underlying
machine, the compiler of choice, and the number of threads (as much as
physical cores is the best), a practical use of this table by a user would be
the following: for each layer, locate in the corresponding row the letter of
the compiler of choice in the coloring that corresponds to the underlying
CPU (green, otherwise red for AMD and blue for Intel). That is the
best-performing configuration, so parallelization-strategy and loop order
must be selected accordingly. 12-threads configurations are not taken
into account for Intel CPU because it only has 8 physical cores.

On AMD CPU, initial layers achieve the best results using
parallel-Ho combined with order N.1 and N.3, for all compil-
ers. In particular, g++ is able to produce better optimization
when both order N.1 and N.3 are used (as on Intel CPU),

while clang++ and icpc produce better results with orders
N.3 and N.1, respectively (this is the opposite situation than
Intel CPU).

Executing intermediate layers, parallel-Ho and parallel-
Ho+Co are the predominant best parallelization strategies,
while parallel-Co appears only in some best combinations
(i.e., layer IDs 3 and 8).

As in the Intel CPU case, order N.2 is included in the best
combinations only in the last layers. In particular, clang++

and icpc include order N.2 in their best combinations when
parallel-Ho+Co and parallel-Ho are used.

B. OPTIMIZATION HEURISTICS
From the per-parameter analysis conducted in the pre-
vious section and the best combinations highlighted
in Subsection V-A, we can derive some heuristics to
help direct convolution implementors to easily select a
high-performance implementation for the system at hand.
We suggest adopting a parametric implementation as we do
in this paper and select a configuration by following the steps
suggested below. Applying these heuristics might not neces-
sarily lead to the optimal configuration for a given system,
but the results of the extensive analysis performed should
make them able to suggest a good enough configuration,
or a starting point for conducting more detailed parameter
searches without needing to explore the whole parameter
space.

In the following, we list some heuristics to select a
high-performance configuration for a parametric implemen-
tation of a direct convolution on a multi-core CPU:

• Parameter tuning should be done on a per-layer basis
rather than a per-network one.

• A parallel implementation should be preferred, with as
many threads as physical cores.

• For the first layers of a CNN, generally character-
ized by input with high spatial dimensions (i.e., height
and width), select parallelization strategy parallel-Ho if
clang++ or icpc is the compiler of choice, and parallel-
Ho+Co if it is g++. Select loop order N.1 or N.3, and
prefer the latter for processors with small L2 caches
(e.g., Intel CPU in this paper).

• For intermediate and final layers of a CNN, gener-
ally characterized by input with low spatial dimensions
but with high number of channels (i.e, depth), select
parallelization strategy parallel-Co or parallel-Ho+Co.
Select loop order N.3 on processors with small L2
caches (i.e., less than 256 KB), and loop order N.1
otherwise.

• Use loop tiling, especially on processors with smaller
L2 caches. Apply it along output width (Wo) and
input depth (Ci) dimensions if loop orders N.1 or N.3
have been selected, apply it along output height (Ho)
otherwise.

• Use SIMD-vectorization. Prefer manually-inserted
SIMD instructions (i.e., simd-8/simd-16/simd-32) to

VOLUME 11, 2023 57525



M. Mannino et al.: Analysis and Optimization of Direct Convolution Execution on Multi-Core Processors

FIGURE 10. Speedup of direct convolution, implemented according to heuristics discussed in Section V-B, respect to (a) im2col+OpenBLAS and
(b) im2col+MKL. Results are obtained compiling with g++, clang++ and icpc, running AlexNet, ResNet and VGG on both Intel and AMD CPUs.
Direct convolution results are obtained by using the best combination for each layer. Both im2col+gemm and direct convolution are executed using
the maximum number of available threads (i.e., 8 threads on Intel CPU and 12 threads on AMD CPU).

FIGURE 11. Memory overhead and memory usage of im2col+gemm. Memory overhead is expressed as the ratio between the total memory used by
im2col+gemm and the memory used by direct convolution (i.e., the memory needed to store tensors). Memory usage is expressed as the total memory
used (MB) to store all tensors of each convolutional layer. Results are shown for convolutional layers of AlexNet, ResNet, and VGG.

compiler auto-vectorization (i.e., simd-auto). If the com-
piler of choice is g++, simd-32 is the best choice.

C. im2col+gemm COMPARISON
Figures 10a and 10b show the performance achieved
by a direct convolution, implemented according to
heuristics discussed in Section V-B, compared against
an im2col+OpenBLAS and im2col+MKL, respectively.
im2col+gemm results are obtained using the maximum num-
ber of threads on each CPUs, (i.e., 8 and 12 threads on
Intel and AMD CPUs, respectively). The speedup of direct
convolution with respect to im2col+gemm depends on under-
lying CPU and BLAS library provider.

On AMD CPU, direct convolution implementation allows
having a speedup that ranges from 1.17× to 1.67× over
im2col+OpenBLAS and a speedup in the range 0.98×–1.62×
over im2col+MKL.

On Intel CPU, direct convolution achieves better, or com-
parable, results than im2col+OpenBLAS, with speedups that
range from 0.95× to 1.4×. Compared to im2col+MKL, con-
versely, direct convolution results are better only compiling
with g++ and using VGG network (1.15× speedup). This is
an expected result, since the matrix-multiplication routine is
highly optimized on Intel CPUs by Intel-MKL library.

In general, the results of direct convolution obtained on
AMD CPU are better, compared to im2col+gemm versions,
than Intel CPU. This indicates that, possibly, the bigger L2

and L3 caches of AMD CPU allow better exploiting data
locality exposed by our direct convolution implementations
through the selection of the best memory access pattern and
tiling strategy. Since the trend is to have bigger caches,
we can expect that the advantage of a direct convolution
over an im2col+gemm implementation could be destined
to increase.

Another aspect worth of an analysis is the memory occu-
pancy of direct convolution and im2col. Figure 11 shows
the memory overhead of im2col+gemm methods. The total
memory overhead of im2col+gemm is 1.65×, 1.81×, and
2.90× for AlexNet, ResNet, and VGG, respectively. For this
reason, a direct convolution implementation is more palatable
from amemory occupancy perspective, and should be consid-
ered when a limited memory footprint is required.

Moreover, the only case in which direct convolution
achieves better performance than im2col+MKL on Intel
machine is when a VGG network is executed. Figure 11
shows that VGG is the network with higher memory over-
head. This datum suggests that, when there is a high memory
overhead, a direct convolution implementation could be ben-
eficial. However, in some cases im2col+gemm shows better
performance than direct convolution (e.g., AlexNet executed
with im2col+MKL on an Intel machine). This implies that
the latencies induced by tensor transformation and a higher
memory footprint are hidden by the performance gain of
optimized matrix-matrix multiplication routines.

57526 VOLUME 11, 2023



M. Mannino et al.: Analysis and Optimization of Direct Convolution Execution on Multi-Core Processors

VI. RELATED WORK
There are several prior works that aim to improve the conven-
tional im2col+gemm implementation. They can be grouped
in two macro categories.

Optimized im2col+gemm. This category includes propos-
als [12], [24], [25], [26] that optimize im2col+gemm
implementation using specific optimized gemm kernels
and/or by reducing the expensivememory overhead. The
authors of [12] propose a convolution implementation
specifically for ARMarchitectures (especially present in
mobile devices) based on the key-idea that, unlike x86
architectures, high performance convolution implemen-
tations are bottlenecked by the cache-to-register mem-
ory transfers. Most of the works in this category [24],
[25], [26] propose to reduce im2col memory overhead
accessing data using specific patterns that increase data
locality and data reuse. The use of blocked computation
is generally adopted [24], [25], [26] to address gemm
operations.

Optimized direct convolution. Proposals [11], [13], [27],
[28], [29], [30] belong to this category. They are charac-
terized by direct convolution implementations obtained
through manual optimizations and/or parameters tuning.
High performance are achieved exploiting convolu-
tion memory access patterns and underlying archi-
tecture. In [11], the authors propose a loop order
and related memory layouts that can be parameter-
ized with architectural characteristics. A work [27] pro-
poses two direct convolution implementations targeting
ARM architecture: 1) one with a zero-memory overhead
and 2) one relying on a small buffer that is used to
speed up the computation. An optimized convolution
operator, specifically for x86 architectures, is presented
in [13]. The latter targets convolution used in most
popular image processing operations (e.g., Gaussian
blur). The proposal leverages on most common high
performance techniques such as SIMD instructions and
multi-threading. Authors of [13] refer to future work on
implementing convolution operation for CNNs. Some
prior works [28], [29], [30] explore the entire convolu-
tion design space. Using this type of methods, the goal
is to minimize certain values (e.g., data movement [28])
by solving analytical models.

Our work falls into the second category (i.e., optimized
direct convolution), since we extend direct convolution basic
implementation exploiting high performance techniques such
as loop orders, loop unrolling, loop tiling, SIMD instructions,
and multi-threading. Our proposals differs from the others as
we explore several implementation parameter and study how
they combine with each other. Another aspect worth men-
tioning is that the authors of [11] propose a specific blocked
layout to store tensors in memory that needs to be adapted for
each convolutional layer. Authors of [27], as in our proposal,
show the benefits of SIMD instructions and how they can
be used in direct convolution micro-kernel implementations.

The latter presents and discuss results obtained using ARM
architecture in single-threaded implementations.

VII. CONCLUSION AND FUTURE WORK
The analysis done in this work highlights that direct convo-
lution can be a promising approach to address convolutions
in CNNs, and have the potential to replace the matrix-matrix
multiplication-based approach, which is currently the most
common. However, direct convolution can be implemented
based on few parameters thatmust be tuned to achieve the best
performance. We identify four parameters: loop organization
(i.e., loop orders and loop tiling), parallelization strategy,
SIMD-vectorization, and compiler choice.

We explored different combinations of these parameters on
two real multi-core systems, analyzing the achieved perfor-
mance of each parameter set on different architectures and
with convolutional layers with different dimensions.We iden-
tified some heuristics that can help direct-convolution imple-
menters achieving high performance, that can be summarized
as: tune parameters on a per-layer basis, use a parallel imple-
mentation with as many threads as physical cores, use loop
tiling, use SIMD-vectorization with manually-inserted SIMD
instructions. For initial layers, parallelize on output height
when compiling with clang++/icpc and also on output chan-
nels with g++, with loop orders N.1 or N.3. For interme-
diate and final layers, parallelize on both output height and
channels, select loop order N.3 if the L2 cache is small, N.1
otherwise.

The results of this work can help convolution designers to
move away from the usual approach based on matrix-matrix
multiplication and embrace direct convolution, which can
deliver better performance with a reduced memory footprint.
For this purpose, we provide some heuristics to adopt to
achieve a direct convolution implementation that scores high
performance on a given architecture.

As future work, we plan to enrich the current study with
an additional parameter: tensor memory layout. By including
this parameter and enlarging the set of architectures consid-
ered for the study, we plan to improve our heuristics to include
a bigger set of possibilities. We also plan to extend our results
in the context of ad-hoc hardware accelerators. In particular,
we plan to investigate how our findings can help accelerator
designers to implement the data-flow in hardware.

REFERENCES
[1] S. S. Farfade, M. J. Saberian, and L.-J. Li, ‘‘Multi-view face detection

using deep convolutional neural networks,’’ in Proc. 5th ACM Int. Conf.
Multimedia Retr., Jun. 2015, pp. 643–650.

[2] S. Li, Z. Liu, and A. B. Chan, ‘‘Heterogeneous multi-task learning
for human pose estimation with deep convolutional neural network,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, Jun. 2014,
pp. 488–495.

[3] K. Lan, D.-T. Wang, S. Fong, L.-S. Liu, K. K. L. Wong, and N. Dey,
‘‘A survey of data mining and deep learning in bioinformatics,’’ J. Med.
Syst., vol. 42, no. 8, pp. 1–20, Aug. 2018.

[4] W. Wang and J. Gang, ‘‘Application of convolutional neural network in
natural language processing,’’ in Proc. Int. Conf. Inf. Syst. Comput. Aided
Educ. (ICISCAE), Jul. 2018, pp. 64–70.

VOLUME 11, 2023 57527



M. Mannino et al.: Analysis and Optimization of Direct Convolution Execution on Multi-Core Processors

[5] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, ‘‘A convolutional neural
network for modelling sentences,’’ 2014, arXiv:1404.2188.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1–11.

[7] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556.

[8] A. Khan, A. Sohail, U. Zahoora, and A. S. Qureshi, ‘‘A survey of the recent
architectures of deep convolutional neural networks,’’ Artif. Intell. Rev.,
vol. 53, no. 8, pp. 5455–5516, Dec. 2020.

[9] (2015). OpenBLAS. [Online]. Available: http://www.openblas.net/
[10] Intel. (2015). Math Kernel Library. [Online]. Available:

https://software.intel.com/en-us/intel-mkl
[11] J. Zhang, F. Franchetti, and T. M. Low, ‘‘High performance zero-memory

overhead direct convolutions,’’ in Proc. Int. Conf. Mach. Learn., 2018,
pp. 5776–5785.

[12] P. Zhang, E. Lo, and B. Lu, ‘‘High performance depthwise and point-
wise convolutions on mobile devices,’’ in Proc. AAAI Conf. Artif. Intell.,
Apr. 2020, vol. 34, no. 4, pp. 6795–6802.

[13] V. Kelefouras and G. Keramidas, ‘‘Design and implementation of 2D
convolution on x86/x64 processors,’’ IEEE Trans. Parallel Distrib. Syst.,
vol. 33, no. 12, pp. 3800–3815, Dec. 2022.

[14] J. Guo, R. Teodorescu, and G. Agrawal, ‘‘Fused DSConv: Optimizing
sparse CNN inference for execution on edge devices,’’ in Proc. IEEE/ACM
21st Int. Symp. Cluster, Cloud Internet Comput. (CCGrid), May 2021,
pp. 545–554.

[15] B. Peccerillo, M. Mannino, A. Mondelli, and S. Bartolini, ‘‘A survey on
hardware accelerators: Taxonomy, trends, challenges, and perspectives,’’
J. Syst. Archit., vol. 129, Aug. 2022, Art. no. 102561.

[16] P. Chen, M.Wahib, S. Takizawa, R. Takano, and S. Matsuoka, ‘‘A versatile
software systolic execution model for GPU memory-bound kernels,’’ in
Proc. Int. Conf. High Perform. Comput., Netw., Storage Anal., New York,
NY, USA, Nov. 2019, pp. 1–81.

[17] P. A. Martínez, B. Peccerillo, S. Bartolini, J. M. García, and G. Bernabé,
‘‘Performance portability in a real world application: PHAST applied to
Caffe,’’ Int. J. High Perform. Comput. Appl., vol. 36, no. 3, pp. 419–439,
May 2022.

[18] Y. Chen, T. Yang, J. Emer, and V. Sze, ‘‘Eyeriss v2: A flexible accelerator
for emerging deep neural networks on mobile devices,’’ IEEE J. Emerg.
Sel. Topics Circuits Syst., vol. 9, no. 2, pp. 292–308, Jun. 2019.

[19] Y. Chen, T. Chen, Z. Xu, N. Sun, and O. Temam, ‘‘DianNao family:
Energy-efficient hardware accelerators for machine learning,’’ Commun.
ACM, vol. 59, no. 11, pp. 105–112, Oct. 2016.

[20] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[21] H. Jeong, S. Kim, W. Lee, and S.-H. Myung, ‘‘Performance of SSE and
AVX instruction sets,’’ 2012, arXiv:1211.0820.

[22] J. Kukunas, Power and Performance: Software Analysis and Optimization.
San Mateo, CA, USA: Morgan Kaufmann, 2015.

[23] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, ‘‘Caffe: Convolutional architecture for fast
feature embedding,’’ 2014, arXiv:1408.5093.

[24] T. Zhao, Q. Hu, X. He, W. Xu, J. Wang, C. Leng, and J. Cheng, ‘‘ECBC:
Efficient convolution via blocked columnizing,’’ IEEE Trans. Neural Netw.
Learn. Syst., vol. 34, no. 1, pp. 433–445, Jan. 2021.

[25] M. Cho and D. Brand, ‘‘MEC: Memory-efficient convolution for deep
neural network,’’ in Proc. Int. Conf. Mach. Learn., 2017, pp. 815–824.

[26] M. Dukhan, ‘‘The indirect convolution algorithm,’’ 2019,
arXiv:1907.02129.

[27] S. Barrachina, A. Castelló, M. F. Dolz, T. M. Low, H. Martínez,
E. S. Quintana-Ortí, U. Sridhar, and A. E. Tomás, ‘‘Reformulating the
direct convolution for high-performance deep learning inference on ARM
processors,’’ J. Syst. Archit., vol. 135, Feb. 2023, Art. no. 102806.

[28] R. Li, Y. Xu, A. Sukumaran-Rajam, A. Rountev, and P. Sadayappan,
‘‘Analytical characterization and design space exploration for optimization
of CNNs,’’ in Proc. 26th ACM Int. Conf. Architectural Support Program.
Lang. Operating Syst., Apr. 2021.

[29] X. Yang, J. Pu, B. B. Rister, N. Bhagdikar, S. Richardson, S. Kvatinsky,
J. Ragan-Kelley, A. Pedram, and M. Horowitz, ‘‘A systematic approach to
blocking convolutional neural networks,’’ 2016, arXiv:1606.04209.

[30] X. Zhang, J. Xiao, and G. Tan, ‘‘I/O lower bounds for auto-tuning of
convolutions in CNNs,’’ 2020, arXiv:2012.15667.

MIRCO MANNINO received the B.Sc. andM.Sc.
degrees in computer engineering from the Uni-
versity of Siena, where he is currently pursuing
the Ph.D. degree with the Department of Infor-
mation Engineering and Mathematical Sciences.
His research interests include the optimization of
deep learning algorithms and parallel algorithms,
hardware accelerators, and virtual memory.

BIAGIO PECCERILLO is currently a Postdoc-
toral Researcher with the Department of Infor-
mation Engineering and Mathematical Sciences,
University of Siena. His research interests include
heterogeneous architectures, productivity-oriented
high-level abstraction mechanisms, hardware
accelerators, and parallel algorithms. He has par-
ticipated in various research and development
projects involving high-productivity solutions to
program heterogeneous architectures, hardware

accelerators, haptic algorithms in virtual and augmented reality environ-
ments, and pharmaceutical supply chain simulation.

ANDREA MONDELLI received the Ph.D. degree
in computer architecture. He is currently the
CPU Chief Architect with Huawei and a Prin-
cipal Researcher of cybersecurity and architec-
ture design. He is also a Technology Manager
and responsible for Huawei research projects col-
laborations with European universities. He was a
researcher and an architect in various countries,
such as Italy, USA, France, China, andU.K.He has
published multiple manuscripts and conference

papers and a book on memory coherence protocols. His research interests
include high performance and low power CPUs. He was a part of RISC-V
International as the Chair of Virtual Memory.

SANDRO BARTOLINI is currently an Associate
Professor with the Department of Information
Engineering and Mathematical Sciences, Uni-
versity of Siena. His research interests include
high-performance chip multiprocessors (CMPs),
the new approaches to productive programming
of heterogeneous architectures (CPUs and GPUs),
integrated photonics for CMPs, feedback-driven
compiler optimizations for cache hierarchy perfor-
mance and low power, and hardware accelerators.

He has led and participated in various research and development projects.
He is an Associate Editor of the EURASIP Journal of Embedded Computing
and an active member of the HiPEAC NoE. He has been the Co-Guest
Editor of Transactions on High Performance Architectures and Compilation
(Springer) journal and ACM SigArch Computer Architecture Newsletter.

Open Access funding provided by ‘Università degli Studi di Siena’ within the CRUI CARE Agreement

57528 VOLUME 11, 2023


