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ABSTRACT
Background Invasive non- typhoidal Salmonella (iNTS) 
disease is a significant health concern in sub- Saharan 
Africa. While our knowledge of a larger- scale variation 
is growing, understanding of the subnational variation in 
iNTS disease occurrence is lacking, yet crucial for targeted 
intervention.
Method We performed a systematic review of reported 
occurrences of iNTS disease in sub- Saharan Africa, 
consulting literature from PubMed, Embase and Web of 
Science published since 2000. Eligibility for inclusion 
was not limited by study type but required that studies 
reported original data on human iNTS diseases based on 
the culture of a normally sterile site, specifying subnational 
locations and the year, and were available as full- text 
articles. We excluded studies that diagnosed iNTS disease 
based on clinical indications, cultures from non- sterile 
sites or serological testing. We estimated the probability 
of occurrence of iNTS disease for sub- Saharan Africa on 
20 km × 20 km grids by exploring the association with 
geospatial covariates such as malaria, HIV, childhood 
growth failure, access to improved water, and sanitation 
using a boosted regression tree.
Results We identified 130 unique references reporting 
human iNTS disease in 21 countries published from 
2000 through 2020. The estimated probability of iNTS 
occurrence grids showed significant spatial heterogeneity 
at all levels (20 km × 20 km grids, subnational, country and 
subregional levels) and temporal heterogeneity by year. For 
2020, the probability of occurrence was higher in Middle 
Africa (0.34, 95% CI: 0.25 to 0.46), followed by Western 
Africa (0.33, 95% CI: 0.23 to 0.44), Eastern Africa (0.24, 
95% CI: 0.17 to 0.33) and Southern Africa (0.08, 95% CI: 
0.03 to 0.11). Temporal heterogeneity indicated that the 
probability of occurrence increased between 2000 and 
2020 in countries such as the Republic of the Congo (0.05 
to 0.59) and Democratic Republic of the Congo (0.10 to 
0.48) whereas it decreased in countries such as Uganda 
(0.65 to 0.23) or Zimbabwe (0.61 to 0.37).
Conclusion The iNTS disease occurrence varied greatly 
across sub- Saharan Africa, with certain regions being 
disproportionately affected. Exploring regions at high risk 

for iNTS disease, despite the limitations in our data, may 
inform focused resource allocation. This targeted approach 
may enhance efforts to combat iNTS disease in more 
affected areas.

INTRODUCTION
Non- typhoidal Salmonella (NTS) is a leading 
cause of invasive bacterial disease in sub- 
Saharan Africa (sSA). Invasive NTS (iNTS) 
disease was estimated to have caused 535 000 
cases and 77 500 deaths in 2017.1 More than 
three- quarters of these cases and deaths 
occurred in sSA, where the incidence rates 
were estimated at 44.8 per 100 000 person- 
years and case fatality was estimated at 
17.1%.2 3

The geographical predominance of iNTS 
disease in sSA can be partially explained by 
the prevalence of key host risk factors and 
the transmission of human- adapted NTS in 
the region.4 5 While NTS strains circulating 
in other settings typically cause self- limiting 
foodborne diarrhoeal disease, genetic 
adaptations observed in the African strains 

STRENGTHS AND LIMITATIONS OF THIS STUDY
 ⇒ We examined the geospatial and temporal distri-
bution of the probability of occurrence of invasive 
non- typhoidal Salmonella (iNTS) disease for sub- 
Saharan Africa on 20 km × 20 km grids.

 ⇒ Occurrence data points are few with cumulative 
occurrences from 2000 through 2020 only repre-
senting around 3% of the 20 km × 20 km grids of 
sub- Saharan Africa.

 ⇒ iNTS disease represents only a fraction of the trans-
mission of the pathogen and thus it is likely that the 
estimates of the occurrence of iNTS disease under-
estimate the transmission of the pathogen.
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resulted in increased invasive disease6 and possibly the 
establishment of a human reservoir.7 Impaired immu-
nity due to young age, recent or current Plasmodium falci-
parum malaria infection, anaemia, malnutrition and HIV 
infection renders the sSA population susceptible to iNTS 
disease, in particular among infants and children under 
the age of 5 years.4 In addition to these host risk factors, 
environmental risk factors for iNTS disease such as unim-
proved water sources contribute to the high incidence of 
iNTS disease in sSA.7

While existing studies provide estimates at the country, 
regional and global levels mainly based on the incidence 
rates from population- based surveillance studies,1 2 8 they 
fail to provide geospatial heterogeneity of iNTS disease at 
the subnational level, which is crucial for prioritising areas 
for targeted iNTS surveillance and control programmes. 
We aimed to characterise the geospatial variation in the 
probability of iNTS occurrence across sSA at a resolu-
tion of 20 km × 20 km using iNTS disease occurrences 
reported in the literature and geospatial data of host and 
environmental iNTS risk factors.

METHODS
iNTS occurrence data
We sought data on iNTS occurrence and incidence rates 
in the peer- reviewed literature available in PubMed, 
Embase and Web of Science published from 1 January 
2000 through 30 June 2021 in the English language. We 
designed the search strings to account for each database 
and varying usage of the terms, non- typhoidal Salmonella, 
and to restrict the topic to human infections in sSA while 
adapting to the syntax of different databases (online 
supplemental material S1). We conducted the review 
according to the Preferred Reporting Items for Systematic 
review and Meta- Analysis (PRISMA).9 We used Rayyan10 
for a collaborative review of the literature and collated 
the data in Google Sheets. The PRISMA flowchart shows 
an overview of the literature review process (figure 1).

Three authors (BT, FF and EP) reviewed the litera-
ture and collated the data with at least two indepen-
dent reviewers reviewing each article. Disagreements 
between the reviewers were resolved after discussion with 
the reviewers and the first author (J- HK). Studies were 

Figure 1 Preferred Reporting Items for Systematic review and Meta- Analysis flow diagram for the systematic review of 
geospatial distribution of invasive non- typhoidal Salmonella (iNTS) occurrence in sub- Saharan Africa, 2000–2020.
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eligible regardless of the study type (eg, outbreak inves-
tigation, population- based surveillance or case report) if 
they reported original findings of human iNTS disease 
defined as isolation of NTS from a normally sterile site 
(eg, blood, cerebrospinal fluid, bone marrow) in a patient 
with subnational location and year as a full- text article. 
Conference proceedings were excluded. We excluded 
studies that used clinical indication (ie, symptoms and 
signs), culture of a non- sterile site (eg, stool) or serology 
to classify an iNTS disease. We excluded studies that did 
not report iNTS separately from Salmonella typhi or Salmo-
nella paratyphi A, B or C. Abstracted variables include year, 
location, diagnostic method and the number of iNTS 
disease cases. If observations spanned multiple years, 
the year of occurrence for each iNTS disease case was 
selected uniformly at random among observation years, 
which leads to the same number of cases for each year on 
average.

Geo-positioning of iNTS occurrence
iNTS occurrence was defined as a 20 km × 20 km grid 
cell for which the spatial resolution was chosen by taking 
into account the feasibility of exploring subnational 
heterogeneity, computational cost and a previous study 
of a similar resolution.11 The position was defined as a 
grid cell to which the longitude and latitude of the area 
belong based on Google Maps (Alphabet, Mountain 
View, California, USA). If the record reported the subna-
tional area in which iNTS was reported was smaller than 
a grid cell, we assumed that the iNTS disease occurred 
in the grid cell. On the other hand, if the subnational 
administrative units included more than one grid cell, 
we assumed that iNTS disease could occur on any of the 
grid cells within the boundary and used the covariate 
value averaged over the grid cells that fall on the area. If 
the occurrence was reported in a hospital, the grid cell 
for occurrence was selected randomly assuming that 
the probability that the iNTS disease appeared at  d   km 
from the hospital is  de−kd  , where the rate of exponential 
decay  k   was chosen differentially according to the catch-
ment area of the hospital. The exponential decay of the 
probability was based on the idea that the frequency 
of visits to a hospital decreases with the distance, more 
generally known as distance decay, from the hospital 
following an exponential decay.12 We assumed that the 
catchment area was 20 km and 100 km for primary and 
secondary or tertiary hospitals, respectively (ie,  k   was 
0.05 and 0.01 for primary and secondary/tertiary hospi-
tals, respectively), which implies that 63% of the cases 
occurred within the boundary of 20 km and 100 km, 
respectively, and around 86% of the cases occurred 
within the boundary of 40 km and 200 km, respec-
tively. We conducted a sensitivity analysis by assuming 
an average distance of 50 km and 200 km for the iNTS 
occurrence location from the tertiary hospital (ie, 0.02 
or 0.005 for  k  ), respectively.

Geospatial covariates
Our study investigated factors that may affect the risk of 
iNTS disease across sSA, focusing on a variety of hosts13 
and environmental factors.7 We examined these factors at 
a detailed resolution of at least 20 km × 20 km across the 
continent. For host factors, we looked into the prevalence 
of HIV (as shown in online supplemental figure S1),14 
Plasmodium falciparum infection (online supplemental 
figure S2),15 and child growth failure, including under-
weight conditions (online supplemental figure S3).16 An 
association between these factors and iNTS disease has 
been observed in multiple sSA countries. For example, 
iNTS disease was more common in children with HIV 
in Kenya17 and adults in Malawi18 compared with HIV- 
uninfected persons. Similarly, children suffering from 
malnutrition in countries like Kenya,17 Mozambique,19 20 
Ghana21 and Tanzania22 showed higher instances of iNTS 
disease compared with children without malnutrition. 
An association between iNTS disease and malaria has 
been widely reported, including in studies from Malawi23 
and Tanzania.22 We also explored the impact of environ-
mental factors, access to improved water sources (online 
supplemental figure S4) and sanitation facilities (online 
supplemental figure S5),24 on iNTS disease. This set of 
covariates was similar to that used in modelling the global 
burden of iNTS disease.1

The HIV prevalence represented estimates of HIV prev-
alence among adults aged 15–45 years in sSA, annually 
from 2000 through 2017, based on the review of various 
surveys including AIDS Indicator Survey, Demographic 
and Health Survey, Multiple Indicator Cluster Survey, 
Population- based HIV Impact Assessment Survey and 
sentinel surveillance of women attending antenatal care 
clinics. The mean estimates were downloaded from the 
website of the Global Health Data Exchange (GHDx).25 
The P. falciparum parasite rate represents the proportion 
of children aged 2–10 years showing detectable P. falci-
parum parasite in a given year from 2000 through 2020 
and is estimated based on national surveys such as the 
Demographic and Health Survey data and the literature. 
The mean estimates were downloaded from the website 
for the Malaria Atlas Project.26 Childhood growth failure 
measured the proportion of children with height- for- age, 
weight- for- height and weight- for- age (expressed as 
stunting, wasting and underweight, respectively) z score 
that was more than two SDs below the WHO’s median 
growth reference standards for a healthy population. The 
mean estimates for 2000–2017 were downloaded from 
the GHDx.27 Access to improved drinking water sources 
and access to improved sanitation facilities represent the 
proportion of the population who have access to alter-
native levels of water and sanitation (eg, access to piped 
water or access to improved water) from 2000 to 2017. 
The mean estimates were downloaded from GHDx.28 
All covariates were available at the resolution of 5 km × 
5 km grids and were aggregated to 20 km × 20 km grids by 
computing the mean.
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We matched the year of data collection and the year for 
geospatial covariates as closely as possible. All covariates 
were available for each year from 2000 to 2017 and were 
matched to occurrences observed in the same year. For 
occurrences observed before 2000, we used the covari-
ates for the year 2000. For occurrences observed after 
2017, we used the covariates for 2017 for water, sanitation 
and childhood growth failure, as these covariates were 
only available up to 2017. However, we were able to use 
the covariates for malaria and HIV through 2020, so we 
matched the years between the occurrences and covari-
ates for those covariates. Additionally, we matched the 
location of the data collection and the covariates at 20 km 
× 20 km grids.

Probability of occurrence
In this analysis, the outcome is the probability of iNTS 
occurrence estimated on 20 km × 20 km grids, with each 
grid serving as the unit of analysis. This approach paral-
lels the classic logistic regression, where the log odds of an 
event’s probability (in this case, probability of iNTS occur-
rence) within a grid is modelled based on a set of poten-
tial risk factors (ie, predictors). These predictors, which 
are geospatial covariates mentioned previously, were 
also structured on 20 km × 20 km grids. However, a key 
distinction arises in how these predictors are combined. 
Unlike logistic regression, which employs a linear combi-
nation of predictors, this model does not assume a linear 
relationship between covariates and outcome variables 
and can characterise complex interactions by using 
the boosted regression tree (BRT) model.29 The BRT 
model integrates the strengths of regression trees, where 
the relationship between an outcome and predictors is 
modelled through recursive binary splits, and boosting, 
where many models are combined to improve predictive 
performance. The BRT framework could use background 
(or pseudo- absence) data as a substitute for true absence 
data. Background data30 represented random grid cells 
and were sampled such that the probability of being 
selected increased with decreasing travel time to the 
healthcare facilities based on the travel time to healthcare 
facilities31 (online supplemental figure S6). This choice 
of background sampling strategy may mitigate a poten-
tial bias in our data set that may over- represent occur-
rences in areas near healthcare facilities. In the BRT, each 
regression tree includes only explanatory covariates that 
improve predictions when added over the existing regres-
sion trees.

We measured the relative importance of a covariate 
as proposed in the previous study29 by measuring how 
often a variable is selected for splitting individual trees, 
weighted by the squared improvement to the model as a 
result of each split, and averaged over all trees.

We grouped the covariates into five categories: HIV, 
malaria, child growth failure, water and sanitation. Several 
variants (eg, access to improved water source vs access 
to piped water) were available for all categories except 
for HIV (online supplemental table S1). We chose one 

variable from each category that has the highest influence 
on the prediction of iNTS occurrence based on the rela-
tive importance of covariates from the model containing 
all covariates to improve interpretability considering that 
covariates in the same category often have high correla-
tion (eg, Plasmodium falciparum parasite prevalence and 
incidence rate has Pearson’s r of 0.95, see online supple-
mental table S1 for details).

Model fitting and validation
Key parameters in the BRT model include learning rate 
(LR), tree complexity (TC) and the number of trees. LR, 
also known as the shrinkage parameter, determines the 
contribution of each tree to the growing model. The TC 
controls whether interactions are fitted with a model with 
a TC of one fitting an additive model, and a TC of two 
fitting a model with up to two- way interactions, and so 
on.29 We determined the values of these two parameters 
(ie, LR of 0.05 and TC of 5) through a grid search in 
which the number of trees was optimised through 10- fold 
cross- validation for each set of TC and LR by taking the 
model performance and computation time into account. 
For example, we chose TC of 5 over TC of 10 by consid-
ering increasing the TC to 10 improved prediction by 2% 
but the computation time increased by a factor of two. 
In the 10- fold cross- validation, the dataset was randomly 
divided into 10 subsets and models were trained using 
9 subsets and were tested against the 10th subset. This 
process was repeated for each of the 10 subsets and the 
number of trees was optimised by minimising average 
prediction deviance. The set of hyperparameters with an 
optimised number of regression trees that produced the 
lowest deviance was selected as the final model. We identi-
fied the final model for each of the 400 different data sets.

The predictive capacity of the final model was evalu-
ated by calculating the receiver operating characteristic 
(ROC) curve and an area under the ROC curve (AUC).32 
The models were implemented in statistical software R 
(V.4.1.3). Raster images were processed for modelling 
using the raster package and the BRT model was imple-
mented using gbm and dismo packages. All figures were 
prepared using ggplot2 package. All the codes and data-
sets are available on GitHub.33

Summarising results
Because of the random nature of the occurrence data 
(eg, the location for the occurrence reported in the 
hospital was randomly assigned by the decay func-
tion), we created 20 occurrence data sets. For each of 
the occurrence data sets, we created 20 different back-
ground data sets. The probability of occurrence (mean, 
2.5th percentile and 97.5th percentile) was predicted by 
summarising these 400 BRT model simulations based 
on 400 different data sets for every 20 km × 20 km grid 
cell. The probability of occurrence was aggregated to the 
administrative units (eg, districts and provinces) as well 
as the 20 km × 20 km grid cells. The administrative unit 
areas were defined based on shapefiles from the Global 
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Administrative Areas website.34 We calculated annual 
estimates of the probability of occurrence for each year 
from 2000 to 2017, using the covariates specific to each 
year. Additionally, we produced forecasts for the years 

2018–2020. During this period, the malaria parasite rate 
was the only covariate that varied annually. The other 
four covariates were kept constant, using their values as 
observed in 2017.

Figure 2 Data of human invasive non- typhoidal Salmonella infection, sub- Saharan Africa, 2000–2020. (A) represents the 
number of reports by country and year of publication. (B) represents the number of reported cases by country and year of data 
collection. CAR, Central African Republic; DR Congo, Democratic Republic of the Congo.
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Patient and public involvement
This study does not involve any human participants.

RESULTS
We identified 131 unique articles reporting cases of 
human iNTS disease. Years of publication ranged from 
2000 through 2020 (figure 1) while the study years 
ranged from 1979 through 2020. The number of reports 
was heterogeneous across year and country with overall 
31 016 iNTS disease occurrences reported from 19 coun-
tries, and no report of iNTS disease occurrence in the 
remaining 26 countries of sSA, which does not necessarily 
mean the absence of occurrences (figure 2A). Of iNTS 
disease occurrence reports, 25 (19%) were from Kenya, 
25 (19%) from Malawi, 13 (10%) from Ghana, 10 (8%) 
from Tanzania and 58 (44%) from other African coun-
tries. Overall, 42 699 iNTS disease cases for which year 
and location were clearly identified were reported from 
2000 through 2020 with variation by year and country 

(figure 2B). Malawi was the most substantial contrib-
utor (n=19 075, 62%) followed by Kenya (n=3539, 11%), 
Mali (n=2215, 7%) and Mozambique (n=1947, 6%). A 
majority of studies (n=123, 94%) included blood culture 
for confirmation of iNTS and the next most common 
diagnostic methods were culture of cerebrospinal fluid 
culture (n=14, 11%) followed by culture of pleural 
(n=2, 2%) or peritoneal (n=1, <1%) fluids. Around 67% 
(n=88) of the iNTS disease occurrence reports were from 
tertiary hospitals while about 13% (n=17) came from the 
primary hospitals and 20% (n=26) of the reports clearly 
indicated the number of administrative units from which 
the patients came. These reports led to an average of 
5504 iNTS disease occurrences on 20 km × 20 km grids, 
representing around 3% of 180 490 grid cells comprising 
sSA. A majority of occurrences focused on the same set 
of countries (ie, Malawi, Kenya, Mali and Mozambique) 
that contributed most in terms of the number of cases 
(figure 3).

Figure 3 Invasive non- typhoidal Salmonella (iNTS) occurrence on 20 km × 20 km grids. (A) and (B) represent typical 
occurrences observed in 2010 and during the entire search period (2000–2020), respectively. Thick and thin lines indicate the 
borders of the administrative unit level 0 (ie, country) and the administrative unit level 1 (ie, province).
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Probability of iNTS occurrence
Of the 11 geospatial covariates that we explored, we 
selected five for the final model: P. falciparum incidence 
rate, access to improved water, access to piped sanitation, 
prevalence of HIV and prevalence of underweight (online 
supplemental table S1). The Pearson correlation coeffi-
cient (r) among those five covariates ranged from 0.08 
to 0.57. The BRT model predicted well the occurrence 
of iNTS with the ROC curve indicating an AUC score of 
around 0.9 (online supplemental figure S7). The esti-
mated probability of iNTS occurrence on 20 km × 20 km 
grids for 2017 showed significant spatial heterogeneity 
(figure 4A–C). The probability of occurrence of iNTS 
aggregated at the subregional level was highest in Middle 
Africa (0.34, 95% CI: 0.25 to 0.46) followed by Western 
Africa (0.33, 95% CI: 0.23 to 0.44), Eastern Africa (0.24, 
95% CI: 0.17 to 0.33) and Southern Africa (0.08, 95% CI: 
0.03 to 0.11) while high- risk grid cells appear to be scat-
tered across the continent. Aggregated at the country 
level, the probability of occurrence was highest in Malawi 
and lowest in Niger (online supplemental table S2). The 
probability of occurrence averaged across administrative 

unit level 1 (ie, province) showed similar geospatial vari-
ations (figure 4D).

Contribution of covariates
Geospatial covariates showed varying contributions with 
underweight having the highest contribution (27.2% 
(95% CI: 26.2% to 28.1%)) followed by HIV (23.8% 
(95% CI: 23.1% to 24.5%)), malaria (20.1% (95% CI: 
18.4% to 21.6%)), sanitation (18.7% (95% CI: 17.6% 
to 20.3%)) and drinking water (10.2% (95% CI: 9.6% 
to 11.0%)) (figure 5A). The relationship between the 
probability of iNTS disease occurrence and the covariate 
proved to be complex (figure 5B). The overall relation-
ship between the probability of occurrence and the risk 
factors such as P. falciparum incidence rate, HIV preva-
lence and underweight prevalence appeared to have a 
positive relationship.

Temporal heterogeneity of the probability of occurrence
The spatial distribution of the probability of occurrence 
varied by year. For 2000, the probability of occurrence 
was predicted to be highest around Malawi with the 
country- aggregated value being 0.88 (95% CI: 0.77 to 

Figure 4 Estimated probability of invasive non- typhoidal Salmonella disease occurrence, sub- Saharan Africa, 2017. Thick and 
thin lines indicate the borders of the country and province, respectively. (A), (B) and (C) show mean, 2.5th and 97.5th values on 
20 km × 20 km grids. (D) shows the median values aggregated at the administrative unit level 1 (ie, province or districts).
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0.94). The next was Mozambique (0.77; 95% CI: 0.62 to 
0.87) followed by Uganda (0.65; 95% CI: 0.43 to 0.82) and 
Zimbabwe (0.62; 95% CI: 0.35 to 0.83) (figure 6A,D). In 
2010, Mozambique (0.67; 95% CI: 0.47 to 0.83) had the 
highest probability of occurrence. Countries in Western 
Africa such as Ghana (0.64; 95% CI: 0.43 to 0.81), Guinea 
(0.56; 95% CI: 0.34 to 0.75), Guinea- Bissau (0.52; 95% CI: 
0.33 to 0.71) and Liberia (0.49; 95% CI: 0.29 to 0.71) had 
a high probability of occurrence, with the largest increase 
between 2000 and 2010 observed in Liberia (0.07 vs 
0.49) (figure 6A, B and D). From 2000 through 2020, 

the probability of occurrence aggregated at the country 
level increased most in the Republic of the Congo (0.05 
vs 0.59) while decreased most in Uganda (0.65 vs 0.23) 
(figure 6C,D).

DISCUSSION
We examined the geospatial and temporal distribution of 
the probability of occurrence of iNTS for sSA on 20 km 
× 20 km grids using the data collated from an extensive 
literature review and high- resolution geospatial covariates 

Figure 5 Impact of covariates on the probability of occurrence. Results are based on 400 simulation runs. (A) represents the 
relative importance of covariates on the probability of occurrence. Bar plots and error bars indicate the mean with 95% CIs. 
(B) represents the probability of occurrence in response to variables. The units for sanitation, water and HIV prevalence are 
expressed as percentages, ranging from 0% to 100%. In contrast, Plasmodium falciparum (Pf) incidence and underweight 
prevalence are measured as proportions, with values ranging from 0 to 1. Smoothed line (blue) and 95% CI (red) bands were 
based on LOESS (LOcally Estimated Scatterplot Smoothing).
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representing potential risk factors for iNTS disease. The 
estimated probability of iNTS disease occurrence showed 
substantial geospatial heterogeneity on 20 km × 20 km grid 
cells, subnational and national levels, and also temporal 
variation when measured by year. In 2017, the year for 
which most recent estimates for the modelled covariates 
were available, the estimated probability of occurrence 
was higher in Middle Africa and Western Africa and lower 
in Eastern Africa and Southern Africa.

Our study is the first to characterise the probability 
of its iNTS occurrence at the sub- national levels. While 
predicted incidence rates at the national level are avail-
able,1 these predictions were based on a small number 
of surveillance studies. Having a means to identify sub- 
national high- risk areas using occurrence data as well as 
surveillance data is an important addition to the existing 
knowledge of iNTS epidemiology. The findings may be 
useful for designing effective and efficient intervention 

Figure 6 Probability of occurrence at the 20 km × 20 km grid level and averaged across the country level. (A), (B) and 
(C) represent the mean probability of occurrence for 2000, 2010 and 2020, respectively. (D) represents the values aggregated 
at the country level for 2000–2020. CAR, Central African Republic; DR Congo, Democratic Republic of the Congo; Congo, 
Republic of the Congo.
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programmes. Candidate vaccines for iNTS are under active 
development35 and deployment strategies are critical for 
successful intervention and high return on investment. 
The current study may help identify areas of potential 
high burden and target for vaccination. Geospatial vari-
ation may vary over time (online supplemental figure S8 
and table S3) and it will be necessary to keep updating 
the estimates using more recent information. In a similar 
vein, our study may help identify areas lacking data for 
improved surveillance. While surveillance studies provide 
the most reliable disease occurrence and incidence data, 
they are resource- intensive, and it is important to conduct 
surveillance in the areas that could provide the most valu-
able information such as the Middle Africa (eg, Demo-
cratic Republic of the Congo and the Republic of the 
Congo) in which the occurrence data are scarce while the 
probability of occurrence was high for years since round 
2016 (figure 6D, online supplemental figure S8 and table 
S4).

Our modelling analyses indicate that geospatial esti-
mates of the host risk factors such as infection with HIV, 
malaria or underweight are useful for predicting the 
geospatial distribution of iNTS occurrence while water 
and sanitation status may also have some smaller predic-
tive capacity. In this regard, developing a risk index of 
iNTS based on a similar set of variables to what we have 
used has been attempted for nine sub- Saharan countries.36

Our study had several limitations. First, the data 
points were few, and especially we lacked data on the 
absence of iNTS disease. While occurrence data points 
greatly expanded those available from population- 
based incidence studies, cumulative occurrences from 
2000 through 2020 only represented around 3% of the 
20 km × 20 km grids of sSA. A limited number of coun-
tries, primarily Malawi, contributed the majority of the 
data, with some countries reporting none or few cases, 
potentially contributing to bias. Nonetheless, our model 
demonstrates high accuracy, indicated by an ROC curve 
area of 0.91 (online supplemental figure S7). The predic-
tions (figure 4) show areas with high iNTS disease prob-
ability, such as the northern Central African Republic, 
western Zambia and Cameroon, despite having little 
or no reported cases. Second, the reported location of 
iNTS disease occurrence was restricted to hospital- level 
or high- level administrative units and does not accurately 
reflect the location of NTS transmission. Hence, the esti-
mated probability of occurrence might not reflect the 
true probability of iNTS pathogen transmission. Our 
approach was to assign a catchment area to the hospital 
and assume that occurrence could happen on any of the 
grid cells according to a decay function representing a 
decreasing probability of visits with increasing distance 
from the hospital. This resulted in a data set that reflected 
more frequent occurrences in areas close to the hospital 
than in areas far away. To mitigate this potential bias, 
we selected background points biased towards shorter 
distances to healthcare facilities. While occurrences 
were randomly located based on the exponential decay 

function, the geospatial and temporal patterns appeared 
to be robust against different parameterisations for the 
decay function (online supplemental figure S9). In addi-
tion, iNTS disease represented only a fraction of trans-
mission of the pathogen37 and thus it is likely that the 
estimates based on the disease will underestimate the 
true transmission of the pathogen. Third, the frequency 
of occurrence is likely to be influenced by the frequency 
of publication in that occurrence is only possible when 
they are reported in the peer- reviewed journal. There-
fore, areas in which iNTS was not studied or reported for 
any reason were under- represented. Therefore, studies 
such as population- based surveillance will need to verify 
the inferred probability of occurrence. Fourth, although 
the BRT is a machine learning method known for its 
effective predictive capabilities, interpreting the associ-
ation between explanatory covariates and the outcome, 
probability of occurrence of iNTS disease, remains chal-
lenging, as illustrated in figure 5B. However, the findings 
on the variables are generally consistent with our knowl-
edge on the risk factors for iNTS disease and we could still 
combine the knowledge on the probability of occurrence 
and the potential risk factors to prioritise our resources 
for more effective control of disease.

Conclusion
Our analysis suggests that the occurrence of iNTS disease 
varies greatly across sSA, with certain regions being 
disproportionately affected. This geospatial heteroge-
neity is crucial to understand to effectively combat the 
iNTS disease. By identifying areas with a high probability 
of occurrence, targeted surveillance can be conducted to 
better understand the incidence and the drivers of the 
disease in those regions. This information can then be 
used to develop intervention programmes to prevent the 
spread of iNTS. Ultimately, a deeper understanding of 
the geographical distribution of iNTS can help to reduce 
its impact and improve public health outcomes in sSA.
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