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Chua’s Circuit With Tunable Nonlinearity Based on
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Abstract— Nonvolatile memristive devices display nonlinear
characteristics suitable for implementing circuits exhibiting oscil-
lations or more complex dynamic behaviors, including chaos.
However, the results presented in related works are mostly
limited to simulations and employing ideal memristor models
whose resistance is governed by a charge-flux relation that is not
connected to real devices, thus hindering the realization of such
nonlinear oscillators. In this work, we present the framework
for the physical implementation of a tunable memristor Chua’s
circuit, which is based on a nonvolatile memristive device that
provides the nonlinear conductance required by the circuit and
the possibility to tune it for the purpose of selecting among
different oscillation patterns. We first establish design guidelines
to guarantee complex oscillations in the tunable memristor
Chua’s circuit. Further, we physically implement the circuit
after characterizing and modeling the tunable current-voltage
characteristic of a real device. Our circuit successfully generates
different oscillation patterns just by programming the nonvolatile
memristive device to different states. The devised design guide-
lines and device modeling were used to extend the experimental
work and draw further requirements for device properties for a
successful circuit implementation.

Index Terms— Memristor, memristor circuits, RRAM, chaos,
nonlinear circuits, oscillators.

I. INTRODUCTION

NONLINEAR oscillators are systems with rich dynamics
that can be employed as a primitive in several applica-

tions. The complex interactions in networks of interconnected
oscillators have been exploited to address problems with
no efficient solutions on von-Neumann machines, such as
pattern recognition [1] and solving combinatorial problems
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[2]. Under certain circumstances, some nonlinear oscillators
can even exhibit chaos—aperiodic oscillation patterns that
are unpredictable due to their extreme sensitivity to the ini-
tial conditions— [3]. Although apparently undesirable, chaos
has been proven beneficial in applications related to secure
communications [4], sensor conditioning [5] and hardware
implementation of optimization problems [6].

The integration of nonlinear oscillator circuits has been
typically hindered by the lack of technological realizations
providing low-power and high-scalable solutions. However,
this scenario changed with the research advancements in the
pursuit of novel material properties to surpass the physical
limits present in CMOS-based machines. In this context,
different emerging circuit elements to be used as part of the
implementation of nonlinear oscillators have been proposed
[7]. Among them, memristive devices are one of the most
promising. Memristive devices are two-terminal electrical
components that switch their resistance state by the application
of a stimulus. Although memristive devices are mainly praised
as memory elements due to their nonvolatile properties, they
can also exhibit nonlinear and dynamic attributes, such as
threshold switching, volatile switching, or negative differential
resistance [8]. All these properties are of interest for imple-
menting nonlinear oscillators. The dynamic properties of some
memristive devices are usually more attractive. For instance,
the resistive switching dynamics of nonvolatile memristive
devices are used in relaxation oscillators [9] or to enhance the
dynamic behavior in chaotic circuits [10], [11], [12]. Further-
more, the metal-insulator transition in Mott memristors paved
the way towards extremely compact oscillators exhibiting
self-sustained periodic oscillations [13], [14], [15], and even
chaotic patterns [16]. Instead, nonvolatility has rarely been
exploited in oscillators; the only example found consists in
employing the memristive device as a programmable resistor
in conventional relaxation oscillators [17].

We propose a physical implementation of a nonlinear
oscillator with a nonvolatile memristive device, in which the
device improves the circuit scalability and provides addi-
tional features. For this purpose, we chose to implement
a memristive version of Chua’s nonlinear oscillator circuit.
Known as the simplest autonomous chaotic oscillator, Chua’s
circuit requires a nonlinear resistor to exhibit chaos, and
additionally, a mechanism to modify one or more of Chua’s
circuit elements to generate different dynamic behaviors [18],
[19]. A single nonvolatile memristive device can address both
requirements by using it as a tunable nonlinear resistor. But the
physical realization of such a memristive version comes with
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Fig. 1. Tunable memristor Chua’s circuit. (a) Circuit scheme. (b) Typical experimental i-v curve of a bipolar memristor. (c) Examples of possible currents
for the nonlinear part implementable with a memristor in parallel with a negative conductance −G N , where (1) to (3) indicate low to high contribution of
nonlinear terms in the memristor current. (d) Circuit trajectories generated with the example currents from (c) and fixed Chua’s circuit parameters G = 0.1 mS,
C1 = 1 nF, C2 = 10 nF and L = 70 mH.

some challenges. First, the characterization of a nonvolatile
memristive device as a tunable nonlinear resistor has not been
extensively studied, or at the very least, it has not been used
in applications since it is typically unwanted [20]. Second,
although Chua’s circuit has been thoroughly analyzed, the
same does not hold true when it is implemented in connection
with a tunable nonlinear resistor.

To our best knowledge, the idea of substituting the conven-
tional nonlinear resistor in Chua’s circuit with a memristive
device has never been physically implemented with a real
memristive device. While the circuit concept already exists,
most of the work has been limited to simulations by using
memristive models that are not representative of real devices
[21], [22]. Therefore, the opportunity to establish the foun-
dations for the implementation of Chua’s circuit with real
memristive devices is yet to come. It is worth mentioning
that while [11], [12] implement different modified versions
of Chua’s circuit by introducing real memristive devices,
both of them do not replace the nonlinearity required for
generating chaos. Therefore, the memristive device neither
plays an exclusive role in chaos generation nor adds control
to the system’s dynamic response.

In this work, we build upon the preliminary results reported
in [23] to present a comprehensive framework for a hardware
realization of a tunable memristor Chua’s circuit, i.e., a Chua’s
circuit with a tunable nonlinear element based on a nonvolatile
memristive device. We model the memristive device as a
tunable nonlinear resistor. The model provides a direct link
between the device resistive state, the tunable memristor
Chua’s circuit design and its experimental verification. More-
over, it also allows us to determine which are the opportunities
and limitations of the circuit regarding device properties and
design choices, assisted by numerical simulations.

The rest of the paper is organized as follows. Section II
introduces the tunable memristor Chua’s circuit and basic
design guidelines to ensure correct operation considering a
tunable nonvolatile memristive device. Section III reports the

device electrical characteristics and modeling as a tunable non-
linear resistor, the circuit design and experimental verification.
Section IV discusses the most critical device properties for
implementing the tunable memristor Chua’s circuit, assisted
by numerical simulations. Conclusions are drawn in Section V.
This framework can be adapted to other circuits that require
similar nonlinear elements, like the Bonhoeffer-van der Pol
[24] or Murali-Lakshmaann-Chua [25] oscillators.

II. TUNABLE MEMRISTOR CHUA’S CIRCUIT

A. Circuit Description

The scheme of the tunable memristor Chua’s circuit is
depicted in Fig. 1(a). The inductor L , capacitors C1 and C2,
and conductance G form the linear part of the circuit, while
the rightmost side corresponds to the nonlinear part. We pro-
pose a tunable nonlinear part based on a threshold-switching
nonvolatile memristive device working as a programmable
nonlinear resistor. For the sake of brevity, the term memristor
will be used from now on instead of nonvolatile memristive
device. A typical memristor exhibits a current that is non-
linear with respect to voltage and associated with the device
resistance state. The resistive state is defined by memristor
internal state variables, which are different according to the
underlying memristor switching mechanism. In our work,
we group any relevant state variable into the internal state x .
For a threshold-switching memristor, when the applied voltage
exceeds certain levels, the internal state x can be tuned, thus
changing the current flowing through the memristor. Fig. 1(b)
exemplifies the typical i-v characteristic of a memristor when
programmed at two different states. The memristor behavior
can be mathematically described using the concept of the
extended memristor as

i = i(v, x)

dx
dt

= h(v, x) (1)
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The memristor behaves as a nonlinear resistor when it is
operated within its non-switching region, i.e., at a voltage
domain at which h(v, x) = 0. From now on, we formalize the
memristor current within the non-switching region as iM (v, x)

and its differential conductance as G M (v, x) = diM/dv,
where both quantities are dependent on the memristor internal
state. It is worth noticing that G M is different from the
definition of memductance iM/v.

Chua’s circuit requires a nonlinear part with an active
conductance to produce oscillations and chaos. As it may
be noticed in Fig. 1(b), memristors do not exhibit active
conductance in their quasi-static characteristics. We overcome
this issue by splitting the tunable nonlinear part features into
the parallel of two devices: the memristor and a negative
linear conductance −G N . As a result, the memristor provides
a nonlinear conductance with robust tunability features, while
−G N shifts the memristor current that results in a nonlinear
part with an overall active conductance. For the nonlinear
part to effectively exhibit active conductance, G N must be
higher than the memristor differential conductance G M at low
voltages. Fig. 1(c) illustrates examples of the overall nonlinear
part i-v characteristics by employing a fixed G N value and an
arbitrary iM tuned at different x .

Chua’s circuit response is defined by the state variables v1,
v2, and iL . The time-ordered collection of states (v1, v2, iL)

is referred to as the circuit trajectory. Depending on the
circuit impedance values from the linear part of the circuit
and parameters from the nonlinear part, the circuit can show
different periodic or chaotic trajectories. Fig. 1(d) shows
the trajectories generated in a circuit simulation using the
nonlinear functions from Fig. 1(c) in a Chua’s circuit with
fixed linear impedances. We refer to trajectories 1, 2, and 3 as
symmetric aperiodic, asymmetric aperiodic, and asymmetric
periodic, respectively; trajectories 1 and 2 are also known in
the literature as double-scroll and single-scroll. It may be noted
that the trajectories orbit around one or two points, depending
on whether the trajectory is asymmetric or not with respect to
the origin v1 = v2 = iL = 0.

It is important to distinguish that the tunable memristor
Chua’s circuit has two modes of operation: the programming
mode and the oscillation mode. In the programming mode, the
circuit is not oscillating and the memristor state x is tuned.
During oscillation mode, the circuit is powered up and gen-
erates an oscillating pattern. In this mode, the characteristics
of the nonlinear part are static (h(v, x) = 0), and thus x is
not changed. The memristor in Fig. 1(a) directly faces v1 as
generated by the tunable memristor Chua’s circuit, such as the
ones shown in Fig. 1(b). Therefore, during the programming
mode, high voltage levels are applied for tuning x , whereas
v1 must be contained between the memristor non-switching
region to avoid modifying x during the oscillation mode.

B. Circuit Design Considerations

Chua’s circuit is able to generate multiple oscillation pat-
terns, such as the ones previously shown in Fig. 1(d). However,
these patterns may only be possible in a small range of
impedance values for the circuit linear part. Furthermore, they
must be adapted to the spectrum of available i-v characteristics

of the nonlinear part, which can be tuned through the mem-
ristor. This is particularly challenging in tunable memristor
Chua’s circuit, since the nonlinear part i-v characteristics are
tunable, and the voltage applied across the memristor must
be limited during the circuit oscillation mode. Therefore, all
these constraints are next addressed with design guidelines,
establishing minimum conditions for the memristor differential
conductance G M , and some critical impedance values in the
circuit.

We are interested in the oscillation patterns generated due to
the existence of a Hopf bifurcation, i.e., the birth of a periodic
oscillation from equilibrium, that evolves to chaos through
an infinite sequence of period-doubling bifurcations [18]. The
trajectories depicted in Fig. 1(d) represent some examples of
the oscillation patterns found in these aforementioned situa-
tions. The conditions required for exhibiting such trajectories
have been widely reported in previous works by studying the
stability of Chua’s circuit dynamic system [26], [27], [28].
Next, we extend these results to the tunable memristor Chua’s
circuit, focusing on the tunable nonlinear part.

Two mathematical objects are used for the analysis: the
dynamical system that describes the tunable memristor Chua’s
circuit from Fig. 1(a) as

dv1

dt
=

1
C1

(G(v2 − v1) − iM (v1, x) + G N v1)

dv2

dt
=

1
C2

(G(v1 − v2) + iL)

diL

dt
= −

1
L

v2 (2)

and its Jacobian matrix J

J =

−
G+G M (v1,x)−G N

C1
G
C1

0
G
C2

−
G
C2

1
C2

0 −
1
L 0

 (3)

Classical Chua’s circuit works as a nonlinear oscillator when
it has three equilibrium points (EP). EPs are constant solutions
of the dynamic system in (2), i.e. satisfying dv1/dt =

dv2/dt = diL/dt = 0. Assuming odd symmetric memristor
current iM like the examples depicted in Fig. 1(b), the EPs for
the tunable memristor Chua’s circuit are

P0 = {v1 = v2 = iL = 0}

P+ = {v1 = VP , v2 = 0, iL = −GVP }

P− = {v1 = −VP , v2 = 0, iL = GVP } (4)

where VP is a non-zero solution of v1 from

iM (v1, x) = (G N −G) v1 (5)

It is worth noting that P0 always exists, but P+ and P− only
exist if the nonlinear part exhibits an active conductance. This
necessary condition can be formally written as

G M (0, x) < G N − G (6)

The oscillation patterns born from a Hopf bifurcation that
we seek to generate can be characterized via some conditions
on the eigenvalues of the Jacobian matrix J evaluated at each
EP. At P0, J must have a unique real positive eigenvalue,
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while the others have a negative real part (condition i).
Instead, J evaluated at P+ and P− must show a complex
conjugate pair of eigenvalues with a positive real part, being
the other eigenvalue real negative (condition ii). Designing the
tunable memristor Chua’s circuit with such conditions on the
eigenvalues is necessary to guarantee the oscillation patterns
we are targeting. While finding expressions for the impedances
and nonlinear part parameters that satisfy all the conditions
on the eigenvalues is possible, it requires complex analysis of
the circuit bifurcations, already explored in detail for different
nonlinearities in [27] and [28]. Our approach is to simplify
such exploration by making some choices based on results
reported in previous works.

From [27], we know that choosing certain values for Chua’s
circuit adimensional parameters α and β defined as

α =
C2

C1
, β =

C2

G2L
(7)

guarantee the eigenvalues conditions at P0 (condition i),
as long as (6) is also satisfied (details about Chua’s circuit
adimensional equations can be found in [27]). For instance,
this is true with α = 10 and β = 14, which are chosen
for this work unless otherwise stated. In order to select G N ,
we can refer to [29], where the instability at P0 is forced by
imposing that the trace of J vanishes when evaluated at P0,
which ensures that the sum of the real part of the eigenvalues
is null and thus implying that P0 is unstable. This condition
leads to a convenient relationship between G N and G M

G N = G M (0, x) + G
(

1 + α−1
)

(8)

It can be verified that condition (8) implies (6) and, by argu-
ing as in the appendix of [29], that condition i is satisfied.

Moreover, [27] also reports the condition for a Hopf bifur-
cation to occur, or equivalently the starting point at which
condition ii for P+ and P− is satisfied. The circuit design must
be valid for a range of memristor states characterized by a dif-
ferential conductance value evaluated in VP , i.e., G M (VP , x).
Condition ii results in boundary values for G M (VP , x), which
we name G H and which are defined as

β = −α
G H − G N

G

(
1 + α + α

G H − G N

G

)
(9)

Equation (9) is a second-order equation for G H , whose solu-
tions are

G H,i = G N −
G
2α

(
1 + α ±

√
(1 + α)2

− 4β

)
,

i = 1, 2 (10)

and thus there exist only if

(1 + α)2
− 4β > 0 (11)

Both solutions constitute an upper and lower bound for
G M (VP , x) in which the eigenvalue condition ii for P+ and
P− is guaranteed. This interval is

G H,1 < G M (VP , x) < G H,2 (12)

It is worth noting that the existence of Hopf bifurcations is
guaranteed for the previously chosen α = 10 and β = 14 since
they satisfy (11).

Furthermore, an additional design constraint considered for
the tunable memristor Chua’s circuit is the need to contain
the v1 voltage span of the trajectory inside the memristor
non-switching region to avoid that x changes in the oscillation
mode. Since it is not possible to determine analytically the
v1 voltage span of chaotic trajectories, we opted for a heuristic
approach based on numerical simulations. After evaluating
multiple trajectories, we observed that the maximum v1 is
proportional to the first coordinate VP of the EPs P+ and P−,
also noticed in the trajectories of Fig. 1(d). This observation
can be translated in the form of the boundary as

max(v1) ≤ k · VP (13)

Here, k depends on the employed nonlinear part and can be
determined by numerical simulations. From this finding, using
(13) to limit v1 voltage span implies fixing the positions of
EPs P+ and P−, thus forcing G to a specific value, according
to (6).

Concluding, the tunable memristor Chua’s circuit can oper-
ate as a programmable oscillator if the conditions from (6),
(11) and (12) are simultaneously satisfied, i.e., the three EPs
in (4) exist, P0 is unstable, and both P+ and P− undergo to
a Hopf bifurcation along a valid range of x values. Addition-
ally, the trajectory amplitude can be modulated through the
EPs coordinates to meet the memristive device specifications.
However, these guidelines must be complemented with the
specific nonlinearity of the memristive device to be included in
order to complete the tunable memristor Chua’s circuit design.

III. PHYSICAL IMPLEMENTATION AND EXPERIMENTAL
VERIFICATION

A. RRAM Device Switching Operation

In this work, we use resistive random-access memory
(RRAM) devices consisting of 50 nm Pt/5.5 nm HfO2/40 nm
TiN stacks with a 40×40 µm2 area. Their fabrication process
is reported in detail in [30] and [31]. Electrical measurements
have been performed using a B1500 Keysight semiconductor
parameter analyzer in voltage-controlled mode while reading
the current passing through the device. The voltage is always
applied at the top Pt electrode, keeping the TiN electrode
grounded.

The RRAM device requires an electroforming process in
order to show resistive switching properties, which is carried
out by applying a negative voltage and limited by a current
compliance to avoid the device breakdown (not shown, −3 V
with a 1 mA limit). Once electroformed, the device remains in
a low resistive state (LRS). Fig. 2(a) shows a typical bipolar
resistive switching cycle exhibited by the device. Starting from
the LRS, a RESET operation gradually programs the device
to a high resistive state (HRS) by applying a positive voltage
(in the example, 2 V). Conversely, a SET operation abruptly
drives the device from the HRS back to the LRS by applying a
negative voltage and current compliance; the voltage at which
the SET event takes place is called SET voltage (VSET ). Here
LRS and HRS are qualitative terms to refer to the RRAM
device state after a SET or a RESET operation, respectively.
The internal state x of our device can be tuned in an analog
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Fig. 2. RRAM device switching operation. (a) Illustration of a single switching cycle and extracted features from the programmed HRS. Inset: example of
a progressive RESET programming procedure with VST O P = 1.5 V. (b) Cumulative distribution functions of VSET and Rx according to the VST O P in the
RESET programming procedure.

fashion and it is monitored through Rx , which is the sensed
resistance at 0.1 V, as shown in Fig. 2(a). The state retention
of our devices has been measured to extend up to 10 years
[31], [32].

The switching cycle in Fig. 2(a) highlights the HRS non-
linear i-v characteristics (thick continuous line) in contrast
with the high linearity in the LRS. Therefore, implement-
ing the nonlinear part of Fig. 1(a) requires our RRAM
device to be programmed to a HRS. As we must avoid
switching the RRAM device during the programming mode,
we need to identify the device non-switching region. The exact
non-switching region may be a topic of discussion since it is
not a fixed region and it may depend on the time in which a
voltage is applied across the device. Generally, RRAM devices
switch at lower voltages if these voltages are applied for
longer times [33], [34]. Since our circuit oscillates at least at a
moderate frequency, we accept the SET and RESET voltages
acquired in our quasi-static measurements as valid references.
Therefore, we can consider the device non-switching region at
voltages between VSET and the maximum voltage applied in
the RESET operation (thick line labeled as iM in Fig. 2(a)).

B. Phenomenological Model of iM

The nonlinear current iM (v, x) from the RRAM device
HRS is characterized and modeled to be used in the tunable
memristor Chua’s circuit, shown in Fig. 1(a). The model
considers the nonlinearity of iM and accounts for the internal
state x of the RRAM device in the form of Rx .

The electrical characterization of the iM at different HRS is
carried out employing a programming procedure referred to as
progressive RESET and shown in the inset of Fig. 2(a). Start-
ing from similar initial LRS conditions by employing the same
SET operation as in Fig. 2(a), a sequence of RESET operations
is carried out. More specifically, the first RESET operation
applies 0.7 V, and for each following RESET operation the
voltage increases by 50 mV, until reaching a target value we
refer to as stop voltage or VST O P . At this point, the RRAM
device is programmed to a HRS. This method is preferred to
avoid excessive stress in some switching events and possible

device breakdowns, especially when switching from LRS to
HRS with voltage levels higher than the ones used in previous
works [31]. Both the last RESET operation at each progressive
RESET procedure and a subsequent SET operation are used
to extract iM , Rx and VSET from the programmed HRS.

The HRS electrical characterization data set consists of
acquired iM , Rx and VSET from 50 progressive RESET
procedures for each VST O P starting from 0.7 V to 2.7 V.
Fig. 2(b) reports the experimental cumulative distribution
functions (CDF) for Rx and VSET according to each employed
VST O P . When VST O P increases, Rx generally increases, while
VSET becomes more negative, and as a result, the device
non-switching region increases. It is worth noticing that
the well-known cycle-to-cycle (C2C) variability of RRAM
devices is present in the progressive RESET programming and
manifested in the depicted CDFs. For instance, the reported
distributions for both Rx and VSET tend to partially over-
lap when using progressive RESET procedures with closer
VST O P values. Additionally, the spread of values significantly
increases at higher VST O P . Despite the uncertainty after the
programming, the collected data with a broad distribution of
Rx values are exploited to establish a model linking Rx with
the i-v characteristics from the HRS.

The proposed model for the iM exhibited at the HRS is
presented in (14); it corresponds to a third-order polynomial
nonlinearity with respect to the voltage drop across the RRAM
device, and it considers the possibility of an asymmetric iM
according to the applied voltage polarity. The model contains
four coefficients, p1p, p3p, p1n and p3n , for the linear and
third-order terms, and for both positive and negative voltage
polarities. Given the fact that iM is monotonically increasing
as shown in Fig. 2(a), the coefficients are restricted to positive
values. Moreover, different HRSs result in different i-v curves
and different values for the model coefficients. For this reason,
we consider the model coefficients to depend on the state
estimator Rx .

iM (v, Rx ) =

{
p1p(Rx )v + p3p(Rx )v

3, v ≥ 0
p1n(Rx )v + p3n(Rx )v

3, v < 0
(14)
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Fig. 3. Results of the fitting process for the current measurements with the model proposed in (16). (a) Model coefficients from (14) after fitting each iM
versus Rx and exponential law trend from (15). (b) Examples of measured iM data (dots) and fitted model (line). (c) VSET dependence with Rx (average
trend depicted in dashed line).

Fig. 3(a) displays the results of the model coefficients after
fitting each acquired iM individually according to the Rx
of that programmed HRS, while Fig. 3(b) illustrates with
few examples how the model properly fits the experimental
data. From Fig. 3(a), it is noticeable that all coefficients are
related to Rx , each one approximately following a power law
relationship, described as

pi (Rx ) ≈ ai Rbi
x (15)

This fact demonstrates that Rx is a good measure of the
internal state x , at least on average. Moreover, a certain
internal state is associated with a certain average nonlinearity
(given by the third-order term coefficient).

Combining (14) and (15), we obtain the following model
for iM that explicitly depends on the tunable and measurable
Rx

iM (v, Rx ) =


[
a1p R

b1p
x

]
v +

[
a3p R

b3p
x

]
v3, v ≥ 0[

a1n R
b1n
x

]
v +

[
a3n R

b3n
x

]
v3, v < 0

(16)

Fig. 3(a) depicts the estimation of each coefficient pi using
(15) as a black dashed line and reports the parameter values
for each estimation. The estimation of each pi highlights
the nonlinear nature of HRS; as Rx increases, p1 (linear
term) decreases at a higher rate than the p3 (cubic term).
Furthermore, for each polarity, both the depicted estimations
and the parameters of (16), i.e., the pairs ai p-ain and bi p-
bin (for i = 1, 3), show differences and suggest certain
asymmetry in the overall i-v characteristics. It is most notable
when comparing the first-order coefficients p1p and p1n at
the highest Rx , where the difference is almost one order of
magnitude. However, third-order coefficients p3p and p3n are
very similar and at least an order of magnitude higher than
p1p and p1n . Therefore, the asymmetry is largely mitigated in
the total current at moderate voltages; at very low voltages,
however, the first-order term dominates and some asymmetry
is assumed. Apart from the asymmetry, it is also worth

pointing out the deviation of some coefficients pi with the
estimation from (15). The source for this uncertainty can be
attributed to the fact that we are condensing the internal state
x of the RRAM device into the single magnitude Rx and the
coefficients pi have dependencies with multiple state variables.
Nevertheless, Rx constitutes a good measure of x on average.

Summarizing, the model in (16) predicts the current of
the programmed RRAM device just by sensing Rx . It is
worth noting the improvement with respect to our preliminary
work [23], where polynomial even terms used to model the
asymmetry showed poor correlation with Rx . It is critical to
remind that the validity of the model is limited to the voltages
in which the measured iM is used for fitting, i.e., voltages
below VST O P and VSET . Based on Fig. 2(b), |VSET | < VST O P
is generally true. Since the v1 voltage span from our Chua’s
circuit is considered to be symmetric with respect to the
origin, VSET constitutes a more restrictive boundary. Fig. 3(c)
displays the measured VSET at each programmed HRS and as
a function of Rx . The average trend, shown in a dashed line,
will be used as a reference for limiting the v1 voltage span in
the circuit implementation.

C. Circuit Design, Implementation and Experimental Setup

The design guidelines exposed in Section II-B are adapted
to our RRAM device characteristics to implement our tunable
version of Chua’s circuit. Prior to applying them, we need to
specify the working region for our RRAM device. We prior-
itized operating the RRAM device at a higher Rx since it
allows us to safely operate at higher v1 values during the
circuit’s oscillation mode. For instance, we chose the region
of Rx ∈ [0.1, 1] M�, expecting to operate at voltages between
±1.2 V, according to the expected VSET in Fig. 3(c). Working
with lower Rx would restrict the oscillation mode to voltages
down to 0.5 V, which is too low for implementations with
discrete components.

For the sake of design, we consider a specific state x̃ around
which to design the circuit and identify it by the value R̃x .
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Fig. 4. Physical implementation of the tunable memristor Chua’s circuit. (a) Workflow of the circuit design. (b) Scheme of the physical implementation.
Oscilloscope probes acquire the circuit trajectory by measuring voltages v1, v2, and v3.

We use the model for the device HRS current from (16) to
find expressions for G N and G that explicitly depend on R̃x .
More specifically, (5) and (8) are combined with (16), resulting
in

G N = a1(R̃x )
b1 + G

(
1 + α−1

)
(17)

G = α (VP )2 a3(R̃x )
b3 (18)

With these new expressions and previous considerations
from Section II-B, the tunable Chua’s circuit is designed using
the workflow depicted in Fig. 4(a). The design procedure
allows few choices; unless otherwise specified, we use α = 10,
β = 14, C1 = 10 nF and R̃x = 500 k�. Regarding the
calculation of VP , we determined with simulations that, for
the nonlinearity exhibited in (16), k = 1.33.

The complete setup for the experimental validation is shown
in Fig. 4(b). It comprises Chua’s circuit and the semiconductor
analyzer for programming the device. The circuit elements are
implemented on a breadboard except for the RRAM device,
which is connected to the rest of the circuit through a probe
station.

The implemented circuit presents additional elements with
respect to the circuit from Fig. 1(a). The operational amplifier
(OPAMP) configuration in the middle of Fig. 4(b) implements
the negative conductance −G N as long as the OPAMP oper-
ates in the linear region. The feedback resistors are chosen at
a value low enough to guarantee the OPAMP linear region for
a v1 voltage span considerably larger than the expected values
during the oscillation mode. Besides, a low offset voltage
OPAMP like AD743 is required to minimize non-idealities
in the nonlinear part.

Furthermore, the inductance is emulated with a gyrator
circuit [35] with relatively few components. It saves circuit
area, especially for high inductances, and the inductance can
be conveniently modified just by changing the bottom resistor
value. Moreover, it allows us to indirectly acquire iL by
sensing the voltages v2 and v3 in Fig. 4(b).

Finally, four switches with different functionalities are also
added. The programming (PR) switch is used to shift between
programming (closed position) and oscillation (open posi-
tion) modes. The other switches were included as additional
protection measures to address issues we encountered in
our experimental setup. The connection (CO) switch avoids
interferences between the semiconductor parameter analyzer
sensing circuitry and the rest of Chua’s circuit during the

programming mode. We also found that the RRAM device
RS was sensitive to mechanical manipulations during the
connection to Chua’s circuit; the shunt (SH) switch protects
the RRAM device during the connection process. Lastly, the
initialization (INI) switch introduces an initial condition for
Chua’s circuit (v1 = 0) and prevents the negative conductance
circuit from saturating, which would bring v1 to either of
the OPAMP supply voltages and potentially harm the RRAM
device. We want to emphasize that only the switch PR is
strictly required and that the other switches can be omitted
in an integrated circuit design.

The experimental procedure for testing the tunable Chua’s
circuit is carried out as follows. Initially, the RRAM device is
programmed to a HRS using a progressive RESET procedure;
the Rx value of the HRS is also acquired in the process. Once
programmed, the RRAM device is connected to the rest of
Chua’s circuit. After this, Chua’s circuit autonomously starts
to oscillate and the voltages v1, v2, and v3 are acquired using
a digital oscilloscope MSO6430.

D. Circuit Experimental Verification

The circuit is tested in two different scenarios. The first one
involves tuning the inductance L rather than the RRAM device
Rx , to demonstrate that the nonlinearity from the RRAM
device is suitable to generate multiple trajectories. The second
scenario corresponds to the original purpose of the circuit, i.e.,
tuning trajectories by programming the RRAM device into
different resistance states.

In the first experience, the tunable memristor Chua’s cir-
cuit is designed around an already programmed RRAM
device. The design procedure is used to select the circuit
impedances (details in Fig. 5). A set of inductance values
L = {700, 660, 580} mH is chosen, which corresponds to
β = {14, 15, 17}. The three components allow us to obtain
the trajectories depicted in Fig. 5, namely the symmetric
aperiodic (Fig. 5(a)), the asymmetric aperiodic (Fig. 5(b)),
and the asymmetric periodic (Fig. 5(c)). For each case, the
state space representation and the temporal evolution of v1, v2,
and iL are reported. The aperiodic nature of chaotic patterns
can be appreciated in the trajectories from Fig. 5(a) and 5(d),
and from Fig. 5(b) and 5(e), especially from the symmetric
aperiodic trajectory, where the trajectory arbitrarily switches
from orbiting around the EPs P+ to P−. The v1 coordinate for
EPs P+ and P− seems to be placed close to ±0.8 V, similar
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Fig. 5. Tunable memristor Chua’s circuit experimental trajectories with RRAM devices programmed to fixed R̃x = 664 k� while modifying L . Other
impedances are set to G = 100 µS (10 k�), G N = 114 µS (8.8 k�), C1 = 10 nF and C2 = 100 nF. (a)-(c) State space representation and (d)-(f) temporal
evolution of the state variables of symmetric aperiodic (L = 700 mH), asymmetric aperiodic (L = 660 mH) and asymmetric periodic (L = 580 mH)
trajectories, respectively.

Fig. 6. Experimental bifurcation diagram with Rx as a bifurcation parameter,
displaying asymmetric periodic (yellow diamonds), asymmetric aperiodic
(red empty circles) and symmetric aperiodic (blue filled circles) trajectories.
Modified from [23].

to the VP+ = 0.9 V aimed at the design. It is worth noticing
that the EPs do not change since all the components related
to the EPs position (defined by (5)), i.e., G and the nonlinear
part, are kept fixed.

In the second experiment, the inductance is kept fixed at
L = 567 mH, while the RRAM device is programmed to
different resistive states. For each programmed resistive state,
the local extrema of the v1 as a function of Rx are displayed
in the bifurcation diagram of Fig. 6. This representation is
enough to understand if a trajectory is symmetric or not (with
respect to v1 = 0 V) and aperiodic or periodic (if the local
extrema are spread along a dense cloud of points or condensed
in limited positions). We were able to tune the circuit to
generate different trajectories. For instance, there are examples
of asymmetric periodic, asymmetric aperiodic, and symmetric
aperiodic trajectories, depicted with diamond-shaped, empty
circle, and filled circle markers, respectively.

The results of the bifurcation diagram raise some interesting
observations. The different oscillation patterns appear as Rx
increases, transitioning from asymmetric periodic trajectories
to aperiodic or chaotic ones. This transition corresponds to
the period-doubling route of chaos. Similarly to oscillation
patterns, the v1 voltage span generally increases with Rx
since the EPs P+ and P− move away from the origin. These
trends highlight the role of the state estimator Rx as a tunable
parameter for the tunable memristor Chua’s circuit. However,
this general evolution is not completely uniform. For instance,
some asymmetric and symmetric aperiodic trajectories are
overlapped in the region Rx ∈ [0.5, 1) M�, and the v1 voltage
span sometimes fluctuates with similar Rx . We believe that the
most plausible explanation for these nonidealities is related
to the fact that we are using Rx as an estimator of the
internal state x . The i-v characteristic and its nonlinearity
are determined by Rx only on average. This means that
variations in the device internal state may result in variations
in the nonlinearity even at equal Rx , which is translated into
a certain deviation with respect to a uniform trend in the
bifurcation diagram. Nevertheless, the reported results were
already very promising, considering that devices were not
optimized specifically for the proposed application.

IV. DISCUSSION REGARDING DESIRABLE DEVICE
CHARACTERISTICS

The experimental results prove the possibility of implement-
ing the tunable memristor Chua’s circuit with our RRAM
device. However, the bifurcation diagram in Fig. 6 is only
possible after designing the circuit aiming to a specific Rx
range, and the trajectory selection by VST O P is limited due
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to C2C variability. This section discusses which memristor
characteristics can potentially improve the tuning possibilities
of our Chua’s circuit. All the findings in this section are
supported by numerical simulations using our model for iM
in (16).

The memristor non-switching region is the first obstacle we
found toward a robust tunable memristor Chua’s circuit real-
ization. It has already been pointed out how SET and RESET
voltages limit the v1 voltage span during the oscillation mode.
Therefore, the most desirable attributes for the non-switching
region are the following: (1) symmetric SET and RESET
voltages to optimize the allocation of the symmetric Chua’s
circuit trajectories, and (2) a reasonable voltage span (±1
to 1.5 V) can be applied across most of their RS without
switching the memristor.

C2C variability is the second most important issue to
account for. In our experimental attempt, just a few different
VST O P values can be used to tune the memristor resistive
state, and in some cases, these voltages are not able to select
the same kind of trajectory repetitively. The cause is the
high variability in Rx , as shown in Fig. 3(c). A device with
narrow Rx distributions, e.g., ±10% of the expected Rx , may
mitigate this problem. Alternatively, the use of program &
verify procedures reduce the impact of C2C variability [36].

In addition to these device features, the characteristics
of the nonlinear current iM also play an important role in
the circuit response. Particularly, two different aspects are
identified: the overall current level and the nonlinear deviation
of iN . We define nonlinear deviation as the memristor current
deviation from its linear term. For our iM model, it can be
easily quantified since the nonlinear and linear terms are sep-
arated. To evaluate the influence of both these aspects on the
tunable memristor Chua’s circuit performance, we introduce
two scaling factors at eq. (14), resulting in

iM (v, Rx ) =

 sL

[
p1pv + sD · p3pv

3
]
, v ≥ 0

sL

[
p1nv + sD · p3nv3

]
, v < 0

(19)

Here, sD and sL are the nonlinear deviation and current level
scaling factors, respectively. Briefly, when the value of these
scaling factors increases, the contribution of the nonlinear term
and the overall current level of iM also increase. The particular
case sD = sL = 1 refers to our device.

We first comment on the effect of the current level (sD kept
at 1). When the overall current level in iM decreases, i.e.,sL
decreases, the oscillation patterns do not change significantly
after using the workflow in Fig. 4(a). However, the design
workflow scales down the dissipative loads G and G N to
match the iM parameters. This results in two noticeable
changes in the circuit trajectory: iL current level decreases
and the trajectory evolves at a faster pace. This in turn scales
down the total power consumption with sL . For instance, using
the default choices in the design workflow, decreasing sL
from 1 to 0.1 scales down the total power consumption by
an order of magnitude, from 230 µW to 24 µW. Therefore,
devices with the possibility of exhibiting lower current levels
than our device can become key for low-power solutions.

Fig. 7. Simulation results of the tunable memristor Chua’s circuit showcasing
two nonlinear deviations: sD = 0.1 (top) and sD = 1 (our device, bottom).
Mean VSET across Rx from Fig. 3(c) (dashed line). Shaded areas depict
regions out of the valid range of Rx values for tuning.

Next, we discuss the impact of the nonlinear deviation (sL
kept at 1). As mentioned before, nonlinear iM is mandatory for
this circuit in order to exhibit different oscillations, including
chaos. It is beneficial, if not critical, that the iM shape shows a
high enough nonlinear deviation. Fig. 7 depicts two bifurcation
diagrams obtained through numerical simulations using the
default choices in the design workflow and two different sD
values of 0.1 (top) and 1 (our device, bottom). The dashed
line depicts the average trend VSET from Fig. 3(c), while the
shaded areas depict forbidden values of Rx for tuning. Com-
paring both bifurcation diagrams, a higher nonlinear deviation
(sD = 1) stretches the bifurcation diagram; this also occurs
when evaluating other sD . The stretching increases the range
of Rx in which the circuit can be tuned. The range of valid Rx
values in the bifurcation diagrams in Fig. 7 is limited due to
two different factors. The lower limit of the Rx is due to the
Hopf bifurcation (condition ii is not fulfilled). For sD = 0.1,
it occurs around 400 k�, while in sD = 1, it is enlarged up
to 130 k�. However, an upper limit of 535 k� appears only
when sD = 0.1, since the rapid increase of the v1 envelope
does not adequately fit within the device VSET . In conclusion,
larger nonlinear deviations allow the circuit to be tuned to a
wider range of Rx , which otherwise would be very limited
(as seen for sD = 0.1) and probably not practical due to C2C
variability.

V. CONCLUSION

A physical implementation of the tunable memristor Chua’s
circuit based on a RRAM device has been presented. Our
circuit benefits from the RRAM device integration in two
ways: (1) a more compact nonlinear part after incorporating
nonlinear i-v characteristics to produce chaotic oscillations,
and (2) revealing bifurcations by tuning the resistive state in
the RRAM device. In order to exploit these properties, the i-v
characteristics and switching properties of a RRAM device are
characterized and modeled, emphasizing their dependence on
the resistive state. At the same time, circuit design guidelines
targeting circuit oscillations and guaranteeing safe operation
voltages for the RRAM are provided. Finally, the experimental
verification of the tunable memristor Chua’s circuit validates
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both the proposed model for the RRAM device i-v character-
istics and the design methods.

The proposed framework for the tunable memristor Chua’s
circuit is not limited to RRAM devices and can be
employed with other nonvolatile memristive devices, such as
phase-change memories. Anyhow, we identified three device
properties that may become critical for a successful imple-
mentation. First, symmetric resistive switching events located
at voltages high enough are desirable to have room for tuning
between different oscillation patterns. Second, high C2C vari-
ability hinders repeatability from aiming for identical circuit
trajectories. Finally, the higher nonlinear characteristics may
be critical for the device to become a useful tunable element
inside the circuit.

The tunable memristor nonlinear block implemented in this
work can be included in other circuits that admit similar
nonlinearities. This way, nonvolatile memristive devices can
open the path to offering a compact solution to different
oscillators for controlling the generation of chaos, useful in
cryptography or sensing applications. But more importantly,
we expect that the tunability feature is not limited to a
mere oscillation pattern selector. Instead, when considering
tunable nonlinear oscillators as a primitive of more complex
computing architectures, such as oscillator-based computing
or reservoir computing, the nonvolatile memristive device can
play the role of a “tuning knob” to improve the overall
computing performance.
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