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STRUCTURAL AND UNIVERSAL COMPLETENESS

IN ALGEBRA AND LOGIC
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Abstract. In this work we study the notions of structural and universal completeness both from
the algebraic and logical point of view. In particular, we provide new algebraic characterizations of
quasivarieties that are actively and passively universally complete, and passively structurally com-
plete. We apply these general results to varieties of bounded lattices and to quasivarieties related to
substructural logics. In particular we show that a substructural logic satisfying weakening is passively
structurally complete if and only if every classical contradiction is explosive in it. Moreover, we fully
characterize the passive structurally complete varieties of MTL-algebras, i.e., bounded commutative
integral residuated lattices generated by chains.

1. Introduction

The main aim of this paper is to explore some connections between algebra and logic; mainly, we
try to produce some bridge theorems. A bridge theorem is a statement connecting logical (and mostly
synctactical) features of deductive systems and properties of classes of algebras; this connection is
usually performed using the tools of general algebra and the rich theory that is behind it. The main
reason behind this kind of exploration is in the further understanding one can gain by connecting two
apparently distant fields. In this way, we can explore logical properties in purely algebraic terms; at
the same time statements can be imported from logic that have an important and often new algebraic
meaning.

The set of logical problems we want to explore is connected with the concept of structural complete-
ness of a deductive system, in the different ways it can be declined. For a deductive system, being
structurally complete means that each of its proper extensions admits new theorems. This notion can
be formalized in a more rigorous way, using the concept of admissible rule. A rule is admissible in a
logic if, whenever there is a substitution making its premises a theorem, such substitution also makes
the conclusion a theorem. A logic is then structurally complete if all its admissible rules are derivable in
the system. It is well-known that classical logic is structurally complete; intuitionistic logic is not but
it satisfies a weaker although still interesting notion: it is passively structurally complete. We will see
that this is not just a feature of intuitionism but it can be explained in a much more general framework,
and it is connected to the way the contradictions of classical logic are treated. In more details, passive
structural completeness means that all rules that do not apply to theorems are derivable. Naturally,
the dual notion of active structural completeness also arises, which instead isolates the derivability of
those rules for which there exists a substitution making their premises a theorem. The latter notion
has been explored in generality in [35]. Structural completeness and its hereditary version have been
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2 STRUCTURAL AND UNIVERSAL COMPLETENESS IN ALGEBRA AND LOGIC

deeply studied in the literature: e.g., in general algebraic terms in [13], in substructural logics in [68],
in fuzzy logics in [29], in intermediate logics in [30].

A natural extension of this kind of problems is to consider clauses instead of rules. A clause is a
formal pair Σ ñ ∆, where both Σ and ∆ are finite sets of formulas over a suitable language. A clause
is then admissible if a substitution making all the formulas in Σ into theorems makes at least one of the
formulas in ∆ a theorem. Likewise, a clause is derivable if at least one of the formulas in ∆ is derivable
from Σ. A logic is universally complete if every admissible clause is derivable in it. It is then also
possible to investigate the situation in which admissible clauses are active or passive in a deductive
system, and thus the corresponding notions of universal completeness. Universal completeness in
connection to admissible clauses has been studied in [22].

The way in which our bridge theorems will be created exploits the machinery of the so-called Blok-
Pigozzi connection [18]. Without going into details, this machinery allows us to express purely logical
concepts in an algebraic language. The advantage of doing so is evident: on one hand we can use the
entire wealth of results about classes of algebras and various algebraic operators. On the other hand,
very often by mean of this translation one ends up with algebraic results that are interesting in their
own nature, irregardless of their logical origin.

While not every logical system admits this translation, many interesting and/or classical systems do:
classical and intuitionistic logic, relevance logics, substructural logics in general, many-valued logics,
many modal logics and so on. In this framework, one can translate the previously described notions
of structural and universal completeness into properties of the quasiequational or universal theory of
a quasivariety of algebras. In this setting, we will rephrase the notions of interest not in terms of
formulas, but in terms of equations in a suitable language.

In this manuscript our aim is twofold; on one side we will try to describe in a complete and
organic way (as much as it is possible) the phenomena mentioned above and the relations among
them. In particular, we will recall the existing results trying to put them in a coherent perspective,
which we believe is currently lacking, and we will provide many examples. On the other side, we
will provide new results and novel characterizations of those notions that are missing an effective
algebraic description. More specifically, we will first show how the characterization of active structural
completeness in [35] can be extended to describe active universal completeness. Moreover, we will give
algebraic descriptions of the notions of passive universal and structural completeness and the latter
will result in an effective characterization. As a particularly interesting consequence, we show that a
substructural logic satisfying the weakening rule is passively structurally complete if and only if every
contradiction of classical logic is explosive in it. This generalizes and explains the passive structural
completeness of intuitionistic logic. Moreover, it entails that all substructural logics (with weakening)
with the Glivenko property with respect to classical logic are passively structurally complete. Further
specializing the general result, we build on it to provide a clear characterization (and an axiomatization)
of the minimal passive structurally complete logic that is an axiomatic extension of the t-norm based
logic MTL. From the algebraic side, this means that we characterize the passive structurally complete
quasivarieties of bounded commutative integral residuated lattices generated by chains.

The techniques we will employ in our study are the ones proper of general algebra. In particular,
we will use the understanding of algebraic objects such as projective and exact algebras. The same
objects are known to be relevant for the algebraic study of unification problems in algebraizable logics
[47]. In fact, we will show how the notion of unifiability of a set of formulas (or, equivalently, a set of
equations) plays a major role in our results.

The structure of this manuscript is as follows. In the next section we will discuss the needed pre-
liminary notions. In particular, the Blok-Pigozzi connection, projective and exact algebras, algebraic
unification, and finally, we define the notions of structural and universal completeness. Section 3 is
devoted to universal completeness, and Section 4 to structural completeness, both in their various
declinations. The last section is devoted to a deeper understanding of some relevant examples from
the realms of algebra and (algebraic) logic respectively. In particular, in Subsection 5.1 we apply our
results to the variety of (bounded) lattices; finally, in Subsection 5.2, we prove the aforementioned
results and more about substructural logics.
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2. Preliminaries

2.1. Universal algebra and the Blok-Pigozzi connection. Let K be a class of algebras; we denote
by I,H,P,S,Pu the class operators sending K in the class of all isomorphic copies, homomorphic im-
ages, direct products, subalgebras and ultraproducts of members of K. The operators can be composed
in the obvious way; for instance SPpKq denotes all algebras that are embeddable in a direct product of
members of K; moreover there are relations among the classes resulting from applying operators in a
specific orders, for instance PSpKq Ď SPpKq and HSPpKq is the largest class we can obtain composing
the operators. We will use all the known relations without further notice, but the reader can consult
[69] or [21] for a textbook treatment.

If ρ is a type of algebras, an equation is a pair p, q of ρ-terms (i.e. elements of the absolutely free
algebra Tρpωq) that we write suggestively as p « q; a universal sentence or clause in ρ is a formal
pair pΣ,Γq that we write as Σ ñ Γ, where Σ,Γ are finite sets of equations; a universal sentence is a
quasiequation if |Γ| “ 1 and it is is negative if ∆ “ H. Clearly an equation is a quasiequation in which
Σ “ H.

Given any set of variables X, an assignment of X into an algebra A of type ρ is a function h mapping
each variable x P X to an element of A, that extends (uniquely) to a homomorphism (that we shall
also call h) from the term algebra Tρpωq to A. An algebra A satisfies an equation p « q with an
assignment h (and we write A, h |ù p « q) if hppq “ hpqq in A. An equation p « q is valid in A
(and we write A ( p « q) if for all assignments h in A, A, h |ù p « q; if Σ is a set of equations then
A ( Σ if A ( σ for all σ P Σ. A universal sentence is valid in A (and we write A ( Σ ñ ∆) if for
all assignments h to A, hppq “ hpqq for all p « q P Σ implies that there is an identity s « t P ∆ with
hpsq “ hptq; in other words a universal sentence can be understood as the formula @xp

Ź

Σ Ñ
Ž

∆q.
An equation or a universal sentence is valid in a class K if it is valid in all algebras in K.

A class of algebras is a variety if it is closed under H,S and P, a quasivariety if it is closed under
I,S,P and Pu and a universal class if it is closed under ISPu. The following facts were essentially
discovered by A. Tarski , J. %Lòs and A. Lyndon in the pioneering phase of model theory; for proof of
this and similar statements the reader can consult [26].

Lemma 2.1. Let K be any class of algebras. Then:

(1) K is a universal class if and only if ISPupKq “ K if and only if it is the class of algebras in
which a set of universal sentences is valid;

(2) K is a quasivariety if and only if ISPPupKq “ K if and only if it is the class of algebras in
which a set of quasiequations is valid;

(3) K is a variety if and only if HSPpKq “ K if and only if it is the class of algebras in which a
set of equations is valid.

Notation 1. We will often write V for HSP and Q for ISPPu.

For the definition of free algebras in a class K on a set X of generators, in symbols FKpXq, we refer
to [21]; we merely observe that every free algebra on a class K belongs to ISPpKq. It follows that every
free algebra in K is free in ISPpKq and therefore for any quasivariety Q, FQpXq “ FVpQqpXq.

There are two fundamental results that we will be using many times and deserve a spotlight. Let
B, pAiqiPI be algebras in the same signature; we say that B embeds in

ś

iPI Ai if B P ISp
ś

iPI Aiq.
Let pi be the i-th projection, or better, the composition of the embedding and the i-th projection,
from B to Ai; the embedding is subdirect if for all i P I, pipBq “ Ai and in this case we will write

B ďsd

ź

iPI

Ai.

An algebra B is subdirectly irreducible if it is nontrivial and for any subdirect embedding

B ďsd

ź

iPI

Ai
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there is an i P I such that B and Ai are isomorphic. It can be shown that A is subdirectly irreducible
if and only if the congruence lattice ConpAq of A has a unique minimal element different from the
trivial congruence. If V is a variety we denote by Vsi the class of subdirectly irreducible algebras in V.

Theorem 2.2. (1) (Birkhoff [16]) Every algebra can be subdirectly embedded in a product of sub-
directly irreducible algebras. So if A P V, then A can be subdirectly embedded in a product of
members of Vsi.

(2) (Jónsson’s Lemma [56]) Suppose that K is a class of algebras such that VpKq is congruence
distributive; then Vsi Ď HSPupKq.

If Q is a quasivariety and A P Q, a relative congruence of A is a congruence θ such that A{θ P Q;
relative congruences form an algebraic lattice ConQpAq. Moreover, for an algebra A and a set H Ď
A ˆ A there exists the least relative congruence θQpHq on A containing H. When H “ tpa, bqu, we
just write θQpa, bq. When Q is a variety we simplify the notation by dropping the subscript Q.

For any congruence lattice property P we say that A P Q is relative P if ConQpAq satisfies P . So
for instance A is relative subdirectly irreducible if ConQpAq has a unique minimal element; since clearly
ConQpAq is a meet subsemilattice of ConpAq, any subdirectly irreducible algebra is relative subdirectly
irreducible for any quasivariety to which it belongs. For a quasivariety Q we denote by Qrsi the class
of relative subdirectly irreducible algebras in Q. We have the equivalent of Birkhoff’s and Jónsson’s
results for quasivarieties:

Theorem 2.3. Let Q be any quasivariety.

(1) (Mal’cev [62]) Every A P Q is subdirectly embeddable in a product of algebras in Qrsi.
(2) (Czelakowski-Dziobiak [32]) If Q “ QpKq, then Qrsi Ď ISPupKq.

The following fact will be used in the sequel.

Lemma 2.4. Let A be an algebra, such that VpAq is congruence distributive. Then QpAq “ VpAq if
and only if every subdirectly irreducible algebra in HSPupAq is in ISPuA.

Proof. Suppose first that QpAq “ VpAq, and let A be a subdirectly irreducible algebra in HSPupAq.
Thus A is subdirectly irreducible in VpAq “ QpAq, and by Theorem 2.3 A P ISPupAq.

Conversely assume that every subdirectly irreducible algebra in HSPupAq is in ISPuA. Since
VpAq is congruence distributive, by Theorem 2.2(2) every subdirectly irreducible algebra in VpAq is
in HSPupAq, thus in ISPuA. Now every algebra in VpAq is subdirectly embeddable in a product
of subdirectly irreducible algebras in VpAq (Theorem 2.2(1)). Therefore, VpAq Ď ISPISPupAq Ď
ISPPupAq “ QpAq and thus equality holds. □

In this work we are particularly interested in quasivarieties that are the equivalent algebraic seman-
tics of a logic in the sense of Blok-Pigozzi [18]. We will spend some time illustrating the machinery
of Abstract Algebraic Logic that establishes a Galois connection between algebraizable logics and qua-
sivarieties of logic, since it is relevant to understand our results. For the omitted details we refer the
reader to [18, 40].

By a logic L in what follows we mean a substitution invariant consequence relation $ on the set of
terms Tρpωq (also called algebra of formulas) of some algebraic language ρ. In loose terms, to establish
the algebraizability of a logic L with respect to a quasivariety of algebras QL over the same language
ρ, one needs a finite set of one-variable equations

τpxq “ tδipxq « εipxq : i “ 1, . . . , nu

over terms of type ρ and a finite set of formulas of L in two variables

∆px, yq “ tϕ1px, yq, . . . ,ϕmpx, yqu

that allow to transform equations, quasiequations and universal sentences in QL into formulas, rules
and clauses of L; moreover this transformation must respect both the consequence relation of the logic
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and the semantical consequence of the quasivariety. More precisely, for all sets of formulas Γ of L and
formulas ϕ P Tρpωq

Γ $L ϕ iff τpΓq (QL
τpϕq

where τpΓq is a shorthand for tτpγq : γ P Γu, and also

px « yq )(QL
τp∆px, yqq.

A quasivariety Q is a quasivariety of logic if it is the equivalent algebraic semantics for some logic LQ;
the Galois connection between algebraizable logics and quasivarieties of logic is given by

LQL
“ L QLQ

“ Q.

Not every quasivariety is a quasivariety of logic; for instance no idempotent quasivariety, such as any
quasivariety of lattices, can be a quasivariety of logics. Nonetheless quasivarieties of logic are plentiful.
In fact any ideal determined variety is such, as well as any quasivariety coming from a congruential
variety with normal ideals (see [9] for details). Moreover, every quasivariety is categorically equivalent
to a quasivariety of logic [65]. This means that if an algebraic concept is expressible through notions
that are invariant under categorical equivalence, and it holds for a quasivariety Q, then it holds for its
categorically equivalent quasivariety of logic Q1; and hence in can be transformed into a logical concept
in LQ1 using the Blok-Pigozzi connection.

Definition 2.5. If Q is any quasivariety, with an abuse of notation, we will denote by LQ a logic
whose equivalent algebraic semantics is categorically equivalent to Q.

The following result hints at what kind of properties can be transferred by categorical equivalence.

Theorem 2.6 ([12]). Let K be a class closed under subalgebras and direct products; If K is categorically
equivalent to a quasivariety Q, then K is a quasivariety.

Suppose now that Q and R are quasivarieties and suppose that F : Q ÝÑ R is a functor between
the two algebraic categories witnessing the categorical equivalence. Now, F preserves all the so-
called categorical properties, i.e., those notions that can be expressed as properties of morphisms. In
particular, embeddings are mapped to embeddings (since in algebraic categories they are exactly the
categorical monomorphisms), surjective homomorphisms are mapped to surjective homomorphisms
(since they correspond to regular epimorphisms in the categories). Moreover, we observe that direct
products are preserved as well, since they can be expressed via families of surjective homomorphisms
(see e.g. [21]). Therefore, if Q1 is a subquasivariety of Q, then the restriction of F to Q1 witnesses a
categorical equivalence between Q1 and

R1 “ tB P R : B “ F pAq for some A P Q1u.

It follows from Theorem 2.6 that R1 is a subquasivariety of R, and that R1 is a variety whenever Q1

is such. Given a quasivariety Q, we denote by ΛqpQq the lattice of subquasivarieties of Q. Hence the
correspondence sending Q1 ÞÝÑ R1 is a lattice isomorphism between ΛqpQq in ΛqpRq that preserves all
the categorical properties. Moreover, we observe that, since ultraproducts in an algebraic category
admit a categorical definition which turns out to be equivalent to the algebraic one (see for instance
[37]), the functor F also map universal subclasses to universal subclasses; more precisely, U Ď Q is a
universal class if and only if F pUq Ď R is a universal class.

Let us show an example of how we can use these correspondences, that is also a preview of what
we will see in the coming sections; if Q is a quasivariety, a subquasivariety Q1 is equational in Q if
Q1 “ HpQ1q X Q. A quasivariety is primitive if every subquasivariety of Q is equational in Q. It is
clear from the discussion above that this concept is preserved by categorical equivalence and that the
lattice isomorphism described above sends primitive subquasivarieties in primitive subquasivarieties.

2.2. Projectivity, weak projectivity and exactness. We now introduce the algebraic notions that
will be the key tools for our investigation: projective, weakly projective, exact, and finitely presented
algebras.
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Definition 2.7. Given a class K of algebras, an algebra A P K is projective in K if for all B,C P K, any
homomorphism h : A ÞÝÑ C, and any surjective homomorphism g : B ÞÝÑ C, there is a homomorphism
f : A ÞÝÑ B such that h “ gf .

A C

B

h

f
g

Determining the projective algebras in a class is usually a challenging problem, especially in a
general setting. If however K contains all the free algebras on K (in particular, if K is a quasivariety),
projectivity admits a simpler formulation. We call an algebra B a retract of an algebra A if there is a
homomorphism g : A ÞÝÑ B and a homomorphism f : B ÞÝÑ A with gf “ idB (and thus, necessarily,
f is injective and g is surjective). The following theorem was proved first by Whitman for lattices [75]
but it is well-known to hold for any class of algebras.

Theorem 2.8. Let Q be a quasivariety. Then the following are equivalent:

(1) A is projective in Q;
(2) A is a retract of a free algebra in Q.
(3) A is a retract of a projective algebra in Q.

In particular every free algebra in Q is projective in Q.

Definition 2.9. Given a quasivariety Q we say that an algebra is finitely presented in Q if there exists
a finite set X and a finite set H of pairs of terms over X such that A – FQpXq{θQpHq.

The proof of the following theorem is standard (but see [47]).

Theorem 2.10. For a finitely presented algebra A P Q the following are equivalent:

(1) A is projective in Q;
(2) A is projective in the class of all finitely presented algebras in Q;
(3) A is a retract of a finitely generated free algebra in Q.

As a consequence we stress that if Q is a quasivariety and V “ VpQq then all the algebras that are
projective in Q are also projective in V (and vice versa). Moreover, all the finitely generated projective
algebras in Q lie inside QpFQpωqq.

Definition 2.11. An algebra A is weakly projective in an algebra B if A P HpBq implies A P SpBq;
an algebra is weakly projective in a class K if it is weakly projective in any algebra B P K.

Definition 2.12. If Q is a quasivariety of algebras and A P Q, let GA be the set of generators of A;
A is exact in Q if it is weakly projective in some FQpXq with |X| ě |GA|.

Clearly any projective algebra in Q is weakly projective in Q and any weakly projective algebra in
Q is exact in Q. Observe also the following consequence of the definition.

Lemma 2.13. Let Q be a quasivariety and let A be a finitely generated algebra in Q; then the following
are equivalent:

(1) A is exact in Q;
(2) A P SpFQpωqq.

Therefore for finitely generated algebras our definition of exactness coincides with the one in [23].
We close this subsection with a couple of results connecting projectivity and weak projectivity.

Proposition 2.14. Let A be a finite subdirectly irreducible algebra; if A is weakly projective in QpAq,
then it is projective in QpAq.
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Proof. Let Q “ QpAq; since A is finite, Q is locally finite. Let F be a finitely generated (hence finite)
free algebra in Q such that A P HpFq; since A is weakly projective, A is embeddable in F and without
loss of generality we may assume that A ď F. Consider the set

V “ tα P ConQpFq : α X A2 “ 0Au,

where we denote by 0A the minimal congruence of A. It is easy to see that V is an inductive poset so
we may apply Zorn’s Lemma to find a maximal congruence θ P V . Clearly a ÞÝÑ a{θ is an embedding
of A into F{θ. We claim that F{θ is relative subdirectly irreducible and to prove so, since everything
is finite, it is enough to show that θ is meet irreducible in ConQpFq; so let α,β P ConQpAq such that
α ^ β “ θ. Then

0A “ θ X A2 “ pα ^ βq X A2 “ pα X A2q ^ pβ X A2q;

But A is subdirectly irreducible, so 0A is meet irreducible in ConpAq; hence either α X A2 “ 0A or
β X A2 “ 0A, so either α P V or β P V . Since θ is maximal in V , either α “ θ or β “ θ, which proves
that F{θ is relative subdirectly irreducible. Therefore, by Theorem 2.3(2), F{θ P ISpAq; since F{θ and
A are both finite and each one is embeddable in the other, they are in fact isomorphic. Thus A ď F,
and there is a homomorphism from F onto A that maps each a P A to itself. This shows that A is a
retract of F, and therefore A is projective in QpAq. □

For varieties we have to add the hypothesis of congruence distributivity, since the use of Theorem
2.2(2) is paramount; for the very similar proof see [53, Theorem 9].

Proposition 2.15. Let A be a finite subdirectly irreducible algebra such that VpAq is congruence
distributive; if A is weakly projective in VpAq, then it is projective in VpAq.

We observe that in algebraic categories projectivity is a property preserved by categorical equivalence
and the same holds for weak projectivity and exactness. Finally by [42] being finitely presented and
being finitely generated are also categorical properties preserved by equivalences.

2.3. Algebraic unification. The main objects of our study, i.e., the notions of universal and struc-
tural completeness, are closely related to unification problems. The classical syntactic unification
problem given two term s, t finds a unifier for them; that is, a uniform replacement of the variables
occurring in s and t by other terms that makes s and t identical. When the latter syntactical identity
is replaced by equality modulo a given equational theory E, one speaks of E-unification. S. Ghilardi
[47] proved that there is a completely algebraic way of studying (E-)unification problems in varieties
of logic, which makes use of finitely presented and projective algebras and thus is invariant under
categorical equivalence.

Let us discuss Ghilardi’s idea in some detail showing how it can be applied to quasivarieties. If Q
is a quasivariety and Σ is a finite set of equations in the variables X “ tx1, . . . , xnu by a substitution
σ we mean an assignment from X to FQpωq, extending to a homomorphism from FQpXq to FQpωq.

Definition 2.16. A unification problem for a quasivariety Q is a finite set of identities Σ in the
language of Q; Σ is unifiable in Q if there is a substitution σ such that Q ( σpΣq, i.e.

Q ( ppσpx1q, . . . ,σpxnqq « qpσpx1q, . . . ,σpxnqq

for all p « q P Σ. The substitution σ is called a unifier for Σ.

Observe that Σ is unifiable in Q if and only if it is unifiable in VpQq. Let us now present the
algebraic approach, where a unification problem can be represented by a finitely presented algebra in
Q.

Definition 2.17. If A is in Q, a unifier for A is a homomorphism u : A ÝÑ P where P is a projective
algebra in Q; we say that an algebra is unifiable in Q if at least one such homomorphism exists. A
quasivariety Q is unifiable if every finitely presented algebra in Q is unifiable.

Notation 2. When we write FQpXq{θQpΣq, θQpΣq is the relative congruence generated in FQpXq by
the set tpp, qq : p « q P Σu.
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The following summarizes the needed results of [47] applied to quasivarieties.

Theorem 2.18. Let Q be a quasivariety, and let Σ be a finite set of equations in the language of Q
with variables in a (finite) set X; then:

(1) if Σ is unifiable via σ : FQpXq Ñ FQpY q then uσ : FQpXq{θQpΣq Ñ FQpY q defined by

uσpt{θQpΣqq “ σptq

is a unifier for FQpXq{θQpΣq;
(2) conversely let A “ FQpXq{θQpΣq. If there is a unifier u : A Ñ P, where P is projective and

a retract of FQpY q witnessed by an embedding i : P Ñ FQpY q, the substitution

σu : x ÞÝÑ ipupx{θQpΣqqq

is a unifier for Σ in Q.

Proof. For the first claim, consider σ : FQpXq Ñ FQpY q and the natural epimorphism πΣ : FQpXq Ñ
FQpXq{θQpΣq. Since θQpΣq is the least congruence of FQpXq containing the set of pairs S “ tpp, qq :
p « q P Σu, and given that S Ď kerpσq, by the Second Homomorphism Theorem we can close the
following diagram with exactly the homomorphism uσ:

FQpXq FQpY q

FQpXq{θQpΣq

σ

uσ

πΣ

The second claim is easily seen, since σu is defined by a composition of homomorphism and as above
the set of pairs S “ tpp, qq : p « q P Σu is contained in its kernel, which yields that σu is a unifier for
Σ in Q. □
Corollary 2.19. A finite set of identities Σ is unifiable in Q if and only if the finitely presented algebra
FQpXq{θQpΣq is unifiable in Q.

The following observation shows how to characterize unifiability in quasivarieties.

Definition 2.20. For a quasivariety Q, we let FQ be the smallest free algebra, i.e. FQpHq (if there
are constant operations) or else FQpxq.

We have the following :

Lemma 2.21. Let Q be a quasivariety and let A P Q. Then the following are equivalent:

(1) A is unifiable in Q;
(2) there is a homomorphism from A to FQ.

Proof. Note that (2) trivially implies (1), since FQ is projective. Vice versa, if A is unifiable, there is
a homomorphism from A to some projective algebra P. Since P is a retract of some free algebra in
Q, and FQ is a homomorphic image of every free algebra in Q, the claim follows. □

The above lemma implies for instance that if FQ is trivial, then Q is unifiable since every algebra
admits a homomorphism onto a trivial algebra. Hence, examples of unifiable algebras include lattices,
groups, lattice-ordered abelian groups, residuated lattices. On the other hand, both bounded lattices
and bounded residuated lattices (explored in Subsection 5.1 and 5.2 respectively) are unifiable if and
only if they admit a homomorphism onto the algebra (over the appropriate signature) with two elements
0 and 1.

We observe in passing that if A – FQpXq{θQ is finitely presented unifiable algebra in Q, witnessed
by a unifier u : A ÝÑ P, then u can be split into a homomorphism onto its image upAq, and an
embedding from upAq to P. By the Third Homomorphism Theorem there is a θ1 P ConpFQpXqq
corresponding to the kernel of the onto homomorphism u : A ÝÑ upAq, θ1 ě θ, such that FVpXq{θ1
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embeds in P; note that θ1 P ConQpFQpXqq, since P P Q. The diagram in Figure 1 shows that indeed
FVpXq{θ1 is exact.

FVpXq{θ FVpXq{θ1 P FVpωq

Figure 1

Let us now introduce the usual notion of order among unifiers. Given two unifiers u1, u2 for A we
say that u1 is less general then u2 (and we write u1 ĺ u2), if there is a homomorphism h that makes
the following diagram commute.

A P2

P1

u2

u1
h

Clearly ĺ is a preordering and so the equivalence classes of the associated equivalence relation (i.e.
the unifiers that are equally general) form a poset UA; using the maximal sets of that poset it is possible
to define a hierarchy of unification types (see [47]). In particular, the unification type is unitary if
there is one maximal element, that is called the most general unifier or mgu.

Definition 2.22. We say that a quasivariety Q has projective unifiers if every finitely presented
unifiable algebra in Q is projective, and that it has exact unifiers if every finitely presented unifiable
algebra in Q is exact.

If Q has projective unifiers, then (from the algebraic perspective) the identity map is a unifier, and
it is also the most general unifier. Next we have a lemma whose proof is straightforward (modulo
Lemma 2.21).

Lemma 2.23. Let Q be a quasivariety; then the following are equivalent:

(1) Q has projective (exact) unifiers;
(2) for any finitely presented A P Q, A has FQ as a homomorphic image if and only if A is

projective (exact).

If Q is locally finite, then we have a necessary and sufficient condition.

Lemma 2.24. Let Q be a locally finite quasivariety of finite type, then the following are equivalent:

(1) Q has projective unifiers;
(2) every finite unifiable algebra in Q is projective in the class of finite algebras in Q.

Proof. (1) implies (2) is obvious. Assume (2), let A be unifiable and finite and let B P Q such that
f : B ÝÑ A is a onto homomorphism. Let a1, . . . , an be the generators of A and let b1, . . . , bn P B
with fpbiq “ ai for i “ 1 . . . n; if B1 is the subalgebra generated by b1, . . . , bn then f restricted to B1 is
onto. Clearly B1 is finite. Hence by hypothesis there exists a g : A ÝÑ B such that fg is the identity
on A. This shows that A is projective in B and hence in Q. Thus (1) holds. □

Having exact unifiers is weaker than having projective unifiers:

Example 2.25. The variety D of distributive lattices is unifiable since it has no constants and it is
idempotent; hence its least free algebra is trivial. But D does note have projective unifiers: a distribu-
tive lattice is projective if and only if the meet of join irreducible elements is again join irreducible [11],
so there are finite non projective distributive lattices. However every finitely presented (i.e. finite)
distributive lattice is exact [22].
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Example 2.26. A different example is the variety of ST of Stone algebras; a Stone algebra is a
pseudocomplemented bounded distributive lattice in the signature p^,_, ˚, 0, 1q such that x˚ _x˚˚ « 1
holds. A Stone algebra is unifiable if and only if is has a homomorphism into the two element Boolean
algebra if and only if it is nontrivial. While there are nontrivial Stone algebras that are not projective,
any nontrivial Stone algebra is exact ([22, Lemma 17]). Hence ST has exact unifiers.

Moreover, there are examples of varieties having a most general unifier that do not have projective
unifiers.

Example 2.27. From the results in [48], the variety SH of Stonean Heyting algebras (that is, Heyting
algebras such that &x _ &&x « 1 holds) is such that every unifiable algebra A P SH has a most
general unifier. However, SH does not have projective unifiers. The algebra FSHpx, y, zq{θ, where θ is
the congruence generated by the pair p&x Ñ py _ zq, 1q, is unifiable but not projective. We observe
that Ghilardi’s argument relies heavily on some properties of Heyting algebras and uses Kripke models,
making it difficult to generalize.

Trivial examples show that having projective or exact unifiers is not inherited in general by subvari-
eties (see for instance [35, Example 7.2]). The following lemma (that we extract from [35, Lemma 5.4])
gives a sufficient condition for having projective unifiers. We write a detailed proof for the reader’s
convenience.

Lemma 2.28 ([35]). Let Q be a quasivariety and let Q1 be a subquasivariety of Q such that if B “
FQ1 pXq{θQ1 pΣq is finitely presented and unifiable in Q1, then A “ FQpXq{θQpΣq is unifiable in Q. If
Q has projective unifiers then Q1 has projective unifiers.

Proof. It is an easy exercise in general algebra to show that if Θ “
Ş

tθ P ConpFQpXqq : FQpXq{θ P Q1u
then

FQ1 pXq{θQ1 pΣq – FQpXq{pθQpΣq _ Θq.

It follows that B is a homomorphic image of A via the natural surjection

p : a{θQpΣq ÞÝÑ a{pθQpΣq _ Θq

composed with the isomorphism. Moreover if f : A ÝÑ C is a homomorphism and C P Q1, then
kerppq ď kerpfq and by the Second Homomorphism Theorem there is a f 1 : B ÝÑ C with f 1p “ f .

Now let B “ FQ1 {θQ1 pΣq be finitely presented and unifiable and let A “ FQpXq{θQpΣq; then A
is finitely presented and unifiable as well, so, since Q has projective unifiers, A is projective in Q.
We now show that B is projective. Suppose there are algebras C,D P Q1 Ď Q and homomorphisms
h : B Ñ D, g : C Ñ D with g surjective. Then, there is a homomorphism hp : A Ñ D, and since A
is projective by the definition of projectivity there is a homomorphism f : A Ñ C such that gf “ hp.
Factoring f as above, there is f 1 such that f 1p “ f . Therefore since gf 1p “ gf “ hp and p is surjective,
we get that gf 1 “ h which means that B is projective in Q1. □

We will see later in Section 3.2 (Example 3.29) that Lemma 2.28 does not hold with “projective
unifiers” replaced by “exact unifiers”. We can build on the previous lemma and obtain the following.

Lemma 2.29. Suppose that Q is a quasivariety such that FQ “ FQ1 for all Q1 Ď Q. If Q has projective
unifiers, then every subquasivariety Q1 has projective unifiers.

Proof. Let Q1 be a subquasivariety of Q, let B “ FQ1 pXq{θpΣq be finitely presented and unifiable in
Q1 and let A “ FQpXq{θpΣq. Then B is a homomorphic image of A and, since B is unifiable there is
a homomorphism from B to FQ1 “ FQ. Hence A is unifiable as well; hence the hypothesis of Lemma
2.28 are satisfied, and so Q1 has projective unifiers. □

We close this subsection with a corollary appearing also in [35] that is useful to some examples we
will explore in what follows. We reproduce the easy proof for the reader’s convenience.

Corollary 2.30. Let Q be a quasivariety and let VpQq “ V; if V has exact (projective) unifiers, then
so does Q.
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Proof. First recall that Q and V have the same free algebras. Let A “ FQpXq{θVpΣq and B “
FQpXq{θQpΣq; if B is unifiable then, as B is a homomorphic image of A via the epimorphism p
described in the proof of Lemma 2.28, A is unifiable as well hence it is exact. Therefore there is an
embedding u : A ÝÑ FQpωq; then by (the proof of) Lemma 2.28 there is a g : B ÝÑ FQpωq with
gp “ u. Since u is injective, so is p and hence A and B are isomorphic. This proves the thesis. □
2.4. Structural and universal completeness. We now introduce the main notions of interest of
this work, that is, structural and universal completeness.

Let L be a logic with consequence relation $. We call clause of L an ordered pair pΣ,Γq where
Σ,Γ are finite sets of formulas. We usually write a clause as Σ ñ Γ. A rule is a clause Σ ñ Γ
where Γ “ tγu. A rule is admissible in a logic if, when added to its calculus, it does not produce new
theorems. More precisely:

Definition 2.31. A clause Σ ñ ∆ is admissible in a logic L if every substitution making all the
formulas in Σ a theorem, also makes at least one of the formulas in ∆ a theorem.

Moreover, we say that a clause Σ ñ ∆ is derivable in a logic L if Σ $ δ for some δ P ∆. An
admissible clause is not necessarily derivable; a popular example is Harrop’s rule for intuitionistic logic

t&p Ñ pq _ rqu ñ tp&p Ñ qq _ p&p Ñ rqu

which is admissible but not derivable.

Definition 2.32. Let L be a logic. A clause Σ ñ Γ is passive in Q if there is no substitution making
the premises Σ a theorem of L; a clause is active otherwise. Finally, a clause Σ ñ ∆ is negative if
∆ “ H.

We observe that every admissible negative clause is necessarily passive.

Definition 2.33. A logic is said to be

‚ universally complete if every admissible clause is derivable;
‚ structurally complete if every admissible rule is derivable;
‚ actively universally complete if every active admissible clause is derivable;
‚ actively structurally complete if every active admissible rule is derivable1

‚ passively universally complete if every passive admissible clause is derivable;
‚ passively structurally complete if every passive admissible rule is derivable;
‚ non negatively universally complete if every non negative admissible clause is derivable.

Modulo algebraizability, one obtains the corresponding notions for a quasivariety. In particular, we
can express admissibility and derivability of clauses in LQ using the (quasi)equational logic of Q; this is
because the Blok-Pigozzi Galois connection transforms (sets of) formulas in LQ into (sets of) equations
in Q in a uniform way. The obtained notions make sense for quasivarieties that do not necessarily
correspond to a logic.

Definition 2.34. Let Q be a quasivariety. A universal sentence Σ ñ ∆ is admissible in Q if ev-
ery substitution unifying all the identities in Σ also unifies at least one of the identities in ∆. A
universal sentence is passive if there is no substitution unifying its premises, active otherwise. Q is
(active/passive) universally/structurally complete if every (active/passive) admissible universal sen-
tence/quasiequation is valid in Q.

If P is one of those properties, then we say that a logic (or a quasivariety) is hereditarily P if
the logic (or the quasivariety) and all its extensions have the property P . Some of these properties
are well-known to be distinct: for instance classical logic is non-negative universally complete but
not universally complete, while intuitionistic logic is not structurally complete (thanks to Harrop’s
example) but it is passively structurally complete (as reported by Wronski in 2005, see [29]). The
following is a consequence of algebraizability.

1Logics with this property have been more often called almost structurally complete but here we follow A. Citkin’s
advice (see [35, footnote 2, page 8]).
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Theorem 2.35. Let Q be a quasivariety of logic, Σ,∆ sets of equations in the language of Q and
Σ1,∆1 the corresponding sets of formulas in LQ. Then:

(1) Σ1 ñ ∆1 is admissible in LQ if and only if Σ ñ ∆ is admissible in Q;
(2) Σ1 ñ ∆1 is derivable in LQ if and only if Q ( Σ ñ ∆.

Moreover, by Corollary 2.19 we get the following.

Proposition 2.36. Let Q be a quasivariety of logic, Σ,∆ sets of equations in the language of Q and
Σ1,∆1 the corresponding sets of formulas in LQ. Then:

(1) Σ1 ñ ∆1 is active in LQ if and only if FQpXq{θQpΣq is unifiable in Q;
(2) Σ1 ñ ∆1 is passive in LQ if and only if FQpXq{θQpΣq is not unifiable in Q.

The next lemma (also derivable from [22, Theorem 2]) characterizes admissibility of universal sen-
tences.

Lemma 2.37. Let Q be any quasivariety, let Σ ñ ∆ be a clause in the language of Q and let UΣñ∆ “
tA P Q : A ( Σ ñ ∆u. Then the following are equivalent:

(1) Σ ñ ∆ is admissible in Q;
(2) FQpωq ( Σ ñ ∆;
(3) HpQq “ HpUΣñ∆q.

Proof. The equivalence between (1) and (2) follows directly from the definition of admissibility. Assume
now FQpωq ( Σ ñ ∆, then FQpωq P UΣñ∆. Clearly HSPupFQpωqq Ď HpUΣñ∆q Ď HpQq. Now
every algebra is embeddable in an ultraproduct of its finitely generated subalgebras and every finitely
generated algebra is a homomorphic image of FQpωq. Therefore if A P Q, then A P SPuHpFQpωqq Ď
HSPupFQpωqq. So HSPupFQpωqq “ HpQq and thus (3) holds.

Conversely assume (3). Since FQpωq P HpQq “ HpUΣñ∆q, there is A P UΣñ∆ such that FQpωq P
HpAq. Since FQpωq is projective in Q, it follows that FQpωq P SpAq Ď SpUΣñ∆q Ď UΣñ∆. Therefore,
FQpωq |ù Σ ñ ∆ and (2) holds. □

To conclude the preliminaries, we present the following lemma which will be particularly useful in
our proofs.

Lemma 2.38. Let Q be a quasivariety, and Σ,∆ be finite sets of equations over variables in a finite
set X. The following are equivalent:

(1) Q |ù Σ ñ ∆;
(2) FQpXq{θQpΣq |ù Σ ñ ∆;
(3) there is p « q P ∆ such that p{θQpΣq “ q{θQpΣq in FQpXq{θQpΣq.

Proof. It is clear that (1) implies (2) and (2) implies (3). We now show that (3) implies (1).
Let A P Q. If there is no assignment of the variables in X to A that models Σ, then A |ù Σ ñ ∆.

Otherwise, suppose there is an assignment h such that A, h |ù Σ. Then, since θQpΣq is the smallest
relative congruence of FQpXq containing the set of pairs S “ tpp, qq : p « q P Σu, by the Second
Homomorphism Theorem we can close the following diagram:

FQpXq A

FQpXq{θQpΣq

h

f
πΣ

That is, there is a homomorphism f : FQpXq{θQpΣq Ñ A such that h “ fπΣ, where πΣ is the
natural epimorphism from FQpXq to FQpXq{θQpΣq. Now by (3) there is at least an identity p « q P ∆
such that pp, qq P kerpπΣq. Since h “ fπΣ, pp, qq P kerphq, which means that A, h |ù p « q and therefore
A |ù Σ ñ ∆. Since A is an arbitrary algebra of Q this shows that Q |ù Σ ñ ∆. □
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3. Universal completeness

In this section we study from the algebraic perspective the notion of universal completeness and
its variations: active, nonnegative, passive universal completeness, together with their hereditary ver-
sions. That is, we shall see which algebraic properties correspond to the notions coming from the
logical perspective (detailed in the preliminaries Subsection 2.4). For each notion, we will present a
characterization theorem and some examples. While the characterizations of active and passive uni-
versal completeness (to the best of our knowledge) are fully original, we build on existing ones for the
other notions, presenting some new results and a coherent presentation in our framework.

3.1. Universal quasivarieties. We start with universal completeness. The following expands [22,
Proposition 6].

Theorem 3.1. For any quasivariety Q the following are equivalent:

(1) Q is universally complete;
(2) for every universal class U Ď Q, HpUq “ HpQq implies U “ Q.
(3) Q “ ISPupFQpωqq;
(4) every finitely presented algebra in Q is in ISPupFQpωqq.

Proof. (2) implies (1) via Lemma 2.35. We show that (1) implies (2). Let U Ď Q be a universal class
such that HpUq “ HpQq and suppose that U ( Σ ñ ∆; then

HpQq “ HpUq Ď HpUΣñ∆q Ď HpQq.

So HpUΣñ∆q “ HpQq and by Lemma 2.35 Σ ñ ∆ is admissible in Q. By (1), Q ( Σ ñ ∆; therefore
U and Q are two universal classes in which exactly the same clauses are valid, thus they are equal.
Hence (2) holds, and thus (2) and (1) are equivalent.

(1) implies (3) follows by Lemma 2.35. Moreover, (3) clearly implies (4). We now show that (4)
implies (1), which completes the proof. Consider a universal sentence Σ ñ ∆ that is admissible
in Q, or equivalently (by Lemma 2.35), such that FQpωq |ù Σ ñ ∆. The finitely presented algebra
FQpXq{θQpΣq P ISPupFQpωqq by (4), and thus FQpXq{θQpΣq |ù Σ ñ ∆. By Lemma 2.38, Q |ù Σ ñ ∆
and thus Q is universally complete. □

By algebraizability, and since the property of being universal (for the discussion in Subsection 2.1)
is preserved by categorical equivalence, we get at once:

Corollary 3.2. For a quasivariety Q the following are equivalent:

(1) Q is universally complete;
(2) LQ is universally complete.

The following theorem and lemma show a sufficient and a necessary condition respectively for a
quasivariety to be universally complete.

Theorem 3.3. If every finitely presented algebra in Q is exact then Q is universally complete.

Proof. If every finitely presented algebra in Q is exact, it is in ISpFQpωqq, and thus also in ISPupFQpωqq.
The claim then follows from Theorem 3.1. □
Theorem 3.4. If Q is universally complete, then Q is unifiable.

Proof. Suppose by counterpositive that there is a finite set of identities Σ that is not unifiable in Q.
Then Σ ñ H is (passively) admissible but not derivable; indeed it does not hold in the trivial algebra.
This implies that Q is not universally complete, and the claim is proved. □

Since projectivity implies exactness, we observe the following immediate consequence of Theorem
3.3.

Corollary 3.5. If every finitely presented algebra in Q is projective then Q is universally complete.

For locally finite varieties there is a stronger result, observed in [22].
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Lemma 3.6. [22] Let Q be a locally finite quasivariety; then A P ISPupFQpωqq if and only if every
finite subalgebra B of A is in ISpFQpωqq.

Theorem 3.7 ([22]). Let Q be a locally finite variety of finite type. Then Q is universally complete if
and only if Q is unifiable and has exact unifiers.

Proof. Suppose that Q is universally complete; then, by Theorem 3.4, Q is unifiable. Since it is
universally complete, every finite algebra in Q is in ISPupFQpωqq, hence in ISpFQpωqq (by Lemma
3.6). Thus every finite unifiable algebra in Q is exact and Q has exact unifiers. The converse claim
follows from Theorem 3.3. □

Remark 3.8. We observe that Theorem 3.4 limits greatly the examples of universally complete qua-
sivarieties. In particular, in quasivarieties with finite type the trivial algebra is finitely presented, and
thus if Q is universally complete, it must be unifiable. This means that a quasivariety with more than
one constant in its finite type cannot be universally complete if there are nontrivial models where the
constants are distinct; similarly if there is only one constant, then it must generate the trivial algebra
in nontrivial models, or equivalently, in FQ. If there are no constants, then FQ “ FQpxq and, in order
to be able to embed the trivial algebra, there has to be an idempotent term.

Let us now discuss some different examples of universally complete (quasi)varieties.

Example 3.9. Let us consider lattice-ordered abelian groups (or abelian ℓ-groups for short). These
are algebras G “ pG,^,_, ¨,´1 , 1q where pG, ¨,´1 , 1q is an abelian group, pG,^,_q is a lattice, and
the group operation distributes over the lattice operations. Every finitely presented abelian ℓ-groups
is projective [15]; thus, the variety of abelian ℓ-groups is universally complete by Corollary 3.5.

The same holds for the variety of negative cones of abelian ℓ-groups. Given an ℓ-group G, the set
of elements G´ “ tx P G : x ď 1u can be seen as a residuated lattice (see Section 5.2) G´ “ pG´, ¨,Ñ
,^,_, 1q where p¨,^,_, 1q are inherited by the group and x Ñ y “ x´1 ¨ y ^ 1. The algebraic category
of negative cones of abelian ℓ-groups is equivalent to the one of abelian ℓ-groups [46], thus every
finitely presented algebra is projective and the variety of negative cones of ℓ-groups LG´ is universally
complete. Observe that in all these cases the unique constant 1 is absorbing w.r.t. any basic operation,
and it generates the trivial algebra.

Example 3.10. Hoops are a particular variety of residuated monoids related to logic which were
defined in an unpublished manuscript by Büchi and Owens, inspired by the work of Bosbach on
partially ordered monoids (see [17] for details on the theory of hoops). Hoops have a constant which is
absorbing w.r.t. any basic operation; hence the least free algebra is trivial in any variety of hoops and
any variety of hoops is unifiable. In [8] it was shown that every finite hoop is projective in the class
of finite hoops which via Lemma 2.24 entails that every locally finite variety of hoops has projective
unifiers. Since any locally finite quasivariety is contained in a locally finite variety, every locally
finite quasivariety of hoops is universally complete. The same holds in the variety of Ñ-subreducts
of hoops, usually denoted by HBCK; again locally finite varieties of HBCK-algebras have projective
unifiers [8] and hence they are universally complete. For a non-locally finite example, we say that a
hoop is cancellative if the underlying monoid is cancellative; cancellative hoops form a variety C that
is categorically equivalent to the one of abelian ℓ-groups [17]. Hence C is a non locally finite variety of
hoops which is universally complete.

The classes of algebras in the above examples all have projective unifiers. However:

Example 3.11. In lattices there are no constants but any variety of lattices is idempotent; hence the
least free algebra is trivial and every lattice is unifiable. Every finite distributive lattice is exact [22] and
distributive lattices are locally finite, so distributive lattices are universally complete by Theorem 3.7.
Moreover, as we have already observed in Example 2.25, distributive lattices do not have projective
unifiers.

We now consider the hereditary version of universal completeness.
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Definition 3.12. A quasivariety Q is primitive universal if all its subquasivarieties are universally
complete.

All the above examples of universally complete varieties are primitive universal and this is not
entirely coincidental. Distributive lattices are trivially primitive universal, since they do not have any
trivial subquasivariety. For all the other examples, we have a general result.

Theorem 3.13. Let Q be a quasivariety with projective unifiers and such that FQ is trivial; then Q is
primitive universal.

Proof. Observe that for any subquasivariety Q1 Ď Q, FQ1 is trivial as well. Hence every algebra in Q
is unifiable in any subvariety to which it belongs. Let B1 “ FQ1 pXq{θQ1 pΣq be finitely presented in
Q1; then A “ FQpXq{θQpΣq is finitely presented in Q and thus it is projective in Q. But then Lemma
2.28 applies and B is projective; thus Q1 has projective unifiers and thus it is universally complete by
Corollary 3.5. □

Is the same conclusion true if we replace “projective unifiers” with “unifiable, locally finite with
exact unifiers”? We do not know, but we know that we cannot use an improved version of Lemma
2.28 since it cannot be improved to account for exact unifiers (see Example 3.29).

3.2. Non-negative and active universal quasivarieties. The situation in which universal com-
pleteness fails due only to the trivial algebras has been first investigated in [22]; the following expands
[22, Proposition 8].

Theorem 3.14. For a quasivariety Q the following are equivalent:

(1) Q is non-negative universally complete;
(2) every admissible universal sentence is valid in Q`;
(3) every nontrivial algebra is in ISPupFQpωqq.
(4) every nontrivial finitely presented algebra is in ISPupFQpωqq.

Proof. The equivalence of the first three points is in [22, Proposition 8], and (3) clearly implies (4).
Assume now that (4) holds, we show (1). Let Σ ñ ∆ be a non-negative admissible universal sentence
with variables in a finite set X, we show that FQpXq{θQpΣq |ù Σ ñ ∆. If FQpXq{θQpΣq is trivial,
then it models Σ ñ ∆ (given that ∆ is not H). Suppose now that FQpXq{θQpΣq is nontrivial, then it
is in ISPupFQpωqq by hypothesis and then it models Σ ñ ∆ since the latter is admissible, and thus
FQpωq |ù Σ ñ ∆ by Lemma 2.35. By Lemma 2.38, Q models Σ ñ ∆ and (1) holds. □

Moreover:

Theorem 3.15. For a quasivariety Q the following are equivalent:

(1) Q is non-negative universally complete;
(2) LQ is non-negative universally complete.

Proof. In a categorical equivalence between quasivarieties trivial algebras are mapped to trivial al-
gebras, since the latter can be characterized as the algebras that are a homomorphic image of every
algebra in a quasivariety. Thus nontrivial finitely presented algebras are mapped to nontrivial finitely
presented algebras, and the result follows from the usual arguments. □

We can also obtain an analogue of Theorem 3.3.

Theorem 3.16. If every nontrivial finitely presented algebra in Q is exact (or projective), then Q is
non-negative universally complete.

Proof. If every nontrivial finitely presented algebra is exact (or projective), then it is in ISpFQpωqq,
and therefore in ISPupFQpωqq. The claim then follows from Theorem 3.14. □

Analogously to the case of universal completeness, we get a stronger result for locally finite quasi-
varieties.
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Theorem 3.17. Let Q be a locally finite quasivariety. Then Q is non-negative universally complete if
and only if every nontrivial finitely presented algebra is exact.

Proof. Suppose that Q is locally finite and there is a finite nontrivial algebra A P Q that is not exact.
Then A R ISpFQpωqq and thus, by Lemma 3.6, A R ISPupFQpωqq. Therefore Q cannot be non-negative
universally complete by Theorem 3.14. The other direction follows from Theorem 3.16. □
Example 3.18. Boolean algebras are an example of a non-negative universally complete variety that is
not universally complete. It is easily seen that every nontrivial finite Boolean algebra is exact (indeed,
projective), which shows that Boolean algebras are non-negative universally complete by Theorem 3.17.
However, there are negative admissible clauses: e.g., the ones with premises given by the presentation
of the trivial algebra, which is finitely presented but not unifiable. Thus Boolean algebras are not
universally complete.

Example 3.19. Stone algebras are a different example; in [22] the authors proved, using the duality
between Stone algebras and particular Priestley spaces, that every finite nontrivial Stone algebra is
exact; hence Stone algebras are non-negative universally complete.

We now move on to describe active universal completeness from the algebraic perspective.

Theorem 3.20. Let Q be a quasivariety. The following are equivalent:

(1) Q is active universally complete;
(2) every unifiable algebra in Q is in ISPupFQpωqq;
(3) every finitely presented and unifiable algebra in Q is in ISPupFQpωqq;
(4) every universal sentence admissible in Q is satisfied by all finitely presented unifiable algebras

in Q;
(5) for every A P Q, A ˆ FQ P ISPupFQpωqq.

Proof. We start by showing that (1) implies (2). Assume (1), and let Σ ñ ∆ be such that FQpωq |ù
Σ ñ ∆; equivalently, by Lemma 2.35, Σ ñ ∆ is an admissible universal sentence in Q. If Σ is unifiable,
by hypothesis Σ ñ ∆ is valid in Q. Suppose now that Σ has variables in a finite set X and it is not
unifiable, that is, via Corollary 2.19 there is no homomorphism from FQpXq{θQpΣq to FQ. Let A be
a unifiable algebra in Q; we argue that there is no assignment of the variables in Σ that validates Σ
in A. Indeed otherwise the following diagram would commute and FQpXq{θQpΣq would be unifiable,
yielding a contradiction.

FQpXq A FQ

FQpXq{θQpΣq

Therefore, Σ ñ ∆ is vacuously satisfied in A, which is any unifiable algebra in Q, thus (2) holds.
Now, clearly (2) implies (3), and (3) and (4) are equivalent by the definitions.

Let us show that (4) implies (1). Let Σ ñ ∆ be an active admissible universal sentence in Q with
variables in a finite set X; we want to show that it is also valid in Q. Since by hypothesis Σ ñ ∆
is active admissible, Σ is unifiable, and therefore so is FQpXq{θQpΣq by Corollary 2.19. Then by (4),
FQpXq{θQpΣq |ù Σ ñ ∆, which implies that Q |ù Σ ñ ∆ by Lemma 2.38. Therefore the first four
points are equivalent.

Finally, we show that (1) implies (5) and (5) implies (2), which completes the proof. We start with
(1) ñ (5). LetA P Q, and consider a clause Σ ñ ∆ valid in FQpωq. We show thatAˆFQpωq |ù Σ ñ ∆.
Now, if Q |ù Σ ñ ∆, in particular A ˆ FQpωq |ù Σ ñ ∆. Suppose that Q * Σ ñ ∆. Since Q is active
universally complete, Σ ñ ∆ must be a passive rule, thus Σ is not unifiable. Equivalently, there is no
assignment h of the variables in Σ such that FQ, h |ù Σ. Thus, there is also no assignment h1 of the
variables in Σ such that A ˆ FQ, h

1 |ù Σ, thus A ˆ FQpωq |ù Σ ñ ∆.
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It is left to prove (5) ñ (2). Let A be a unifiable algebra in Q, then there is a homomorphism
h : A Ñ FQ (Lemma 2.21). Consider the map h1 : A Ñ A ˆ FQ be defined as h1paq “ pa, hpaqq.
Clearly, h1 is an embedding of A into A ˆ FQ P ISPupFQpωqq (by (5)). Thus also A P ISPupFQpωqq,
which completes the proof. □

We observe that the previous characterization extends to universal sentences some of the results in
[35] about active structural completeness. We also get the usual result.

Theorem 3.21. For a quasivariety Q the following are equivalent:

(1) Q is active universally complete;
(2) LQ is active universally complete.

Proof. The result follows from the fact that embeddings, ultraproducts, being finitely presented and
unifiable, are all categorical notions and thus preserved by categorical equivalence. □

Moreover, we have the following lemma whose proof is the same as the one of Theorems 3.3 and
3.7.

Theorem 3.22. If Q has exact (or projective) unifiers, then Q is active universally complete. If Q is
also locally finite then it is active universally complete if and only if it has exact unifiers.

Example 3.23. A discriminator on a set A is a ternary operation t on A defined by

tpa, b, cq “

"

a, if a ‰ b;
c, if a “ b.

A variety V is a discriminator variety [70] if there is a ternary term that is the discriminator on all
the subdirectly irreducible members of V. Discriminator varieties have many strong properties: for
instance they are congruence permutable and congruence distributive.

In [20, Theorem 3.1] it has been essentially shown that discriminator varieties have projective
unifiers, and therefore they are all active universally complete by Theorem 3.22.

Example 3.24. We now see some examples within the algebraic semantics of many-valued logics;
in [8] it has been shown that in any locally finite variety of bounded hoops or BL-algebras (the
equivalent algebraic semantics of Hájek Basic Logic [51]), the finite unifiable algebras are exactly
the finite projective algebras. It follows that any of such varieties has projective unifiers and hence it
is active universally complete. This holds also for any locally finite quasivariety of bounded hoops or
BL-algebras, or their reducts, i.e., bounded HBCK-algebras.

In contrast with the case of (unbounded) hoops, not all of them are non-negative universally com-
plete, as we will now discuss. Let us call chain a totally orderef algebra. Every finite BL-chain is
an ordinal sum of finite Wajsberg hoops, the first of which is an MV-algebra [4]. No finite MV-chain
different from the 2-element Boolean algebra 2 is unifiable (they are all simple and the least free al-
gebra is 2), and thus not exact. It follows by basic facts about ordinal sums that if a locally finite
quasivariety Q of BL-algebras contains a chain whose first component is different from 2, Q is not non-
negative universally complete. The same holds, mutatis mutandis, for bounded hoops and bounded
HBCK-algebras. In Section 5.2 we shall see a different class of (discriminator) varieties coming from
many-valued logics that are active universally complete.

Definition 3.25. We call a quasivariety Q active primitive universal if every subquasivariety of Q is
active universally complete.

It is evident from the characterization theorem of active universally complete quasivarieties that a
variety Q is active primitive universal if and only if LQ is hereditarily active universally complete. We
have the following fact:

Theorem 3.26. Suppose that Q is a quasivariety such that FQ “ FQ1 for all Q1 Ď Q. If Q has
projective unifiers then it is active primitive universal.

Proof. The proof follows from Theorem 3.22 and Lemma 2.29. □
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All varieties in Example 3.24 satisfy the hypotheses of Theorem 3.26 (as the reader can easily check).
For discriminator varieties all the examples of lattice-based varieties in Section 5.2 of this paper (but
see also [20] or [31] for more examples) have the same property; hence they are all active primitive
universal.

Now, a variety is q-minimal if it does not have any proper nontrivial subquasivariety; so a q-minimal
variety is necessarily equationally complete. We have this result by Bergman and McKenzie:

Theorem 3.27. [14] A locally finite equationally complete variety is q-minimal if and only if it has
exactly one subdirectly irreducible algebra that is embeddable in any nontrivial member of the variety.
Moreover, this is always the case if the variety is congruence modular.

It follows immediately that every active universally complete q-minimal variety is active primitive
universal.

Example 3.28. Discriminator varieties are active universally complete as seen in example 3.23. Now,
given a finitely generated discriminator variety V, it is generated by a finite algebra A having a
discriminator term on it, also called a quasi-primal algebra. By [74] V is equationally complete and,
since it is congruence modular, it is q-minimal; hence V is active primitive universal.

Finally, we observe that Lemma 2.29 cannot be improved to “having exact unifiers” and the coun-
terexample is given by De Morgan lattices; we will see below that they form an active universally
complete variety that is not active primitive universal.

Example 3.29. A De Morgan lattice is a distributive lattice with a unary operation & which is
involutive and satisfies the De Morgan Laws. It is well-known that the variety DM of De Morgan
lattices is locally finite and has exactly two proper non trivial subvarieties, i.e. the variety BLa of
Boolean lattices (axiomatized by x ď y _ &y) and the variety KL of Kleene lattices (axiomatized by
x ^ &x ď y _ &y). It is easily seen that all these nontrivial varieties have the same one-generated
free algebra whose universe is tx,&x, x _ &x, x ^ &xu. It follows that all the subquasivarieties of De
Morgan lattices have the same least free algebra and DM satisfies the hypotheses of Theorem 3.26.
Admissibility in De Morgan lattices has been investigated in [64] and [22]. Now for a finite algebra
A P DM the following are equivalent:

(1) A is unifiable;
(2) the universal sentence tx « &xu ñ H is valid in A;
(3) A P ISpFDMpωqq.

The equivalence of (2) and (3) has been proved in [22, Lemma 28], while (3) implies (1) trivially. If
we assume that (2) does not hold for A, then there is an a P A with &a “ a; so if f : A ÝÑ FDMpxq is
a homomorphism and fpaq “ ϕ, then ϕ “ &ϕ. But there is no element in FDMpxq with that property,
so A cannot be unifiable. This concludes the proof of the equivalence of the three statements.

Therefore DM has exact unifiers and thus it is active universally complete by Theorem 3.22. Now
consider the subvariety of DM of Kleene lattices. In [22] it is shown that the universal sentence

Φ :“ tx ď &x, x ^ &y ď &x _ yu ñ &y ď y

is admissible in KL. It is also active, as the reader can easily check that the substitution x ÞÝÑ z ^ &z,
y ÞÝÑ &z unifies the premises of Φ. However it fails in the three element Kleene lattice K3 in Figure
2, with the assignment x “ a, y “ &a; hence KL is not active universally complete. So DM is a variety
that is active universally complete but not active primitive universal.

Note that in KL there must be a finite unifiable algebra that is not exact (since KL cannot have
exact unifiers). Now a finite Kleene lattice A is exact if and only if both tx « &xu ñ H and Φ are
valid in A [22, Lemma 38]. Let A “ K3 ˆ 2; the reader can easily check that A is unifiable in KL
(since it satisfies tx « &xu ñ H and hence it is unifiable in DM) but does not satisfy Φ. This shows
(as promised) that Lemma 2.28 cannot be improved.
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&b “ b

&a

a

Figure 2. The lattice K3

3.3. Passive universal quasivarieties. We will now see that passive universal completeness in a
quasivariety corresponds to an algebraic notion we have already introduced: unifiability. Moreover, we
shall see that it corresponds to the apparently weaker notion of negative universal completeness, that
is, every (passive) admissible negative universal sentence is derivable. We recall that a quasivariety Q
is unifiable if every finitely presented algebra in Q is unifiable.

Theorem 3.30. For every quasivariety Q the following are equivalent:

(1) Q is passive universally complete;
(2) Q is negative universally complete;
(3) Q is unifiable.

Proof. Assume (1) and let Σ ñ H be a negative admissible universal sentence; then it is necessarily
passive, since there is no substitution that unifies H. Thus, by (1), Σ ñ H is valid in Q.

Assume now (2), we prove that it implies (3) by contrapositive. Suppose that Q is not unifiable, that
is, there exists a finite set of identities Σ that is not unifiable. Then the negative universal sentence
Σ ñ H is (passively) admissible, but it is not derivable (in particular, it fails in the trivial algebra).

Finally, if (3) holds, then (1) trivially holds, since if every set of identities is unifiable there is no
passive admissible clause. □

In some cases, we can improve the previous result.

Lemma 3.31. Let Q be a quasivariety such that IpFQq “ IPupFQq, then the following are equivalent.

(1) Q is unifiable;
(2) every algebra in Q is unifiable.

Proof. We prove the nontrivial direction by contraposition. Consider an arbitrary algebra A P Q and
assume that it is not unifiable; without loss of generality we let A “ FQpXq{θ for some set X and
some relative congruence θ. Since A is not unifiable, there is no assignment h : FQpXq Ñ FQ such
that FQ, h |ù Σθ, where Σθ “ tt « u : pt, uq P θu. Equivalently, iff FQ |ù Σθ ñ H. Now, the
equational consequence relation relative to a class of algebras K is finitary if and only if K is closed
under ultraproducts (see for instance [71]); thus by hypothesis the equational consequence relation
relative to FQ is finitary, and we obtain that FQ |ù Σ1

θ ñ H, for Σ1
θ some finite subset of Σθ. That is,

Σ1 is finite and not unifiable, thus Q is not unifiable and the proof is complete. □

Observe that if a quasivariety Q is such that FQ is finite, it satisfies the hypothesis of the previous
lemma.

Corollary 3.32. Let Q be a quasivariety such that IpFQq “ IPupFQq, then the following are equivalent.

(1) Q is passive universally complete;
(2) Q is negative universally complete;
(3) Q is unifiable;
(4) every algebra in Q is unifiable.

Since unifiability is preserved by categorical equivalence, we get the following.

Corollary 3.33. A quasivariety Q is passive universally complete if and only if LQ is passive univer-
sally complete.
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4. Structural completeness

In this section we investigate the algebraic counterparts of structural completeness and its variations.
The main new results are about the characterization of passive structurally complete quasivarieties;
moreover, we also show a characterization of primitive quasivarieties grounding on the results in [50].

4.1. Structural quasivarieties. The bridge theorems for structural completeness have been first
established by Bergman [13]. We present the proof for the sake of the reader, expanding with point
(6).

Theorem 4.1 ([13]). For a quasivariety Q the following are equivalent:

(1) Q is structurally complete;
(2) Q “ QpFQpωqq;
(3) no proper subquasivariety of Q generates a proper subvariety of HpQq;
(4) for all Q1 Ď Q if HpQ1q “ HpQq, then Q “ Q1;
(5) for all A P Q if VpAq “ HpQq, then QpAq “ Q;
(6) every finitely presented algebra in Q is in QpFQpωqq.

Proof. First, (1) is equivalent to (2) via Lemma 2.35. The implications (3) ô (4) ñ (5) ñ (2) are
straightforward. (2) implies (4) since if Q1 Ď Q and HpQ1q “ HpQq, we get that FQ1 pωq “ FHpQ1qpωq “
FHpQqpωq “ FQpωq; thus Q “ QpFQpωqq “ QpF1

Qpωqq Ď Q1 and then equality holds. Thus the first
five points are equivalent; Finally, clearly (2) implies (6), and (6) implies (2) since a quasivariety is
generated by its finitely presented algebras ([50, Proposition 2.1.18]). □
Corollary 4.2. A variety V is structurally complete if and only if every proper subquasivariety of V
generates a proper subvariety; therefore if A is such that VpAq is structurally complete, then VpAq “
QpAq.

Since the definition of structural completeness is invariant under categorical equivalence we get also:

Corollary 4.3. Let Q be a quasivariety; then Q is structurally complete if and only if LQ is structurally
complete.

Let us extract some sufficient conditions for structural completeness.

Lemma 4.4. Let Q be a quasivariety; if

(1) every A P K is exact in Q “ QpKq, or
(2) every finitely generated algebra in Q is exact, or
(3) every finitely presented algebra in Q is exact, or
(4) every finitely generated relative subdirectly irreducible in Q is exact,

then Q is structurally complete. Moreover if every A P K is exact in VpKq and every subdirectly
irreducible member of VpKq is in ISpKq, then VpKq is structurally complete.

Proof. If each algebra in K is exact in Q “ QpKq, then K Ď ISpFQpωqq; therefore Q “ QpKq Ď
QpFQpωqq and thus equality holds. Hence Q is structurally complete by the characterization theorem.
The other points follow.

For the last claim, every subdirectly irreducible member of VpKq lies in ISpKq and thus is exact in
VpKq. Since any variety is generated as a quasivariety by its subdirectly irreducible members, VpKq
is structurally complete. □

We observe that none of the previous conditions is necessary. For locally finite quasivarieties we
have a necessary and sufficient condition for structural completeness because of the following:

Lemma 4.5 ([22]). Let Q be a locally finite quasivariety and A a finite algebra in Q. Then A P
QpFQpωqq if and only if A P ISPpFQpωqq.

The following theorem improves [22, Corollary 11].

Theorem 4.6. For a locally finite quasivariety Q of finite type the following are equivalent:
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(1) Q is structurally complete;
(2) each finite algebra in Q is in ISPpFQpωqq;
(3) every finite relative subdirectly irreducible in Q is exact.

Proof. Assume (1); then each finite algebra in Q is in QpFQpωqq and thus, by Lemma 4.5, is in
ISPpFQpωqq and (2) holds. If (2) holds and A is finite relative subdirectly irreducible, then it is in
ISpFQpωqq, i.e. it is exact. Finally if (3) holds, then Q is structurally complete by Lemma 4.4. □

4.2. Primitive quasivarieties. We now consider the hereditary notion of structural completeness.

Definition 4.7. A class of algebras K in a quasivariety Q is equational relative to Q if K “ VpKq XQ.
In particular, a subquasivariety Q1 of Q is equational relative to Q if Q1 “ HpQ1q XQ; a quasivariety Q
is primitive if every subquasivariety of Q is equational relative to Q.

Clearly primitivity is downward hereditary and a variety V is primitive if and only if every subqua-
sivariety of V is a variety. We can show the following.

Theorem 4.8. For a quasivariety Q the following are equivalent:

(1) Q is primitive;
(2) every subquasivariety of Q is structurally complete;
(3) for all subdirectly irreducible A P HpQq and for any B P Q, if A P HpBq, then A P ISPupBq.

Proof. We first show the equivalence between (1) and (2). Suppose that Q is primitive and let Q1 Ď Q;
if Q2 Ď Q1 and HpQ2q “ HpQ1q then

Q1 “ HpQ1q X Q “ HpQ2q X Q “ Q2

so Q1 is structurally complete by Theorem 4.1.
Conversely assume (2), let Q1 Ď Q and let Q2 “ HpQ1q X Q (it is clearly a quasivariety); then

HpQ2q “ HpQ1q and thus Q2 “ Q1, again using the characterization of Theorem 4.1. So Q1 is equational
in Q and Q is primitive.

Assume (1) again, and let A,B P Q with A subdirectly irreducible and A P HpBq. Since Q is
primitive we have

QpBq “ HpQpBqq X Q

and hence A P QpBq. Since A is subdirectly irreducible, A P ISPupBq by Theorem 2.3 and (3) holds.
Conversely, assume (3) and let Q1 be a subquasivariety of Q; if B P HpQ1q X Q, observe that

B P HpQq and hence B ďsd

ś

Ai where the Ai are subdirectly irreducible in HpQq X HpQ1q. Then
for all i there is Bi P Q1 such that Ai P HpBiq and hence by hypothesis Ai P SPupBiq and so Ai P Q1

for all i. Therefore B P Q1, so HpQ1q XQ “ Q1 and Q1 is equational in Q. Therefore Q is primitive and
(1) holds. □

As commented in the preliminary section (Subsection 2.1), primitivity is preserved under categorical
equivalence, and therefore:

Corollary 4.9. A quasivariety is primitive if and only if LQ is hereditarily structurally complete.

We will see how Theorem 4.8 can be improved in the locally finite case. Let Q be a quasivariety
and let A P Q; we define

rQ : As “ tB P Q : A R ISpBqu.

The following lemma describes some properties of rQ : As; the proofs are quite standard with the
exception of point (3). As a matter of fact a proof of the forward implication of (3) appears in [50,
Corollary 2.1.17]. However the proof is somewhat buried into generality and it is not easy to follow;
so we felt that a suitable translation would make it easier for the readers.

Lemma 4.10. Let Q be a quasivariety; then

(1) if A P Q is finite and Q has finite type, then rQ : As is a universal class;
(2) if A is relative subdirectly irreducible and finitely presented, then rQ : As is a quasivariety;
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(3) A is weakly projective in Q if and only if rQ : As is closed under H if and only if rQ : As is
equational relative to Q;

(4) if A is relative subdirectly irreducible, finitely presented and weakly projective in Q, then rQ : As
is a variety.

Moreover if Q is locally finite of finite type, the converse implications in (1),(2) and (4) hold.

Proof. For (1), if A is finite, then there is a first order universal sentence Ψ such that, for all B P Q,
B ( Ψ if and only if A P ISpBq. More in detail, if |A| “ n,

Ψ :“ Dx1 . . . Dxnp&txi ‰ xj : i, j ď n, i ‰ ju & DpAqq,

where DpAq is the diagram of A, that is, a conjunction of universal sentences that describe the
operation tables of A (identifying each element of A with a different xi), and & is first order logic
conjunction.

Consider B P ISPuprQ : Asq, we show that A R ISpBq; if A P ISpBq, then A P ISPuprQ : Asq.
Hence there exists a family pAiqiPI Ď rQ : As and an ultrafilter U on I such that C “ ΠiPIA{U and
A P ISpCq. So C ( Ψ; but then by %Lòs Lemma there is a (necessarily nonempty) set of indexes I 1 P U
such that Ψ is valid in each Ai with i P I 1, which is clearly a contradiction, since each Ai P rQ : As.
Thus A R ISpBq and B P rQ : As and therefore ISPuprQ : Asq “ rQ : As which is a universal class by
Lemma 2.1

Conversely let Q be locally finite of finite type; every algebra in Q is embeddable in an ultraproduct
of its finitely generated (i.e. finite) subalgebras, say A P ISPuptBi : i P Iuq. If A is not finite, then
A R SpBiq for all i, so Bi P rQ : As for all i. Since rQ : As is universal, we would have that A P rQ : As,
a clear contradiction. So A P ISpBiq for some i and hence it is finite.

For (2), suppose thatA is relative subdirectly irreducible and finitely presented, i.e. A – FQpxq{θpΣq
where x “ px1, . . . , xnq and Σ “ tpipxq « qipxq : i “ 1, . . . ,mu. We set ai “ xi{θpΣq; since A is relative
subdirectly irreducible, it has a relative monolith µ, i.e. a minimal non trivial relative congruence.
Since µ is minimal, there are c, d P A such that µ is the relative congruence generated by the pair
pc, dq. Now let tc, td terms in FQpxq such that tcpa1, . . . , anq “ c and tdpa1, . . . , anq “ d and let Φ be
the quasiequation

m
ľ

i“1

pipxq « qipxq ÝÑ tcpxq « tdpxq.

Then A * Φ; moreover if C P Q is a homomorphic image of A which is not isomorphic with A, then
C ( Φ. We claim that rQ : As “ tB P Q : B ( Φu and since Φ is a quasiequation this implies that
rQ : As is a quasivariety. Clearly if B ( Φ, then A R ISpBq; conversely assume that B * Φ. Then
there are b1, . . . , bn P B such that pipb1, . . . , bnq “ qipb1, . . . , bnq but tcpb1, . . . , bnq ‰ tdpb1, . . . , bnq. Let
g be the homomorphism extending the assignment xi ÞÝÑ bi; then θpΣq Ď kerpgq so by the Second
Homomorphism Theorem there is a homomorphism f : A ÝÑ B such that fpaiq “ bi. Observe that
fpAq P Q (since it is a subalgebra of B P Q) and fpAq * Φ, so by what we said above fpAq – A; this
clearly implies A P ISpBq, so B R rQ : As as wished.

For the converse, let Q be locally finite of finite type; by (1) A is finite. Suppose that A ďsd

ś

iPI Bi

where each Bi is relative subdirectly irreducible in Q. Since A is finite, each Bi can be taken to be
finite; if A R ISpBiq for all i, then Bi P rQ : As for all i and hence, being rQ : As a quasivariety we
have A P rQ : As which is impossible. Hence there is an i such that A P ISpBiq, so that |A| ď |Bi|;
on the other hand B P HpAq, so |B| ď |A|. Since everything is finite we have A – Bi and then A is
relative subdirectly irreducible.

For the first forward direction of (3), suppose that B P HprQ : Asq. If A P ISpBq, then A P SHprQ :
Asq Ď HSprQ : Asq. Now rQ : As Ď Q and A is weakly projective in Q; so A P SprQ : Asq which is
impossible. It follows that A R ISpBq and B P rQ : As; thus rQ : As is closed under H. For the second
forward direction, it is easy to see that if rQ : As is closed under H then rQ : As is equational relative
to Q. Assume now that rQ : As is closed under H, we show that A is weakly projective in Q. Suppose
that A P HpBq for some B P Q; if A R ISpBq, then B P rQ : As and, since rQ : As is closed under H,
A P rQ : As, again a contradiction. Hence A P ISpBq and A is weakly projective in Q. A completely
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analogous proof shows that if rQ : As is equational relative to Q then A is weakly projective, which
completes the proof of (3).

(4) follows directly from (1), (2) and (3). □
Thus if A is relative subdirectly irreducible and finitely presented, then rQ : As is a quasivariety;

this is the key to prove the following result, appearing in [50, Proposition 5.1.24]. We present a
self-contained proof for the sake of the reader.

Theorem 4.11 ([50]). If Q is a locally finite quasivariety of finite type, then the following are equiv-
alent.

(1) Q is primitive;
(2) for all finite relative subdirectly irreducible A P Q, rQ : As is equational relative to Q;
(3) every finite relative subdirectly irreducible A P Q is weakly projective in Q;
(4) every finite relative subdirectly irreducible A P Q is weakly projective in the class of finite

algebras in Q.

Proof. (2) and (3) are equivalent by Lemma 4.10, and (3) and (4) are equivalent in locally finite
quasivarieties.

Now, (1) implies (2) by Lemma 4.10, since if A is a finite relative subdirectly irreducible algebra
then rQ : As is a quasivariety, and if Q is primitive every subquasivariety is equational relative to Q
by definition.

Finally, assume (3) and let Q1 be a subquasivariety of Q; consider a finite algebraB P HpQ1qXQ, then
B is a subdirect product of finite relative subdirectly irreducible algebras in Q, that is, B ďsd

ś

iPI Ai

where each Ai is finite relative subdirectly irreducible in Q, and thus it is also weakly projective in
Q by hypothesis. Since B P HpQ1q, there is A P Q1 such that B P HpAq. But then for each i P I,
Ai P HpAq; since each Ai is weakly projective in Q, it is also isomorphic to a subalgebra of A. Thus,
B P ISPpAq Ď Q1, and therefore Q1 “ HpQ1q X Q, which means that Q is primitive and (1) holds. □

Most results in the literature are about structurally complete and primitive varieties of algebras and
the reason is quite obvious; first the two concepts are easier to formulate for varieties. Secondly being
subdirectly irreducible is an absolute concept (every subdirectly irreducible algebra is relative subdi-
rectly irreducible in any quasivariety to which it belongs) while being relative subdirectly irreducible
depends on the subquasivariety we are considering. Of course when a quasivariety is generated by a
“simple” class (e.g. by finitely many finite algebras), then Theorem 2.3(2) gives a simple solution, but
in general describing the relative subdirectly irreducible algebras in a quasivariety is not an easy task.

Now, it is clear that if Q is non-negative universally complete, then it is structurally complete.
Finding examples of (quasi)varieties that are structurally complete but not primitive is not easy; one
idea is to find a finite algebra A such that A satisfies the hypotheses of Lemma 4.4, but VpAq contains
some strict (i.e. not a variety) subquasivariety. We will see an example of this in Section 5.1. Let us
now show some different kinds of examples of primitive (quasi)varieties.

Example 4.12. The variety of bounded distributive lattices is primitive (as we will discuss in Section
5.1), since it is equationally complete and congruence modular and so is q-minimal by Theorem 3.27.

It is well-known (and easy to check) that the variety of distributive lattices is a dual discriminator
variety; a dual discriminator on a set A is a ternary operation d on A defined by

dpa, b, cq “

"

c, if a ‰ b;
a, if a “ b.

A variety V is a dual discriminator variety [41] if there is a ternary term that is the dual discriminator
on all the subdirectly irreducible members of V. Dual discriminator varieties, as opposed to discrimi-
nator varieties, do not necessarily have projective unifiers. However, recently in [24] the authors have
extended the results in [14] (such as Theorem 3.27) in two directions: every minimal dual discrimina-
tor variety is q-minimal, hence primitive and, if the variety is also idempotent, then minimality can
be dropped and the variety is primitive. This last fact gives raise to different examples of primitive
varieties.
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Example 4.13. A weakly associative lattice is an algebra xA,_,^y where _ and ^ are idempotent,
commutative and satisfy the absorption laws but (as the name reveals) only a weak form of associativity.
In [41] the authors proved that there is a largest dual discriminator variety U of weakly associative
lattices; since weakly associative lattices are idempotent, U is the largest primitive variety of weakly
associative lattices.

Example 4.14. The pure dual discriminator variety D (see [41, Theorem 3.2]) is a variety with a
single ternary operation dpx, y, zq satisfying

dpx, y, yq « y

dpx, y, xq « x

dpx, x, yq « x

dpx, y, dpx, y, zqq « dpx, y, zq

dpu, v, dpx, y, zqq « dpdpu, v, xq, dpu, v, yq, dpu, v, zqq

which is enough to prove that D is a dual discriminator variety. Since d is idempotent D is an
idempotent dual discriminator variety and so it is primitive.

A different example is given by the following.

Example 4.15. A modal algebra is a Boolean algebra with a modal operator l, that we take as a basic
unary operation, satisfying l1 « 1 and lpx^ yq « lx^ ly; there is an extensive literature on modal
algebras (see for instance [77] and the bibliography therein). A modal algebra is a K4-algebra if it
satisfies lx ď llx; in [72] V.V. Rybakov classified all the primitive varieties of K4-algebras. However
very recently [25] Carr discovered a mistake in Rybakov’s proof; namely Rybakov in his description
missed some varieties that all have the properties of containing a unifiable weakly projective algebra
that is not projective. So any of such varieties, though primitive, does not have projective unifiers.

We now present some examples from (quasi)varieties that are the equivalent algebraic semantics of
(fragments) of many-valued logics; in particular, of infinite-valued %Lukasiewicz logic.

Example 4.16. Wajsberg algebras are the equivalent algebraic semantics of infinite-valued %Lukasiewicz
logic in the signature of bounded commutative residuated lattices p¨,Ñ,^,_, 0, 1q and they are term-
equivalent to the better known MV-algebras [27]; Wajsberg hoops are their 0-free subreducts. About
these algebras there are some recent results [1]. In summary:

‚ the only primitive variety of Wajsberg algebras is the variety of Boolean algebras, that is also
non-negative universally complete, and it is the only non-negative universally complete variety
of Wajsberg algebras;

‚ there are nontrivial primitive quasivarieties of Wajsberg algebras;
‚ a proper variety of Wajsberg hoops is structurally complete if and only if it is primitive if and
only if every subdirectly irreducible is either finite or perfect.

The third point above clearly implies that the variety of Wajsberg hoops is not primitive. Consid-
ering varieties of Ñ-subreducts, the Ñ-subreducts of Wajsberg hoops is a subvariety of BCK-algebras
usually denoted by LBCK; every locally finite subvariety of LBCK-algebras is a variety of HBCK-
algebras, so it is universally complete. However:

‚ the only non locally finite subvariety is the entire variety LBCK [59];
‚ LBCK it is generated as a quasivariety by its finite chains [2];
‚ every infinite chain contains all the finite chains as subalgebras [59];
‚ so if Q is a quasivariety which contains only finitely many chains, then VpQq is locally finite,
hence universally complete and so Q “ VpQq;

‚ otherwise Q contains infinitely many chains and so VpQq “ Q “ LBCK.

Hence every subquasivariety of LBCK is a variety and LBCK is primitive. The status of non locally
finite varieties of basic hoops and basic algebras is still unclear (except for the cases we mentioned)
and it is under investigation.
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4.3. Active structurally complete quasivarieties. The problem of active structural completeness
has been tackled in [35]; it is an extensive and profound paper touching many aspects and there is no
need to reproduce it here. We will only state the definition, the main result, and we will display an
example.

Theorem 4.17 ([35]). For a quasivariety Q the following are equivalent:

(1) Q is active structurally complete;
(2) every unifiable algebra of Q is in QpFQpωqq;
(3) every finitely presented unifiable algebra in Q is in QpFQpωqq;
(4) every admissible quasiequation in Q is valid in all the finitely presented unifiable algebras in

Q;
(5) for every A P Q, A ˆ FQ P QpFQpωqq.
(6) for every A P Qrsi, A ˆ FQ P ISPupFQpωqq.

Given that, we have as usual:

Corollary 4.18. A quasivariety Q is active structurally completeif and only if LQ is actively struc-
turally complete.

Example 4.19. An S4-algebra is a K4-algebra satisfying lx ď x; if we define ✸x :“ &l&x, then a
monadic algebra is an S4-algebras satisfying ✸x ď l✸x. Now let A, B be the monadic algebra and
the S4-algebra in Figure 3 and let V “ VpAq and W “ VpBq.

0 “ l0 “ la “ lb

1 “ l1

ba

A

0 “ l0 “ lc

b “ lb “ la1a “ la “ lb1 c

b1 a1lc1c1

B

Figure 3. A and B

Let U “ V _ W (the varietal join); from [35, Section 8] one can deduce that:

‚ every finitely generated algebra in U is isomorphic to the direct product of an algebra in V and
one in W, hence U is locally finite;

‚ U is active structurally complete but not structurally complete;
‚ U does not have exact unifiers.

Since U is locally finite, by Theorem 3.22, it cannot be active universally complete; so U is an example
of a variety that is active structurally complete but not active universally complete.

4.4. Passive quasivarieties. Passive structurally complete quasivarieties have been studied in [66]
in relation to the joint embedding property, while here we take a different path. We start with the
following observation.

Proposition 4.20. A quasivariety Q is passive structurally complete if and only if every non-negative
passive admissible universal sentence is derivable in Q.

Proof. For the non-trivial direction, suppose Q is passive structurally complete, and let Σ ñ ∆ be a
non-negative (∆ ‰ H) passive admissible universal sentence. This means that Σ is not unifiable, and
thus, each quasiequation Σ ñ δ, for any δ P ∆, is passive admissible. By hypothesis, each such Σ ñ δ
is valid in Q, thus so is Σ ñ ∆ and the conclusion holds. □
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It is clear that a key concept to study passive clauses is understanding the unifiability of the premises.
In order to do so, we introduce the following notion.

Definition 4.21. We say that a finite set of identities Σ is trivializing in a class of algebras K if the
quasiequation Σ ñ px « yq is valid in K, where the variables x, y do not appear in Σ.

Notice that such a quasiequation Σ ñ px « yq is valid in an algebra A if and only if either A is
trivial, or there is no assignment of the variables of Σ in A that makes Σ valid in A.

Lemma 4.22. Let Q be a quasivariety, and let Σ be a finite set of equations in its language. The
following are equivalent:

(1) Σ is not unifiable in Q;
(2) FQ is nontrivial and Σ is trivializing in QpFQq;
(3) FQ |ù Σ ñ H.

Proof. It is easy to see that (2) and (3) are equivalent, modulo the fact that a set of identities is
trivializing in QpFQq if and only if it is trivializing in FQ.

Let us now assume that the identities in Σ are on a (finite) set of variables X. Then, given Lemma
2.21, Σ is not unifiable in Q if and only if there is no homomorphism h : FQpXq{θQpΣq Ñ FQ. We show
that the latter holds if and only if there is no homomorphism k : FQpXq Ñ FQ such that kptq “ kpuq
for each t « u P Σ. Indeed, for the non-trivial direction, suppose that there is a homomorphism
k : FQpXq Ñ FQ with the above property. Then the following diagram commutes, i.e., there is a
homomorphism h : FQpXq{θQpΣq Ñ FQ:

FQpXq FQ

FQpXq{θQpΣq

k

hπ

Notice that there is no homomorphism k : FQpXq Ñ FQ such that kptq “ kpuq for each t « u P Σ
if and only if there is no assignment of variables in X validating Σ in FQ. The latter is equivalent to
FQ |ù Σ ñ H. □

We are now ready to prove the characterization theorem.

Theorem 4.23. Let Q be a quasivariety, then the following are equivalent.

(1) Q is passive structurally complete;
(2) FQ |ù Σ ñ H implies Σ is trivializing in Q;
(3) either FQ is trivial, or Σ is trivializing in QpFQq implies Σ is trivializing in Q;
(4) every nontrivial finitely presented algebra is unifiable.

Proof. We first show that (1) and (2) are equivalent. By definition, Q is passive structurally complete
if and only if each quasiidentity Σ ñ δ where Σ is not unifiable in Q is valid in Q. That is, Σ not
unifiable in Q implies Q |ù Σ ñ δ, for all identities δ. By Proposition 4.22, the latter is equivalent to:
FQ |ù Σ ñ H implies Q |ù Σ ñ δ, for all identities δ. From this it follows the particular case where
δ “ tx « yu, with x, y not appearing in Σ. In turn, if FQ |ù Σ ñ H implies Q |ù Σ ñ px « yq, then
clearly Q |ù Σ ñ δ for any δ, and thus (1) ô (2).

Now, (2) and (3) are equivalent by Lemma 4.22, thus the first three points are equivalent. Let us
now assume (2) and prove (4). We consider a nontrivial finitely presented algebra in Q, FQpXq{θQpΣq.
If it is not unifiable, by Lemma 4.22 FQ |ù Σ ñ H. By (2) this implies that Σ is trivializing in Q,
that is, Q |ù Σ ñ px « yq (with x, y new variables). This clearly implies that FQpXq{θQpΣq is trivial,
a contradiction. Thus FQpXq{θQpΣq is unifiable and (4) holds.

Finally, we prove that (4) implies (1). Suppose Σ ñ δ is a passive quasiequation over variables
in X, that is, Σ is not unifiable in Q. By Lemma 4.22 FQ |ù Σ ñ H. Let x, y be variables not in
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X, and consider the finitely presented algebra FQpX 1q{θQpΣq, where X 1 “ X Y tx, yu and suppose by
way of contradiction that it is not trivial. By (4) it is unifiable, that is, there is a homomorphism
h : FQpX 1q{θQpΣq Ñ FQ. Then, considering the natural epimorphism πΣ : FQpX 1q Ñ FQpX 1q{θQpΣq,
the composition hπΣ is an assignment from X 1 to FQ satisfying Σ; but FQ |ù Σ ñ H, a contradiction.
Thus FQpX 1q{θQpΣq is trivial, and therefore x{θQpΣq “ y{θQpΣq. By Lemma 2.38 Q |ù Σ ñ px « yq,
and thus Q |ù Σ ñ δ and (1) holds. □

Analogously to the case of passive universal completeness, if the smallest free algebra is isomorphic
to all its ultraproducts we can improve the previous result.

Lemma 4.24. Let Q be a quasivariety such that IpFQq “ IPupFQq, then the following are equivalent.

(1) every nontrivial finitely presented algebra in Q is unifiable;
(2) every nontrivial algebra in Q is unifiable.

Proof. The proof is analogous to the one of Lemma 3.31; we prove the nontrivial direction by contra-
position. Consider an arbitrary algebra A “ FQpXq{θ P Q and assume that it is not unifiable. Then
there is no assignment h : FQpXq Ñ FQ such that FQ, h |ù Σθ, where Σθ “ tt « u : pt, uq P θu.
Equivalently, iff FQ |ù Σθ ñ H. Now, the equational consequence relation relative to FQ is finitary
(since all ultraproducts of FQ are isomorphic to FQ); thus we obtain that FQ |ù Σ1

θ ñ H, for Σ1
θ

some finite subset of Σθ. But FQpXq{θ * Σ1
θ ñ px « yq (with x, y R X), since it is nontrivial, which

contradicts (2) of Theorem 4.23; equivalently it contradicts (1) and thus the proof is complete. □
Corollary 4.25. Let Q be a quasivariety such that IpFQq “ IPupFQq, then the following are equivalent.

(1) Q is passively structurally complete;
(2) FQ |ù Σ ñ H implies Σ is trivializing in Q;
(3) either FQ is trivial, or Σ is trivializing in QpFQq implies Σ is trivializing in Q;
(4) every nontrivial finitely presented algebra is unifiable;
(5) every nontrivial algebra in Q is unifiable.

Remark 4.26. The previous corollary can be applied whenever FQ is finite, therefore to all locally
finite quasivarieties, but also to more complex classes of algebras, e.g., all subquasivarieties of FLw (see
Subsection 5.2).

We will see an interesting application of Theorem 4.23 (or Corollary 4.25) in substructural logics in
Subsection 5.2; let us now show some other consequences. Given a quasivariety Q whose smallest free
algebra FQ is nontrivial, let us consider the following set:

PQ “ tΣ ñ δ : QpFQq ( Σ ñ tx « yu, δ any identityu.

PQ axiomatizes a subquasivariety of Q, that we denote with PQ. From Theorem 4.23 we get the
following.

Corollary 4.27. Let Q be a quasivariety such that FQ is nontrivial. Every passive structurally com-
plete subquasivariety of Q is contained in PQ, which is the largest subquasivariety of Q that is passive
structurally complete.

Moreover, for locally finite quasivarieties the characterization theorem reads as follows.

Corollary 4.28. Let Q be a locally finite quasivariety, then the following are equivalent.

(1) Q is passive structurally complete;
(2) every algebra in Q is unifiable;
(3) every finite algebra in Q is unifiable;
(4) every finite subdirectly irreducible in Q is unifiable.

A nontrivial algebra A is Kollár if it has no trivial subalgebras, and a quasivariety Q is a Kollár
quasivariety if all nontrivial algebras in Q are Kollár. By [58] if A belongs to a Kollár quasivariety,
1A, the largest congruence of A, is compact in ConQpAq; from there a straightforward application of
Zorn’s Lemma yields that if A is nontrivial there is at least one maximal congruence θ P ConQpAq
below 1A (i.e. A{θ is relative simple).
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Theorem 4.29. If Q is a Kollár quasivariety and FQ is the only finitely generated relative simple
algebra in Q, then Q is passive structurally complete.

Proof. Let A be a nontrivial finitely presented algebra in Q; since Q is a Kollár quasivariety, A has a
relative simple homomorphic image, that must be finitely generated. Hence it must be equal to FQ,
so A is unifiable; by Theorem 4.23 Q is passive structurally complete. □

Corollary 4.30. For a locally finite Kollár quasivariety Q such that FQ has no proper subalgebra the
following are equivalent:

(1) FQ is the only finite relative simple algebra in Q;
(2) Q is passive structurally complete.

Proof. If (1) holds, than (2) holds by Theorem 4.29. Conversely assume (2); then every nontrivial
finitely presented algebra in Q is unifiable. Since Q is locally finite FQ is finite and nontrivial since Q
is Kollár; now since FQ has no proper subalgebra no finite relative simple algebra different from FQ

can be unifiable, but Q must contain at least a relative simple algebra [50, Theorem 3.1.8]. Hence FQ

must be relative simple and (1) holds. □

The next results will allow us to find interesting applications in varieties of bounded lattices, which
we will explore in Section 5.1. We say that an algebra A in a variety V is flat if HSpAq does not
contain any simple algebra different from FV.

Theorem 4.31. Let V be a Kollár variety; if every finitely generated algebra in V is flat then V is
passive structurally complete. If V is locally finite, then the converse holds as well.

Proof. First, if FV is trivial then V is vacuously passive structurally complete. If FV is nontrivial and
every finitely generated algebra is flat, then the only finitely generated simple lattice in V must be FV;
since V is Kollár, V is passive structurally complete by Theorem 4.29.

If V is locally finite and passive structurally complete, then FV is the only finite simple algebra in
V by Corollary 4.30. It follows that no finite simple algebra different from FV can appear in HSpAq
for any finite A P V. So every finite algebra in V must be flat. □

Theorem 4.32. Let V be a congruence distributive Kollár variety; a finitely generated variety W Ď V
is passive structurally complete if and only if each generating algebra is flat.

Proof. Suppose that W “ VpKq where K is a finite set of finite algebras; by Jónsson Lemma any
simple algebra in V is in HSpKq. If K consists entirely of flat algebras, then there cannot be any
simple algebra in V different from FW, so W is passive structurally complete. On the other hand if
A P K is not flat, then there is an algebra B P HSpKq which is simple and different from FV. Clearly
B P W, which is not passive structurally complete. □

5. Applications to algebra and logic

In this last section we will see some relevant examples and applications of our results in the realm
of algebra and (algebraic) logic that deserve a deeper exploration than the examples already presented
in the previous sections. We will start with focusing on varieties of lattices and bounded lattices,
and then move to their expansions that are the equivalent algebraic semantics of subtructural logics:
residuated lattices.

As a main result, in the last subsection we present the logical counterpart of the characterization of
passive structural completeness in substructural logics with weakening, that is, such a logic is passively
structurally complete if and only if every classical contradiction is explosive in it; building on this,
from the algebraic perspective, we are able to axiomatize the largest variety of representable bounded
commutative integral residuated lattices that is passively structurally complete (and such that all of
its quasivarieties have this property). Notice that this characterization establishes negative results as
well: if a logic (or a quasivariety) is not passively structurally complete, a fortiori it is not structurally
complete either.
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5.1. (Bounded) lattices. In this subsection we start with some results about primitive (quasi)varieties
of lattices, and then move to bounded lattices, where in particular we obtain some new results about
passive structurally complete varieties.

5.1.1. Primitivity in lattices. Many examples of quasivarieties that are primitive can be found in
lattices satisfying Whitman’s condition (W); Whitman’s condition is a universal sentence that holds
in free lattices:

(W) tx ^ y ď u _ vu ñ tx ď u _ v, y ď u _ v, x ^ y ď u, x ^ y ď vu.

Now a finite lattice is finitely projective in the variety of all lattices if and only if it satisfies (W) [33],
which implies:

Lemma 5.1. Let K be a finite set of finite lattices. If every lattice in K satisfies (W) then QpKq is
primitive.

Proof. QpKq is locally finite and by Theorem 2.3(2) every relative subdirectly irreducible lies in ISpKq;
as (W) is a universal sentence it is preserved under subalgebras, thus they all satisfy (W) and hence
they are all finitely projective in the variety of lattices and then also in QpKq. By Theorem 4.11(4),
QpKq is primitive. □

Luckily finite lattices satisfying (W) abound, so there is no shortage of primitive quasivarieties of
lattices. For varieties of lattices the situation is slightly different; in particular, because of Lemma
4.4 it is not enough that all lattices in K are weakly projective in VpKq to guarantee that VpKq is
structurally complete.

First we introduce some lattices: Mn for 3 ď n ď ω are the modular lattices consisting of a top, a
bottom, and n atoms while the lattices M3,3 and M`

3,3 are displayed in Figure 4.

M3,3 M`
3,3

Figure 4. M3,3 and M`
3,3

Observe that all the above lattices, with the exception of M3,3, satisfy (W). Now Gorbunov ([50],

Theorem 5.1.29) showed that M`
3,3 is splitting in the lattice of subquasivarieties of modular lattices.

More in detail for any quasivariety Q of modular lattices, either M`
3,3 P Q or else Q “ QpMnq for

some n ď ω. Observe that, for n ă ω, QpMnq is primitive by Lemma 5.1 and VpMnq “ QpMnq
by Lemma 2.4; then the only thing left to show is that VpMωq is a primitive variety and Gorbunov
did exactly that. On the other hand no variety V of lattices containing M`

3,3 can be primitive; in

fact M3,3 is a simple homomorphic image of M`
3,3 that cannot be embedded in M`

3,3. By Lemma

2.4, QpM`
3,3q Ĺ VpM`

3,3q, so V contains a strict (i.e. not a variety) subquasivariety and cannot be
primitive. Thus Gorbunov’s result can be formulated as: a variety of modular lattices is primitive if
and only if it does not contain M`

3,3. Note that it cannot be improved to quasivarieties: since M`
3,3

satisfies (W), QpM`
3,3q is primitive by Lemma 5.1. However we observe:

Lemma 5.2. If Q is a quasivariety of modular lattices and M3,3 P Q, then Q is not primitive.

Proof. Clearly the two element lattice 2 P Q and it is easy to check that M`
3,3 ďsd 2ˆM3,3 so M`

3,3 P Q

and M3,3 P HpM`
3,3q. Since M3,3 cannot be embedded in M`

3,3, in Q there is a simple finite (so finitely
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presented, since lattices have finite type) algebra that is not weakly projective. By Theorem 4.11, Q
is not primitive. □

Therefore to find a variety of modular lattices that is structurally complete but not primitive it is
enough to find a finite lattice F such that M`

3,3 P VpFq but K “ tFu satisfies the hypotheses of Lemma
4.4. Bergman in [13] observed that the Fano lattice F has exactly those characteristics; the Fano lattice
is the (modular) lattice of subspaces of pZ2q3 seen as a vector space on Z2 and it is displayed in Figure
5.

Figure 5. The Fano lattice

Now:

‚ F is projective in VpFq [52];
‚ the subdirectly irreducible members of VpFq are exactly 2,M3,M3,3,F and they are all sub-
algebras of F.

It follows that F does not satisfies (W) (since M3,3 does not), VpFq is structurally complete and (since
M3,3 P VpFq) not primitive by Lemma 5.2; also QpFq is structurally complete but, since M3,3 P QpFq,
it cannot be primitive as well.

Primitive varieties of lattices have been studied in depth in [53]; there the authors proved the
following theorem that explains the behavior we have seen above.

Theorem 5.3 ([53]). If A is a lattice satisfying (W), then VpAq is primitive if and only if every
subdirectly irreducible lattice in HSpAq satisfies (W).

We believe that many of the techniques in [53] could be adapted to gain more understanding of
primitive quasivarieties of lattices, but proceeding along this path would make this part too close to
being a paper in lattice theory, and we have chosen a different focus. We only borrow an example
from [53] that shows that Lemma 5.1 cannot be inverted for quasivarieties. Let H`,H be the lattices
in Figure 6.

It is easily seen that the pair H`,H behaves almost like the pair M`
3,3,M3,3: H

` satisfies (W) (so

QpH`q is primitive), H does not satisfy (W) and H` ďsd 2 ˆ H. As above we can conclude that
VpH`q is not primitive. However VpHq is primitive [53] so QpHq is a primitive quasivariety generated
by a finite lattice not satisfying (W).

5.1.2. Bounded lattices. We now focus on applications of our results in varieties of bounded lattices.
A bounded lattice is a lattice with two constants, 0 and 1, that represent the top and the bottom of
the lattice. Bounded lattices form a variety Lb that shares many features with variety of lattices. In
particular, let 2b be the two element bounded lattice, then the variety of bounded distributive lattices
is Db “ ISPp2bq. Therefore

QpFDb
pωqq Ď Db “ ISPp2bq Ď QpFDb

pωqq

and by Theorem 4.1, the variety of bounded distributive lattices Db is structurally complete, as shown
in [35]. In [14] it is shown that locally finite, congruence modular, minimal varieties are q-minimal; since
these hypotheses apply to Db, the latter is also primitive. However, it is not non-negative universally
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H H`

Figure 6. H and H`

complete; it is a nice exercise in general algebra to show that for any variety V of bounded lattices, 1
is join irreducible in FVpωq. It follows that

tx _ y « 1u ñ tx « 1, y « 1u

is an active universal sentence that is admissible in V. But it is clearly not derivable, since any
nontrivial variety of bounded lattices contains 2b ˆ 2b which does not satisfy the universal sentence.

Proposition 5.4. No nontrivial variety of bounded lattices is active universally complete.

Actually something more is true; if V is a variety of bounded lattices that is structurally complete,
then by Theorem 4.6, each finite subdirectly irreducible algebra A P V must satisfy the above universal
sentence, i.e. 1 must be join irreducible in A. But the bounded lattices Nb

5 and Mb
3 do not satisfy that,

so any structurally complete variety of bounded lattice must omit them both. As in the unbounded
case, this means that the variety must be the variety of bounded distributive lattices. Thus:

Proposition 5.5 ([35]). The variety of bounded distributive lattices is the only (active) structurally
complete variety of bounded lattices.

We have seen that active structural completeness does not have much meaning in bounded lattices.
Passive structural completeness has more content, as we are now going to show. Notice that any variety
of bounded lattices is Kollár and FV “ 2b for any variety V of bounded lattices. Since 2b is simple
and has no proper subalgebras, any simple bounded lattice not isomorphic with 2b is not unifiable;
in particular if a variety V contains a finite simple lattice L different from 2b, then VpLq cannot be
passive structurally completeby Corollary 4.30, and hence neither can V.

We will use this fact to show that the only variety of bounded modular lattices that is passive
structurally complete is the one we already know to possess that property, i.e. the variety Db of
bounded distributive lattices. A key step is to show that Mb

3 is splitting in the variety of bounded
modular lattices; in the unbounded case, this follows from the fact thatM3 is projective and subdirectly
irreducible. However, Mb

3 is not projective in the variety of bounded modular lattices. Indeed, the

lattice in Figure 5.1.2 is a bounded modular lattice having Mb
3 as homomorphic image, but it has no

subalgebra isomorphic with Mb
3, which hence cannot be a retract.

0

1
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However we can use A. Day idea in [34]; a finite algebra A is finitely projected in a variety V if
for any B P V if f : B ÝÑ A is surjective, then there is a finite subalgebra C of B with fpCq – A.
Clearly any finite projective lattice is finitely projected. A finite algebra A splitting in a variety V if
A P V and there is a subvariety WA Ď V such that for any variety U Ď V either A P U or U Ď WA.
This simply means that the lattice of subvarieties of V is the disjoint union of the filter generated by
VpAq and the ideal generated by WA. The key result is:

Theorem 5.6. ([34], Theorem 3.7) If V is a congruence distributive variety, then any finitely projected
subdirectly irreducible algebra in V is splitting in V.

Lemma 5.7. Let Vb be a variety of bounded lattices and let V be the variety of lattice subreducts of
Vb. If L is finitely projected in V, then Lb is finitely projected in Vb.

Proof. The fact that V is indeed a variety is easy to check. Let now Ab P Vb and suppose that there is
an onto homomorphism f : Ab ÝÑ Lb; then f is onto from A to L and since L is finitely projected in
V there is a subalgebra B of A with fpBq – L. But B Y t0, 1u is the universe of a finite subalgebra C

of Ab. Extend f to f̂ by setting f̂p0q “ 0 and f̂p1q “ 1; then f̂pCq – Lb and so Lb is finitely projected
in Vb. □

Theorem 5.8. A variety of modular bounded lattices is passive structurally complete if and only if it
is the variety of bounded distributive lattices.

Proof. Db is structurally complete, hence passive structurally complete. Conversely observe that M3

is projective in the variety of modular lattices, so Mb
3 is finitely projected in the variety of bounded

modular lattices. Hence, by Theorem 5.6, Mb
3 is splitting in the variety, which means that for any

variety V of bounded modular lattices, either Mb
3 P V or V is Db. But if Mb

3 P V then V cannot be

passive universally complete, since Mb
3 is simple. The conclusion follows. □

In order to find other relevant varieties of bounded lattices that are passive structurally complete,
we are going to take a closer look at flat lattices. Finding flat bounded lattices is not hard since
the lattice of subvarieties of lattices has been studied thoroughly and a lot is known about it (an

excellent survey is [54]). Clearly N5 is flat and hence so is Nb
5; however we know exactly all the covers

of the minimal nondistributive varieties of lattices (which is of course VpN5q). There are 15 finite
subdirectly irreducible nonsimple lattices, commonly called L1, . . . ,L15 (some of them are in Figure 7)
that generate all the join irreducible (in the lattice of subvarieties) covers of VpN5q. It is easy to see

their bounded versions all are join irreducible covers of VpNb
5q in the lattice of subvarieties of bounded

lattices. We suspect that they are also the only join irreducible covers; one needs only to check that
the (rather long) proof for lattices [57] goes through for bounded lattices but we leave this simple but

tedious task to the reader. In any case for i “ 1, . . . , 15 the subdirectly irreducible algebras in VpLb
i q

are exactly 2b,Nb
5 and Lb

i (via a straightforward application of Jónsson Lemma); so each Lb
i is flat and

each VpLb
i q is passively structurally complete (by Theorem 4.32).

Let’s make more progress: consider the rules

x ^ y « x ^ z ñ x ^ y « x ^ py _ zq(SD^)

x _ y « x _ z ñ x _ y « x _ py ^ zq.(SD_)

A lattice is meet semidistributive if it satisfies SD^, join semidistributive if it satisfies SD^ and
semidistributive if it satisfies both. Clearly (meet/join) semidistributive lattices form quasivarieties
called SD^, SD_ and SD respectively, and so do their bounded versions. It is a standard exercise
to show that homomorphic images of a finite (meet/join) semidistributive lattices are (meet/join)
semidistributive. It is also possible to show none of the three quasivariety (and their bounded versions)
is a variety (see [54] p. 82 for an easy argument); they are also not locally finite since for instance

F “ FSDpx, y, zq is infinite; hence Fb is a bounded infinite three-generated lattice and thus SDb is
not locally finite as well. A variety V of (bounded) lattices is (meet/join) semidistributive if V Ď SD
(V Ď SD{^ /V Ď SD{_).
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L13 L14 L15

L1 L2

Figure 7

We need a little bit of lattice theory. A filter of L is an upset F of L that is closed under meet; a
filter is prime if a _ b P F implies a P F or b P F . An ideal I of L is the dual concept, i.e. a downset
that is closed under join; an ideal is prime if a ^ b P I implies a P I or b P I. The following lemma is
straightforward.

Lemma 5.9. If F is a prime filter of L (I is a prime ideal of L), then LzF is a prime ideal of L (LzI
is a prime filter of L).

Lemma 5.10. Any bounded (meet/join) semidistributive lattice is unifiable in the variety of bounded
lattices.

Proof. Let L be bounded and meet semidistributive. Since L is lower bounded by 0 a standard
application of Zorn Lemma yields a maximal proper filter F of L; we claim that F is also prime. Let
a, b R F ; then the filter generated by F Y tau must be the entire lattice. Hence there must be a c P F
with c ^ a “ 0; similarly there must be a d P F with d ^ b “ 0. Let e “ c ^ d; then e P F and
e ^ a “ e ^ b “ 0 and by meet semidistributivity e ^ pa _ bq “ 0. But if a _ b P F , then 0 P F , a clear
contradiction. Hence a _ b R F and F is prime.

Let now ϕ : L ùñ 2b defined by

ϕpxq “

"

1, if x P F ;
0, if x R F .

Using the fact that F is prime and LzF is prime it is straightforward to check that ϕ is a homomor-
phism. Therefore L is unifiable.

A dual proof shows that the conclusion holds for join semidistributivity and a fortiori for semidis-
tributivity. □

Proposition 5.11. Any bounded finite (meet/join) semidistributive lattice is flat.

Proof. If L is finite and (meet/join) semidistributive, every lattice in HSpLq is finite and (meet/join)
semidistributive. So it is unifiable and, if simple, it must be equal to 2b; therefore L is flat. □

Corollary 5.12. Every locally finite (meet/join) semidistributive variety of bounded lattices is passive
structurally complete.

In [61] several (complex) sets of equations implying semidistributivity are studied; one of them is
useful to us, since it describes a class of locally finite varieties. The description is interesting in that
involves some of the L1

is we have introduced before.
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Theorem 5.13. [61] There exists a finite set Γ of lattices equations such that, if V is any variety of
lattices such that V ( Γ, then the following hold:

(1) V is semidistributive;
(2) V is locally finite;
(3) only L13,L14,L15 P V.

A variety satisfying Γ is called almost distributive and it is straightforward to check that a similar
result holds for varieties of bounded lattices. Therefore:

Proposition 5.14. Every almost distributive variety of bounded lattices is passive structurally com-
plete.

We close this subsection with a couple of observations; firstVpLb
1,L

b
2q is a variety of bounded lattices

that is passive structurally complete (by Theorem 4.32) but neither meet nor join semidistributive.
Next, what about infinite flat (bounded) lattices? We stress that in [63] there are several examples of
this kind and we believe that a careful analysis of the proofs therein could give some insight on how to
construct a non locally finite variety of bounded lattices that it is passive structurally complete. But
again, this is not a paper in lattice theory; therefore we defer this investigation.

5.2. Substructural logics and residuated lattices. Originally, substructural logics were intro-
duced as logics which, when formulated as Gentzen-style systems, lack some (including “none” as a
special case) of the three basic structural rules (i.e. exchange, weakening and contraction) of classical
logic. Nowadays, substructural logics are usually intended as those logics whose equivalent algebraic
semantics are residuated structures, and they encompass most of the interesting non-classical logics:
intuitionistic logic, basic logic, fuzzy logics, relevance logics and many other systems. Precisely, by
substructural logics we mean here the axiomatic extensions of the Full Lambek calculus FL (see [43]
for details and a survey on substructural logics). All these logics are strongly algebraizable: their
equivalent algebraic semantics are all varieties of FL-algebras, particular residuated lattices that we
shall now define.

A residuated lattice is an algebra A “ xA,_,^, ¨, {, z, 1y where

(1) xA,_,^y is a lattice;
(2) xA, ¨, 1y is a monoid;
(3) { and z are the right and left divisions w.r.t. ¨, i.e., x ¨ y ď z iff y ď xzz iff x ď z{y, where ď

is given by the lattice ordering.

Residuated lattices form a variety RL and an equational axiomatization, together with many equations
holding in these very rich structures, can be found in [19].

A residuated lattice A is integral if it satisfies the equation x ď 1; it is commutative if ¨ is commu-
tative, and in this case the divisions coincide: xzy “ y{x, and they are usually denoted with x Ñ y.
The classes of residuated lattices that satisfy any combination of integrality and commutativity are
subvarieties of RL. We shall call the variety of integral residuated lattices IRL, commutative residuated
lattices CRL, and their intersection CIRL.

Residuated lattices with an extra constant 0 in the language are called FL-algebras, since they are
the equivalent algebraic semantics of the Full Lambek calculus FL. Residuated lattices are then the
equivalent algebraic semantics of 0-free fragment of FL, FL`. An FL-algebra is 0-bounded if it satisfies
the inequality 0 ď x and the variety of zero-bounded FL-algebras is denoted by FLo; integral and
0-bounded FL-algebras are called FLw algebras (since they are the equivalent algebraic semantics of
the Full Lambek Calculus with weakening), and we call its commutative subvariety FLew.

Restricting ourselves to the commutative case there is another interesting equation:

px Ñ yq _ py Ñ xq « 1.

It can be shown (see [19] and [55]) that a subvariety of FLew or CIRL satisfies the above equation if and
only if any algebra therein is a subdirect product of totally ordered algebras, and this implies that all
the subdirectly irreducible algebras are totally ordered. Such varieties are called representable and the
subvariety axiomatized by that equation is the largest subvariety of FLew or CIRL that is representable.
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The representable subvariety of FLew is usually denoted by MTL, since it is the equivalent algebraic
semantics of Esteva-Godo’s Monoidal t-norm based logic [38].

5.2.1. Active universal completeness. We have already seen examples of subvarieties of FLew-algebras
that are active universally complete, but those were all locally finite subvarieties of BL-algebras, that
is, MTL-algebras satisfying the divisibility equation: x ^ y “ xpx Ñ yq. In this section we will display
a different class of examples. If A is any algebra a congruence θ P ConpAq is a factor congruence if
there is a θ1 P ConpAq such that θ _ θ1 “ 1A, θ ^ θ1 “ 0A and θ, θ1 permute. It is an easy exercise in
general algebra to show that in this case A – A{θˆA{θ1; note that 1A and 0A are factor congruences
that gives a trivial decomposition. A less known fact (that appears in [31]) is:

Lemma 5.15. Let A be any algebra and θ a factor congruence; then A{θ is a retract of A if and only
if there is a homomorphism h : A{θ ÝÑ A{θ1.

Proof. Suppose first that there is a homomorphism h : A{θ ÝÑ A{θ1. Since A – A{θˆA{θ1 for u P A,
u “ pa{θ, b{θ1q, we set fpuq “ a{θ; then f : A ÝÑ A{θ is clearly an epimorphism, since pa{θ, a{θ1q P A
for all a P A. Let

gpa{θq “ pa{θ, hpa{θqq.

One can check that g is a homomorphism with standard calculations and clearly fg “ idA{θ. Hence
A{θ is a retract of A.

Conversely suppose that f, g witness a retraction from A{θ in A; then if gpa{θq “ pu{θ, v{θ1q, set
hpa{θq “ v{θ1. It is then easy to see that h is a homomorphism and the thesis holds. □

Observe that in any FL-algebra, every compact (i.e., finitely generated) congruence is principal;
as a matter of fact if A is in FL, X “ tpa1, b1q, . . . , pan, bnqu is a finite set of pairs from A and
p “

Źn
i“1rpaizbiq ^ pbizaiq ^ 1s then ϑApXq “ ϑApp, 1q.

Theorem 5.16. Let Q be a quasivariety of FLw-algebras in which every principal congruence is a
factor congruence; then Q has projective unifiers.

Proof. Let FQpXq{θ be a finitely presented unifiable algebra in Q; then there is an onto homomorphism
from FQpXq{θpΣq to FQ “ 2. Now θ “ θpΣq is a principal congruence, hence it is a factor congruence
with witness θ1, i.e. FQpXq – FQpXq{θ ˆ FQpXq{θ1. If θ1 “ 1A, then FQpXq “ FQpXq{θ and so it is
projective. Otherwise FQ “ 2 is embeddable in FQpXq{θ1; hence there is a homomorphism from from
FQpXq{θ to FQpXq{θ1. By Lemma 5.15 FQpXq{θ is a retract of FQpXq, i.e. it is projective. □

So any quasivariety of FLw-algebras with the property that every principal congruence is a factor
congruence is active universally complete (Theorem 3.22); really it is active primitive universally
complete, because FQ is the two-element algebra for any quasivariety Q of FLw-algebras (Theorem
3.26). We observe in passing that for any FLw algebra every factor congruence is principal; this is
because every variety of FLw-algebras is Kollár and congruence distributive. Discriminator varieties of
FLew-algebras have been completely described in [60]; as a consequence we have:

Theorem 5.17. For a variety V of FLew-algebras the following are equivalent:

(1) V is a discriminator variety;
(2) V is semisimple, i.e. all the subdirectly irreducible members of V are simple;
(3) there is an n P N such that V ( x _ &xn « 1;
(4) for any A P V every compact (i.e. principal) congruence is a factor congruence.

Proof. The equivalence of (1), (2) and (3) has been proved in [60]. Assume then (1); it is well-known
that in every discriminator variety every principal congruence is a factor congruence. In fact if V is a
discriminator variety with discriminator term tpx, y, zq let for any A P V and a, b P A

θApa, bq “ tpu, vq : tpa, b, uq “ tpa, b, vqu

γApa, bq “ tpu, vq : tpa, tpa, b, uq, uq “ tpa, tpa, b, vq, vqu.
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Using the properties of the discriminator term it is easy to verify that they are congruences and the
complement of each other; since discriminator varieties are congruence permutable they are factor
congruences and (4) holds.

Conversely assume (4) and let A be a subdirectly irreducible member of V. Let µA be the minimal
nontrivial congruence of A; then µA is principal, so it must be a factor congruence. This is possible if
and only if µA “ 1A; therefore A is simple, and V is semisimple. □

Corollary 5.18. Every discriminator (or, equivalently, semisimple) variety V of FLew-algebras is
active primitive universal.

We observe that Theorem 5.16 does not add anything as far as BL-algebras are concerned; in fact
any discriminator variety of FLew-algebras must satisfy xn « xn`1 for some n [60] and the varieties of
BL-algebras with that property are exactly the locally finite varieties, which we already pointed out
are active universally complete.

5.2.2. Passive structural completeness. A particularly interesting application of our characterization
of passive structurally complete varieties is in the subvariety of integral and 0-bounded FL-algebras.
Let us rephrase Theorem 4.23 in this setting. First, using residuation it is easy to see that every finite
set of identities in FL is equivalent to a single identity. Moreover, in every subquasivariety Q of FLw,
the smallest free algebra FQ is the 2-element Boolean algebra 2, and its generated quasivariety is the
variety of Boolean algebras.

Corollary 5.19. Let Q be a quasivariety of FLw-algebras, then the following are equivalent:

(1) Q is passive structurally complete;
(2) every trivializing identity in the variety of Boolean algebras is trivializing in Q;
(3) every nontrivial finitely presented algebra is unifiable.
(4) every nontrivial algebra is unifiable.

The previous corollary has a possibly more transparent shape from the point of view of the logics.
Let us call a formula ϕ in the language of FL-algebras explosive in a logic L, with consequence relation
$L, if ϕ $L δ for all formulas δ in the language of L. Moreover, we call ϕ a contradiction in L

if ϕ $L 0. Since FLw-algebras are 0-bounded, it is clear that contradictions coincide with explosive
formulas in all axiomatic extensions of FLw.

Corollary 5.20. Let L be an axiomatic extension of FLw, then the following are equivalent:

(1) L is passively structurally complete.
(2) Every contradiction of classical logic is explosive in L.
(3) Every passive rule of L has explosive premises.

Let us first explore the consequences of the equivalence between (1) and (2) in Corollary 5.20. It
is well known that intuitionistic logic is passively structurally complete (reported by Wronski at the
51st Conference on the History of Logic, Krakow, 2005). This is easily seen by Corollary 5.20, indeed,
observe that any contradiction of classical logic ϕ is such that its negation &ϕ is a theorem of classical
logic. Using the Glivenko translation and the deduction theorem, we obtain that ϕ is explosive in
intuitionistic logic as well, which is then passively structurally complete. We will now show how this
argument can be extended to a wide class of logics.

Let us write the negations corresponding to the two divisions as &x “ xz0 and „ x “ 0{x. Following
[44, 45], we say that two logics L1 and L2 are Glivenko equivalent if for all formuals ϕ:

$L1 &ϕ iff $L2 &ϕ

(equivalently, $L1„ ϕ iff $L2„ ϕ). Given a logic L, we call Glivenko logic of L the smallest sub-
structural logic that is Glivenko equivalent to L . Moreover, we call Glivenko logic of L with respect
to L1, and denote it with GL1 pLq the smallest extension of L1 that is Glivenko equivalent to L (all
these notions make sense by the results in [44, 45]). GL1 pLq is axiomatized relatively to L1 by the set
of axioms t& „ ϕ :$L ϕu, or equivalently by the set t„ &ϕ :$L ϕu.
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Here we are interested in the Glivenko equivalent of classical logic with respect to FLw. From the
algebraic perspective, this corresponds to the largest subvariety of FLw that is Glivenko equivalent to
Boolean algebras, GFLwpBq. The latter is axiomatized in [43, Corollary 8.33] as the subvariety of FLw
satisfying:

(1) „ px ^ yq “„ pxyq
(2) „ pxzyq “„ p&x _ yq
(3) &pxzyq “ &p„ x _ yq
(4) „ pxzyq “„ p& „ xz& „ yq
(5) „ px{yq “„ p& „ x{& „ yq.

Theorem 5.21. Every axiomatic extension L of the Glivenko logic of classical logic with respect to
FLw is passively structurally complete.

Proof. Consider a contradiction of classical logic ϕ, by the deduction theorem $CL &ϕ (where $CL is
the consequence relation of classical logic). Since L is Glivenko equivalent to classical logic, $L &ϕ.
It can be easily checked that this implies that ϕ $L 0 (it is a consequence of the parametrized local
deduction theorem which holds in every extension of FL [43], but it is also straightforward to see in
models). Thus ϕ is a contradiction of L, or equivalently it is explosive in L, which is then passively
structurally complete by Corollary 5.20. □

Thus, every subvariety of GFLwpBq is passive structurally complete. In particular, the commutative
subvariety GFLewpBq is the variety of pseudocomplemented FLew-algebras ([39]), axiomatized by

x ^ &x « 0.

Examples of passive structurally complete varieties then include Heyting algebras, Stonean MTL-
algebras and as a consequence, e.g., product algebras and Gödel algebras.

We observe that these are not all of the passive structural complete varieties of FLw (nor of FLew).
Let us indeed obtain a different kind of examples.

Definition 5.22. We say that a variety V has a Boolean retraction term if there exists a term t in
the language of residuated lattices (i.e., 0-free) such that, for every A P V, t defines an idempotent
endomorphism on A whose image is the Boolean skeleton of A, that is, the set of complemented
elements of A.

Varieties with a Boolean retraction term have been studied at length by Cignoli and Torrens in a
series of papers, see in particular [28]. These are all varieties in which all nontrivial algebras retract onto
a nontrivial Boolean algebra, thus they satisfy the hypotheses of Corollary 5.19 and they are passive
structurally complete. Some of these varieties have been shown in [7] to have projective unifiers, thus
they satisfy Theorem 3.16 and they are non-negative universally complete. Among those we cite some
varieties of interest in the realm of many-valued logics: the variety of product algebras, the variety
generated by perfect MV-algebras, the variety NM´ of nilpotent minimum algebras without negation
fixpoint and some varieties that have been called nilpotent product in [6] or [5].

We will see that in the representable variety of FLew, MTL, we can fully characterize passive struc-
turally complete varieties as those with a Boolean retraction term. By [28], the largest subvariety of
MTL with a Boolean retraction term is axiomatized relatively to MTL by the Di Nola-Lettieri equation:

(DL) px ` xq2 “ x2 ` x2

where x ` y “ &p&x ¨ &yq. The latter identity has been introduced by Di Nola and Lettieri to
axiomatize within MV-algebras the variety generated by the Chang algebra. This variety is called sDL
in [73] (BP0 in [67, 10]), and it includes, for instance: pseudocomplemented MTL-algebras (also called
SMTL-algebras), and thus Gödel algebras and product algebras; involutive BP0-algebras and thus the
variety generated by perfect MV-algebras and nilpotent minimum algebras without negation fixpoint.

Let us say that an element of an FLew-algebra A has finite order n if xn “ 0, and infinite order if
there is no such n. We call perfect an algebra A P FLew such that, for all a P A, a has finite order if
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and only if &a has infinite order. Now, sDL turns out to be the variety generated by the perfect chains
(see [73, 10]).

Lemma 5.23. A chain A P FLew is perfect if and only if there is no element with finite order a P A
such that a ě &a.

Proof. By order preservation, if there is an element a P A, a ě &a, an “ 0, then both a and its negation
have finite order, thus the chain is not perfect. Suppose now a chain A is not perfect. Observing that
for every element x P A it cannot be that both x and &x gave infinite order, we get that there is an
element a P A such that both a and its negation &a have finite order. If a ğ &a, since A is a chain,
a ă &a. Then &&a ď &a, and they both have finite order. □

Theorem 5.24. For a subvariety V of MTL the following are equivalent:

(1) V is passive structurally complete;
(2) V is a subvariety of sDL.

Proof. Since subvarieties of sDL have a Boolean retraction term (2) implies (1) by Corollary 5.19.
Suppose now that V Ę sDL. Then there is a chain A in V that is not perfect. By Lemma 5.23, there
exists a P A, a ě &a, an “ 0 for some n P N. Thus, &pa _ &aqn “ 1. But the identity &px _ &xqn “ 0
holds in Boolean algebras. Thus &px _ &xqn « 1 is trivializing in Boolean algebras but not in V. By
Corollary 5.19, V is not passive structurally complete and thus (1) implies (2). □

Notice that the previous theorem also implies that a variety of MTL-algebras that is not a subvariety
of sDL cannot be structurally complete.

We mention that structural completeness in subvarieties of MTL (or their logical counterparts) has
been studied by several authors: e.g., [76] and [49] for %Lukasiewicz logics, [36] Gödel logic, and [29] for
fuzzy logics in the MTL framework; in the latter the authors show for instance that all subvarieties
of pseudocomplemented MTL-algebras (SMTL) are passive structurally complete. This result is here
obtained as a consequence of Theorem 5.24, since SMTL is a subvariety of sDL. From the results
mentioned above and the characterzation theorem, it also follows that the only varieties of MV-algebras
(the equivalent algebraic semantics of infinite-valued %Lukasiewicz logic) that are structurally complete
are Boolean algebras and the variety generated by perfect MV-algebras (this result has been obtained
following a different path in [49]).

We also remark that a variety of FLew-algebras can be at most non-negative universally complete
since trivial algebras are finitely presented and not unifiable (unifiability is a necessary condition for
universal completeness by Theorem 3.4); by Proposition 4.20 this happens if and only if the variety
is active universally complete and passive structurally complete. Thus, for instance, a semisimple
variety of FLew-algebras satisfying the conditions in Corollary 5.19 would be non-negative universally
complete. We stress that this observation is not of particular interest in MTL-algebras, since the
only discriminator variety in sDL is the variety of Boolean algebras. Indeed, consider a chain A in a
discriminator variety V in sDL. Then there is some n P N such that V |ù x_ &xn « 1. Let now a P A;
either a has finite order, and then from a_ &an we obtain that a “ 1, or a has infinite order, and then
&a has finite order. So by the analogous reasoning &a “ 1. Therefore A is the two-element chain,
and V is the variety of Boolean algebras.

6. Conclusions

In Figure 8 we display several classes of varieties that we have considered in this paper (and the
labels should be self explanatory); we are dropping the hereditary subclasses to avoid clutter. Observe
that this is really a meet semilattice under inclusion.

Almost all the classes are provably distinct.

(1) The variety of bounded distributive lattice is structurally complete (Proposition 5.5) but it is
neither passive universally complete, since it is Kollár and the least free algebra is not trivial,
nor non-negative universally complete (Proposition 5.4). Hence S ‰ NNU,S ` PU .
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Figure 8. The universal and structural completeness classes.

(2) The variety of Boolean algebras is non-negative universally complete but not universally com-
plete (Example 3.18) so NNU ‰ U .

(3) Any locally finite variety of BL-algebras is active universally complete and some of them are
not non-negative universally complete (Example 3.24), so AU ‰ NNU .

(4) The variety in Example 4.19 is active structurally complete but not active universally complete,
hence AS ‰ AU .

(5) Any locally finite variety of bounded semidistributive lattices different from the distributive
variety is passive structurally complete (Corollary 5.12) but not structurally complete, since
the only structurally complete variety of bounded distributive lattices is the distributive variety
(Proposition 5.5); as above it is also not passive universally complete. Hence PS ‰ S, PU .

(6) The variety VpM`
3,3q (Section 5.1) is passive universally complete, as any variety of lattices,

but it is not structurally complete since QpM`
3,3q Ę VpM`

3,3q; hence PU ‰ S ` PU .
(7) Example 7.11 in [35] shows that AS ‰ S.

Moreover for the primitive counterparts:

(1) the variety VpFq generated by the Fano lattice is structurally complete and passive universally
complete but not primitive (Section 5.1).

(2) the variety of De Morgan lattices (Example 3.29) is active universally complete but not active
primitive universal.

(3) the variety of injective monounary algebras is active structurally complete but not active
primitive structural (Example 7.2 in [35]).

There are three examples that we were not able to find, which would guarantee total separation of
all the classes we have considered:

(1) A (quasi)variety that is structurally complete and passive universally complete, but not uni-
versally complete.

(2) A non-negative universally complete (quasi)variety such that not all subquasivarieties are non-
negative universally complete.

(3) A universally complete variety which is not primitive universal.

The natural example for (3) would be a locally finite variety with exact unifiers having a subvariety
without exact unifiers. However we are stuck because of lack of examples: we have only one unifiable
locally finite variety with exact (non projective) unifiers, i.e. the variety of distributive lattices, which
is trivially primitive universal. A similar situation happens for (2); all the examples of non-negative
universally complete varieties we have are either equationally complete and congruence distributive (so
they do not have nontrivial subquasivarieties), or else are active universally complete just by conse-
quence of their characterization (such as the subvarieties of FLew in Section 5.2). Then we have Stone
algebras that are not equationally complete but the only nontrivial subvariety is the variety of Boolean
algebras, that is non-negative universally complete. Now from Corollary 2.30 it is immediate that
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every subquasivariety of ST is non-negative universally complete. In conclusion a deeper investigation
of universally complete and non-negative universally complete varieties is needed.

For (1) the situation is (slightly) easier to tackle: any primitive variety of lattices that is not
universally complete gives a counterexample. While it seems impossible that all the primitive varieties
in Section 5.1.1 are universally complete, actually proving that one it is not does not seem easy. This
is due basically to the lack of information on free algebras in specific varieties of lattices, such as for
instance VpM3q; note that this variety is locally finite and hence all the finitely generated free algebras
are finite. But we are not aware of any characterization.
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[4] P. Aglianò and F. Montagna, Varieties of BL-algebras I: general properties, J. Pure Appl. Algebra 181 (2003),

105–129.
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