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Abstract: It is widely recognized that foods, biodiversity, and human health are strongly intercon-
nected, and many efforts have been made to understand the nutraceutical value of diet. In particular,
diet can affect the progression of intestinal diseases, including inflammatory bowel disease (IBD)
and intestinal cancer. In this context, we studied the anti-inflammatory and antioxidant activities of
extracts obtained from a local endangered variety of Phaseolus vulgaris L. (Fagiola di Venanzio, FV).
Using in vitro intestinal cell models, we evaluated the activity of three different extracts: soaking
water, cooking water, and the bioaccessible fraction obtained after mimicking the traditional cooking
procedure and gastrointestinal digestion. We demonstrated that FV extracts reduce inflammation and
oxidative stress prompted by interleukin 1β through the inhibition of cyclooxygenase 2 expression
and prostaglandin E2 production and through the reduction in reactive oxygen species production
and NOX1 levels. The reported data outline the importance of diet in the prevention of human
inflammatory diseases. Moreover, they strongly support the necessity to safeguard local biodiversity
as a source of bioactive compounds.

Keywords: common beans; Phaseolus vulgaris; colon cancer; inflammation; prostaglandin E2;
interleukin 1β; NOX1; biodiversity; in vitro gastrointestinal digestion; waste recovery

1. Introduction

The importance of bioactive compounds in foods and their beneficial impacts in the
prevention and treatment of several human diseases is widely recognized. In addition,
One Health approaches outline the interdependence among the health of humans, animals,
and ecosystems [1]. As suggested by the World Health Organization, nutrition, biodiversity,
and human health are strongly interconnected. The nutritional values of foods and the
varieties/cultivars/breeds of the same food can be very different, modifying micronutrient
availability in the diet and influencing the health of the local population. Maintaining high
levels of biodiversity is a fundamental requirement to ensure adequate average nutrient
intake levels in the diet. In this scenario, this paper describes the potential human health
benefit of Phaseolus vulgaris L. var Venanzio, FV, a local endangered bean variety grown
in a restricted area of the municipality of Murlo, Siena, Tuscany, recognized by Regione
Toscana as a specific variety in 2017 (N. VE_145 20 December 2017) [2].

It is commonly known that the consumption of beans promotes health benefits in
connection with obesity [3,4], diabetes mellitus [5], cardiovascular disease [6,7], and
cancer [2,8–13]. Beans regulate gut health by inducing beneficial changes in the gut mi-
crobiota profile and activity [14,15]. Moreover, the phenolic compounds present in beans
induce gut health by enhancing the integrity of the gut barrier [16,17], modulating the
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microbiota community [18–21], attenuating immune responses [22–24], and reducing ox-
idative stress [25,26]. Collectively, the diverse gut-health-associated targets of bioactive
compounds present in beans may ameliorate the clinical history of chronic diseases includ-
ing those associated with inflammatory processes.

Colorectal cancer (CRC) is a widespread disease engendered and fueled by
inflammation [27]. Many studies indicate that an elevated inflammatory response in inflam-
matory bowel disease (IBD) is an independent factor for the induction of colitis-associated
colon cancer [28]. IBD increases the possibility to develop CRC, and high levels of inflam-
mation are associated with a similar increase in the occurrence of CRC [29]. This suggests
that controlling inflammation may be an effective strategy to prevent the development and
progression of CRC.

Plant-based eating patterns support health and disease relief through nutritional
composition and bioactive compounds. A strong relationship between dietary habits
and the risk of intestinal diseases such as IBD and CRC is now consolidated. There are
some indications of the beneficial role of the consumption of beans in preventing the
development of CRC, [9,30,31]. Several studies on in vitro and in vivo models support
these observations [2,8,10–12,32–34]. It has been reported that different types of P. vulgaris
bean extracts have antiproliferative and anti-inflammatory activity and induce apoptosis
and autophagy in cancer cells [8,35–38].

We previously reported that the aqueous extract of FV contains high levels of proteins,
sugars, and polyphenols, and exerts antioxidant, anti-inflammatory, and antiproliferative
activities in colon cancer cell models [2]. In the present study, we further investigated the
anti-inflammatory potential of FV in colon cancer cell models by mimicking the traditional
bean cooking procedure and carrying out an in vitro gastrointestinal digestion of cooked
beans. Bean soaking water (SW), cooking water (CW), and the post-digestion bioacces-
sible fraction (BF) were analyzed to establish their activity in the inhibition of molecular
pathways linked to colon cancer cell growth prompted by inflammatory mediators and
oxidative stress.

The results of this work provide preliminary evidence that including beans in the diet
may affect the inflammatory molecular pathways involved in the development of colon
cancer, thus supporting the importance of bean consumption for human health.

Furthermore, we propose that bean soaking water, which is generally discarded
and represents a considerable waste product in bean industrial production processes,
may constitute a source of bioactive compounds to be used for the preparation of food
supplements as well as in pharmaceutical and nutraceutical preparations.

2. Materials and Methods
2.1. Preparation of P. vulgaris var. Venanzio (FV) Extracts

FV beans were first subjected to soaking and then to cooking and in vitro digestion.
Briefly, 5 g of beans were soaked for several hours (overnight) in water (100 mL). The
resulting water (soaking water, SW) was saved for further analysis. Then, 5 g of soaked
beans were cooked for 3 h in water (100 mL). The resulting water (cooking water, CW)
was collected. The digestion phase (oral, gastric, and intestinal) was performed following
INFOGEST protocol 2.0 [39], slightly modified as described earlier [40]. The fraction
reproducing the one able to be absorbed by the epithelium (bioaccessible fraction, BF) was
collected and stored at −80 ◦C; the blank solution is described in [8].

2.2. Analysis of Polyphenolic

Chemical characterization of the polyphenolic profile of the CW and BF fractions was
performed by HPLC-DAD analysis using a Shimadzu Prominence LC 2030 3D instrument
equipped with a Bondapak® C18 column, 10 µm, 125 Å, 3.9 mm × 300 mm column (Waters
Corporation, Milford, MA, USA) as previously described in detail in [2].
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2.3. Cell Culture

HT29 colorectal adenocarcinoma cells (ATCC, Rockville, MD, USA) and HCT116 col-
orectal carcinoma cells (ATCC, Rockville, MD, USA) were cultured as previously described
in detail in [2,41].

2.4. MTT Assay

Then, 3.5 × 103 HT29 or 2.5 × 103 HCT116 were tested as previously described in detail
in [42]. Cells were treated with SW, CW, or BF (1, 10, and 100 µg/mL), or with GKT137831
(5 µM) (Cayman Chemical, Ann Arbor, MI, USA) in the presence or the absence of IL1β
(10 ng/mL) (ReliaTech GmbH, Wolfenbüttel, Germany) and PGE2 (1 µM) (Sigma-Aldrich,
St. Louis, MI, USA).

2.5. Western Blotting Analysis

Next, 3.5 × 105 cells/well were grown for 24 h in a 60 mm dish in medium with
10% serum, starved for 24 h in medium with 0.1% serum, and finally treated with FV
(1, 10, 100 µg/mL) or the blank solution, with or without IL1β (10 ng/mL) and PGE2
(1 µM) or with GKT137831 (5 µM) with or without IL1β (10 ng/mL). After 48 h, the protein
extracts were prepared by lysing cells in a precooled radioimmunoprecipitation assay
(RIPA) buffer (Cell Signaling Technology, Danvers, MA, USA). The protein concentration
of the supernatant of cell lysates obtained after centrifugation at 13,000× g for 15 min
at 4 ◦C was determined by using the BCA method (BCA protein assay kit, Euroclone,
Pero, Italy). Equal amounts of proteins (50 µg) were analyzed by sodium dodecyl sulfate
(SDS)-polyacrylamide gel electrophoresis (PAGE) and Western blotting analysis, as previ-
ously described [43]. The following primary antibodies were used: anti-LC3, anti-NOX1,
anti-COX2, anti-Caspase3, anti-GAPDH, and anti-β-actin (Cell Signaling Technology). Im-
munoreactive proteins were visualized by using an enhanced chemiluminescence (ECL)
detection system (Euroclone). Images were digitalized with Image Quant LAS4000 (GE
Healthcare Europe GmbH, Milano, Italy). Immunoreactive bands were quantified by den-
sitometry using the ImageJ software 1.52a Java 1.8.0_112 (64-bit) (an open-source image
processing program, National Institutes of Health, Bethesda, MD, USA).

2.6. Clonogenic Assay

Then, 3.5 × 102 HT29 cells were seeded in 24 multi-well plates in the presence of a
medium containing 10% serum. After adhesion, cells were exposed to SW, CW, and BF
(1, 10, 100 µg/mL) in 1% serum with or without IL1β (10 ng/mL) and PGE2 (1 µM). After
10 days, the colonies were fixed and counted [42].

2.7. Trypan Blue Assay

Following this, 7.5 × 105 HT29 cells were suspended in 1 ml of RPMI containing
0.1% serum and exposed to 100 µg/mL BF or blank solution. After 48 h, 0.4% trypan blue
was added to cell suspension (1/1) h, and cell counting was performed with the LUNA-II
Automated Cell Counter (Logos Biosystems, Anyang, Republic of Korea).

2.8. Immunofluorescence Assay

Next, 7.5 × 104 HT29 cells/well cells were plated on glass coverslips into 24 multi-well
plates in RPMI containing 10% serum and incubated for 24 h. Cells were then exposed to
100 µg/mL BF for 24 h and fixed in cold acetone (5 min). Staining with anti-LC3B antibody
was performed overnight at 4 ◦C, after 1 h of incubation with 3% bovine serum albumin
(BSA). Cells were detected after 1 h of incubation with an anti-rabbit secondary antibody
(1:150, Alexa Fluor 488, ThermoFisher, Waltham, MA, USA) and a further 5 min with
0.1 µg/mL DAPI (Cell Signaling Technology). Immunofluorescent staining was visualized
with the ECLIPSE Ts2 microscope and images were captured with NIS-Elements software
D 5.30.02 64-bit (Nikon, Minato City, Tokyo, Japan) [41].



Nutrients 2024, 16, 2534 4 of 15

2.9. Annexin V-FITC Staining

Annexin V-FITC staining was performed as previously reported [8].

2.10. Senescence Assay

For the senescence assay, 7.5 × 104 HT29 cells/well were plated in 24 multi-well plates
in RMPI medium containing 10% of serum. After adhesion, cells were exposed for 24 h
to 1, 10, and 100 µg/mL of FV extracts. The senescence β-galactosidase staining kit (Cell
Signaling Technology) was used to determine the senescent cells.

2.11. Determination of Reactive Oxygen Species (ROS)

To determine ROS, 5.0 × 104 cells/well (HT29) were plated in 24 well multi plate and
exposed to 10 ng/mL of IL1β or 1 µM PGE2, where indicated cells were pre-treated for
1 h with FV extracts (10 µg/mL) or GKT137831 (5 µM). After 24 h, cells were trypsinized
and suspended with 10 µM of 2,-7-dichlorodihydrofluorescein diacetate (DCFH2-DA,
ThermoFisher) for 15 min. Cells were spun and resuspended with PBS. ROS levels were
measured photometrically with a CLARIOstar microplate reader (BMG LABTECH) (excita-
tion/emission 495/527).

2.12. Determination of PGE2 by ELISA

HT29 (5.0 × 104 cells/well) were plated in 24 multi-well plates. After starvation, cells
were exposed to 10 µg/mL of FV extracts or GKT137831 (5 µM) for 1 h. Cells were then
treated with 10 ng/mL of IL1β for 48 h. The PGE2 concentration in the supernatants was
determined by using the Prostaglandin E2 Express ELISA Kit (Cayman Chemical, Ann
Arbor, MI, USA) [44].

2.13. RT-PCR

Then, 3.5 × 105 cells/well (HT29) were plated in a 60 mm dish in medium containing
10% serum. After starvation, cells were treated with 10 µg/mL of FV extracts for 1 h and
then exposed to IL1β (10 ng/mL) or PGE2 (1 µM) for 24 h. Cells were then lysed with
an RNA lysis buffer (Zymo Research, Sunnyvale, CA, USA) and the RNA purification
was performed with the Quick-RNA Miniprep Kit (Zymo Research). The iScript cDNA
Synthesis kit (BioRad, Hong Kong, China) was used for reverse transcription. In total,
50 ng/µL of cDNA samples were used to amplify COX2 and NOX1 with gene-specific
primers (Bio-Fab Research, Roma, Italy). All real-time PCR reactions were performed using
the Rotor-Gene Q (Qiagen, Hong Kong, China) and the amplifications were performed
using the Luna Universal qPCR Master Mix (New England BioLabs, Ipswich, MA, USA)
applying the following conditions: an initial denaturation step at 95 ◦C for 1 min, 45 cycles
at 95 ◦C for 15 s, 60 ◦C for 30 s, and 95 ◦C for 10 s. The relative quantification of gene
expression was determined using the 2−∆∆Ct method [45].

2.14. Statistical Analysis

Data are expressed as mean ± standard deviation (SD). Statistical analysis was per-
formed using Student’s t-test, one-way ANOVA, or Tukey’s multiple comparisons test
(GraphPad Prism 8.4.3). Any differences in the dataset of p < 0.05 were considered statisti-
cally significant.

3. Results
3.1. Activity of P. vulgaris Extracts on Colon Cancer Cells

As previously reported for other varieties of P. vulgaris [8], in this study we used
different fractions obtained after soaking, cooking, and in vitro digestion of FV beans. The
chemical characterization of the fractions is currently underway. However, preliminary
data on polyphenol content [8] indicate that the pre-digestion fraction (CW) contains
polyphenols that are lost after digestion (BF fraction), while very low levels of polyphenols
were detected in the SW fraction.
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As shown in Table 1, CW contains 0.84 mg/g of total polyphenols, largely gallic acid
and hydroxycinnamic derivatives (HCD). As reported in [8] and because of unavoidable
matrix interferences, simple phenolic compounds such as gallic acid could be not recovered
in BF; however, a recovery higher than 45% was obtained for HCD in this fraction.

Table 1. Polyphenol content of CW and BF extracts of FV beans. Total polyphenols were quantified
by colorimetric analysis and expressed in mg/g dry weight of raw beans, as gallic acid equivalents.
Hydroxycinnamic derivatives were identified according to their UV spectra by HPLC-DAD and
quantified as chlorogenic acid (mg/g dry weight). n.d.= not detectable.

Components CW BF

Total polyphenols 0.84 ± 0.01 n.d.
Total hydroxycinnamic derivatives 0.24 ± 0.01 0.11 ± 0.01

Gallic acid 0.41 ± 0.02 n.d.
Chlorogenic acid 0.03 ± 0.01 n.d.

Using two different colon cancer cell models (HT29 and HCT116), we evaluated cell
viability by MTT assay. Soaking water (SW) and cooking water (CW) did not affect cell
viability in basal conditions, while the bioaccessible fraction (BF) was strongly active at the
higher concentrations (Figure 1a,b). These effects were not linked to a toxic effect of BF
since trypan blue analysis indicated that 100 µg/mL of the extract did not induce significant
cell death of the HT29 cell line (21.02 ± 6 cell death vs. 10.81 ± 4 of the blank). In addition,
all the extracts inhibited HT29 colony formation, with BF being the most effective at all the
tested concentrations (Figure 1c).
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Figure 1. BF reduces colon cancer cell vitality and clonogenicity. HT29 (a) and HCT116 (b) cell vitality
were evaluated by MTT assay after 48 h of cell exposure with FV extracts (1, 10, and 100 µg/mL).
(c) Cell clonogenicity was reported as the percentage of colonies of HT29 cells in response to dif-
ferent concentrations (1, 10, and 100 µg/mL) of soaking water (SW), cooking water (CW), and the
bioaccessible fraction (BF). **** p < 0.0001; *** p < 0.001 and ** p < 0.01 vs. basal.

To define the mechanism by which high concentrations of BF promoted the reduction
in cell viability, we investigated its effects on the activation of autophagy, apoptosis, and
senescence. Figure 2 shows that BF, at the concentration of 100 µg/mL, caused autophagy
in HT29 cells by inducing LC3 II expression (Figure 2a,b). In addition, BF did not promote
senescence (Figure 2c) nor activate the apoptotic process, since BF did not induce the
activation of caspase 3 (Figure 2d) and annexin V (Figure 2e). These results confirm our
previous observations concerning the biological activity of BF obtained from two other
varieties of P. vulgaris [8].
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Figure 2. Autophagy activation by FV bioaccessible fraction (BF). HT29 cells were exposed to 1, 10,
and 100 µg/mL of BF, and LC3 I and LC3 II expression and localization were evaluated by (a) Western
blotting and (b) immunofluorescence analysis. (c) Senescence was evaluated in BF-treated HT29
cells. Senescent cells are colored in blue. HT29 cells were incubated with BF and apoptosis was
evaluated by measuring caspase 3 activation through Western blotting (d) or by staining with annexin
V-FITC-conjugated antibody and propidium iodide. Microscopy imaging was performed by using a
40× magnification (e).

3.2. Effects of P. vulgaris Extracts on Inflammation and Oxidative Stress Promoted by
Interleukin 1β

It is broadly recognized that chronic inflammation, governing several pathologic
conditions of the intestine including IBD [46], is the most critical contributor to the devel-
opment and progression of cancer and that diet may modulate intestinal inflammatory
processes [47,48]. In this scenario, we analyzed the activity of SW, CW, and BF on colon can-
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cer cell vitality and growth promoted by interleukin 1β (IL1β), a potent proinflammatory
cytokine. As HCT116 cells were very poorly responsive to IL1β treatment, we continued
the experiments using only HT29 cells which proved to be more suitable for this study.

HT29 treatment with 10 ng/mL IL1β caused increasing cell vitality that was reversed
by BF (Figure 3a). In this type of experiment, all the bean extracts were used at the
concentration of 10 µg/mL, the highest non-active concentration tested in basal conditions
(Figure 1a). Similarly, IL1β resulted in an increase in the number of colonies, which
was inhibited by SW, CW, and BF (Figure 3b). These data indicate that extracts from
P. vulgaris var. Venanzio may be effective in reducing the protumoral effects of inflammatory
mediators such as IL1β, and the digested fraction is the most active fraction.
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Figure 3. FV extracts inhibit HT29 cell vitality and clonogenicity induced by IL1β. (a) Cell vitality
induced by IL1β was measured with or without FV extracts (10 µg/mL). (b) Cell clonogenicity
was measured as the percentage of the number of HT29 colonies after treatment with IL1β and
10 µg/mL of soaking water (SW), cooking water (CW), andthe bioaccessible fraction (BF). # p < 0.05;
### p < 0.001 vs. basal and **** p < 0.0001; * p < 0.01 vs. IL1β.

To better understand the molecular mechanisms related to the inflammatory response
of cancer cells, we evaluated the expression levels of cyclooxygenase 2 (COX2), an enzyme
strongly involved in inflammation and tumor progression [49,50]. As expected, in HT29
cells, IL1β induced a potent increase in COX2 expression, evaluated by Western blotting,
PCR, and measurement of PGE2 levels, which was reversed by all the FV extracts tested
(Figure 4a–c).
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Since inflammation is supported by oxidative stress, we evaluated the production
of radical species of oxygen (ROS) after IL1β treatment. HT29 cells exposed for 24 h
to 10 ng/mL IL1β showed an increased production of ROS, but when cancer cells were
pretreated with SW, CW, and BF there was a significant reduction in ROS production that
reached levels lower than baseline conditions (Figure 5a). Dysregulation of ROS production
controls the development and progression of several types of cancer, including colorectal
cancer, and the involvement of NADPH oxidases (NOXs) in ROS production appears to
be of particular importance [51]. Among the seven members of the NOX family, NOX1
regulates the stemness, growth, and apoptosis of colon cancer cells via several mechanisms
including the regulation of several oncogenes, chemokines, and angiogenic factors [52–54].
In this light, we measured the expression levels of NOX1 in the HT29 cell line both in basal
conditions and in the presence of 10 ng/mL IL1β. Figure 5b,c show that basal expression
of NOX1 in HT29 cells was increased after IL1β treatment. Consistently with the ROS
measurements, BF reduced both NOX1 mRNA and protein expression levels, while the
effects of SW and CW were limited to protein expression. The different effects of the
fractions may be related to a different chemical composition.

Figure 5. FV extracts inhibit ROS production and NOX1 expression induced by IL1β. (a,d) ROS
measurement was performed after 24 h of incubation with IL1β (10 ng/mL) in the presence/absence
of FV extracts (10 µg/mL) or GKT137831 (GKT) 10 µM. Data are expressed as % of ROS levels.
(b,c) Expression levels of NOX1 were measured by PCR (b) and Western blotting (c). Cells were
exposed to IL1β (10 ng/mL) in the presence/absence of FV extracts (10 µg/mL) for 24 h. Im-
ages are representative of three independent experiments. SW: soaking water, CW: cooking water,
BF: bioaccessible fraction. ## p < 0.01; # p < 0.05 vs. basal and **** p < 0.0001; *** p < 0.001; ** p < 0.01;
* p < 0.05 vs. IL1β.

As polyphenols are strongly reduced after the digestion phase (see Table 1), the
activity of BF may be due to other chemical components, also of peptidic nature, produced
during the digestive process. This will be the subject of further studies. These data
suggest that FV extracts may modulate ROS production through NOX1 regulation. We
observed a significant reduction in ROS production in IL1β-treated HT29 cells in the
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presence of the NOX1 inhibitor GKT137831 (GKT, 5 µM), confirming the importance of the
NOX1 enzyme in redox balance dysregulation of colon cancer cells (Figure 5d).To better
understand the correlation between COX2 induction and ROS production promoted by
IL1β treatment, we performed a Western blot and PCR analysis of COX2 expression in the
presence/absence of GKT (5 µM). As shown in Figure 6, GKT significantly prevented the
protein and mRNA expression of COX2 and PGE2 production induced by IL1β, indicating
that NOX1 expression and activity may be crucial for the expression of inflammatory
markers in colon cancer cells. Consistently, cell viability promoted by IL1β was inhibited
by GKT (Figure 6d).

Nutrients 2024, 16, x FOR PEER REVIEW 9 of 15 
 

 

to IL1β (10 ng/mL) in the presence/absence of FV extracts (10 µg/mL) for 24 h. Images are repre-
sentative of three independent experiments. SW: soaking water, CW: cooking water, BF: bioaccessi-
ble fraction. ## p < 0.01; # p < 0.05 vs. basal and **** p < 0.0001; *** p < 0.001; ** p < 0.01; * p < 0.05 vs. 
IL1β. 

As polyphenols are strongly reduced after the digestion phase (see Table 1), the ac-
tivity of BF may be due to other chemical components, also of peptidic nature, produced 
during the digestive process. This will be the subject of further studies. These data suggest 
that FV extracts may modulate ROS production through NOX1 regulation. We observed 
a significant reduction in ROS production in IL1β-treated HT29 cells in the presence of the 
NOX1 inhibitor GKT137831 (GKT, 5 µM), confirming the importance of the NOX1 enzyme 
in redox balance dysregulation of colon cancer cells (Figure 5d).To better understand the 
correlation between COX2 induction and ROS production promoted by IL1β treatment, 
we performed a Western blot and PCR analysis of COX2 expression in the presence/ab-
sence of GKT (5 µM). As shown in Figure 6, GKT significantly prevented the protein and 
mRNA expression of COX2 and PGE2 production induced by IL1β, indicating that NOX1 
expression and activity may be crucial for the expression of inflammatory markers in co-
lon cancer cells. Consistently, cell viability promoted by IL1β was inhibited by GKT (Fig-
ure 6d). 

 
Figure 6. NOX1 activity regulates COX2 expression induced by IL1β in HT29 cells. COX2 expression 
induced by IL1β was evaluated by Western blotting (a) and PCR (b) after cell treatment with the 
NOX1 inhibitor, GKT137831 (GKT) (5 µM). #### p < 0.0001; ### p < 0.001; # p < 0.05 vs. basal and **** 
p < 0.0001; *** p < 0.001; ** p < 0.01 and * p < 0.5 vs. IL1β. 

3.3. P. vulgaris Extracts Inhibit IL1β Effects in Colon Cancer Cells Amplified by PGE2 

d

0
20
40
60
80

100
120
140

CTRL GKT

%
 c

el
l v

ia
bi

lit
y

CTRL

IL1β
*

#

Figure 6. NOX1 activity regulates COX2 expression induced by IL1β in HT29 cells. COX2 expression
induced by IL1β was evaluated by Western blotting (a) and PCR (b) after cell treatment with the
NOX1 inhibitor GKT137831 (GKT) (5 µM). PGE2 levels (c), and cell viability (d) were measured in
similar conditions. #### p < 0.0001; ### p < 0.001; # p < 0.05 vs. basal and **** p < 0.0001; *** p < 0.001;
** p < 0.01 and * p < 0.5 vs. IL1β.

3.3. P. vulgaris Extracts Inhibit IL1β Effects in Colon Cancer Cells Amplified by PGE2

The role of inflammation in the onset and progression of cancer is widely recognized,
and an important role is covered by PGE2 [49,50]. This prostaglandin can be produced
by cancer cells themselves (intrinsic inflammation) and by the tumor microenvironment
(extrinsic inflammation), and it may promote growth, migration, angiogenesis, and immu-
noescape [49,50].

The treatment of HT29 cells with IL1β for 24 h led to increased COX2 expression and
PGE2 production (Figure 4). To verify the influence of P. vulgaris extracts on PGE2 effects, we
first evaluated the effects of SW, CW, and BF on cell growth prompted by PGE2. As observed
for IL1β, PGE2 promoted both HT29 cell viability, which was significantly inhibited by the
highest BF concentration, as well as colony formation, which was reduced by all the extracts
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used (Figure 7a,b). Similarly to IL1β, PGE2 also promoted ROS production and NOX1
and COX2 expression, which were inhibited when colon cancer cells were pre-treated
with SW, CW, and BF (Figure 7c–f), indicating that the bean extracts also inhibited the
effects of exogenous PGE2. These data support the hypothesis that P. vulgaris extracts
modulate the effects of inflammatory mediators through the reduction in ROS production
and inflammatory pathways.

Figure 7. FV extracts inhibit PGE2 activity. (a) Cell vitality induced by PGE2 (1 µM) was measured
in the presence/absence of SW, CW, and BF (10 µg/mL) by MTT assay. (b) Cell clonogenicity was
reported as the percentage of colonies of HT29 cells in response to PGE2 and SW, CW, and BF (10 µM).
(c) ROS measurement was performed after 24 h of incubation with PGE2 in the presence/absence of
FV extracts. (d) COX2 mRNA levels were measured after 24 h of exposure to PGE2 and FV extracts.
(e,f) Expression levels of NOX1 were measured by Western blotting and PCR. Cells were exposed to
PGE2 in the presence/absence of FV extracts (10 µg/mL) for 24 h. SW: soaking water, CW: cooking
water, BF: bioaccessible fraction. ### p < 0.001; ## p < 0.01; # p < 0.05 vs. basal and **** p < 0.0001;
*** p < 0.001; ** p < 0.01 vs. IL1β.

4. Discussion

Inflammation is characterized by a series of biological responses of the body to danger-
ous events and represents a physiological process that leads to the resolution of different
critical events (acute inflammation) [55]. The process transforms from physiological to
pathological when it is not conclusive and persists over time. In this case, chronic inflam-
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mation is associated with damaging diseases, namely chronic inflammatory diseases [55].
Among these types of pathological conditions, IBD is a chronic inflammatory disease of
the digestive tract [48] and may lead to the development of colon cancer [27,28]. In fact,
starting from Virchow, it is now widely recognized that chronic inflammation is closely
related to the onset and progression of many tumors through the promotion of growth,
migration, invasion, apoptotic escape, angiogenesis, and metabolic reprogramming of
cancer cells [56–58]. Thus, inflammatory stimuli promote cancer cell growth by activating
intracellular signaling pathways.

In this context, the reduction in chronic inflammation through diet may represent
an important endpoint, and correct eating behavior, including more vegetables and less
saturated fats, supports the prevention and management of pathological disorders. More-
over, there is growing evidence that specific nutritional patterns may interfere with the
progression of chronic diseases. These observations are in line with an increasing need for
dietary approaches and functional foods that may be useful to treat these conditions. In line
with these observations, we report experimental evidence regarding the effect of P. vulgaris
extracts on the inflammatory pathways involved in intestinal inflammation and colon
cancer progression. Bean extracts inhibited colon cancer cell growth promoted by IL1β and
PGE2, both involved in chronic inflammation. Consistently, the extracts inhibited COX2
expression. Interestingly, we showed that there is a relationship between ROS production
and COX2 expression, NOX1 being responsible for the induction of COX2 promoted by
IL1β and PGE2. These data indicate that food may affect cellular signaling pathways that
contribute to disease onset and progression, and further highlight the importance of diet in
human health.

Importantly, we evaluated the biological activity of a new variety of P. vulgaris, the Fa-
giola di Venanzio (FV). This variety was only recently recognized as a new local endangered
bean variety and represents a local source of biodiversity [2]. In a world where the decline
of biodiversity is increasingly rapid, biodiversity preservation should be a global goal and
a new strategy for the promotion of health for both people and nature is required. Local
foods represent a new source of bioactive compounds and are assuming a prominent role
in ensuring public health. For this reason, our study on the Fagiola di Venanzio represents
a particularly contemporary topic.

A critical point in characterizing the food’s biological activity is the procedure used
to prepare the extracts. The lack of physiological conditions during extract preparation
that do not consider the digestive processes within the human gastrointestinal tract may
represent a limiting factor in understanding the biological role of some foods. To produce
a bean extract that simulates the one produced by the digestion process (bioaccessible
fraction, BF), we used an in vitro procedure that, taking into account digestive enzymes,
pH, salt concentration, and digestion time typical of the different phases of digestion in the
gastrointestinal tract, allowed us to simulate physiological conditions [8].

Another important aspect is that we examined the activities of three different extracts,
each representing a crucial step in the processing of the beans: soaking water, cooking water,
and the bioaccessible fraction obtained after in vitro enzymatic digestion. Soaking water
was obtained after keeping the beans in water overnight. This extract, representing the
first step of bean processing, is not normally consumed but constitutes a significant waste
product of the large-scale industrial production of cooked beans that needs to be disposed.
We demonstrated that soaking water may be a good source of bioactive compounds and
represents a huge opportunity for the bioconversion of bean waste into useful materials to
be considered in the context of the circular economy. In this paper, we have not reported
the chemical composition of this fraction as the analysis is still ongoing. However, SW
was very scarce in polyphenols, and we hypothesize that the main constituents of this
waste product may be lectins, as reported for other varieties of beans [59]. The major
limitation of this study is represented by the characterization of the chemical composition
of the different bean extracts, which, at the moment, is limited to the determination of the
polyphenol content in all the fractions. However, we expect the bioaccessible fraction of
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beans to contain degraded complex sugars and oligopeptides [60–62]. Thus, BF requires
comprehensive chemical characterization which is beyond the scope of this paper. Indeed, it
is made difficult by the inevitable analytical interferences after simulated digestion and the
technical challenge required to determine the chemical profile of a digested phytocomplex.

5. Conclusions

We studied the biological activity of different extracts of a specific variety of P. vulgaris,
including the fractions obtained after mimicking the traditional cooking procedure and
gastrointestinal digestion. The different fractions reduced cancer cell clonogenicity and
inhibited COX2 expression and activity induced by IL1β. Consistently, the tested extracts
reduced oxidative stress by counteracting IL1β’s effects on the expression of NOX1 and the
production of ROS. These antioxidant and anti-inflammatory activities support the idea
that FV consumption may protect against inflammatory diseases such as IBD and CRC.

These data support the importance of foods in human health and the pivotal role
played by local food biodiversity.

Furthermore, from a circular economy perspective, we propose a possible use of a
waste product as a source of bioactive compounds to be used for the preparation of food
supplements as well as in pharmaceutical and nutraceutical preparations.
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