
Available online at www.sciencedirect.com
ScienceDirect

Fuzzy Sets and Systems 465 (2023) 108514
www.elsevier.com/locate/fss

Quasivarieties of Wajsberg hoops

Paolo Aglianò

DIISM, Università di Siena, Italy

Received 9 November 2022; received in revised form 25 March 2023; accepted 29 March 2023
Available online 11 April 2023

Abstract

In this paper we deal with quasivarieties of residuated structures which form the equivalent algebraic semantics of a positive frag-
ment of some substructural logic. Our focus is mainly on varieties and quasivarieties of Wajsberg hoops, which are the equivalent 
algebraic semantics of the positive fragment of Łukasiewicz many-valued logic. In particular we study the lattice of subquasivari-
eties of Wajsberg hoops and we describe completely all the subvarieties of Wajsberg hoops that are primitive. Though the treatment 
is mostly algebraic in nature, there are obvious connections with the underlying logics.
© 2023 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

With the birth of Abstract Algebraic Logic, which can be traced back to the seminal monograph by W. Blok and 
D. Pigozzi [17], the connections between a logic (and its extensions) and its class of algebraic models have become 
a fact of life and a continuing source of inspiration. In fact, formulating such a deep, but somewhat transparent and 
user-friendly connection has enabled the discovery of many bridge theorems between the two fields. Loosely speaking 
formulating a bridge theorem consists in stating a “logical” result in a totally algebraic fashion (or viceversa). This 
implies that certain logical concepts can be studied and investigated using the machinery of general algebra; even 
more, some logical concepts, when translated into algebra, can acquire a life on their own and be investigated per se
independently of their logical origin.

The main topic of this paper is an example; a logic L is structurally complete if every admissible rule of L is 
derivable in L. Classical logic is structurally complete but intuitionistic logic is not: a famous example is Harrop’s 
rule

{¬p → (q ∨ r)} ⇒ {(¬p → q) ∨ (¬p → r)}
which is admissible but not derivable. A logic L is hereditary structurally complete if L and all its extensions are 
structurally complete. The first to realize that these two concepts have an interesting algebraic counterpart (even be-
fore the Blok-Pigozzi connection was established) was C. Bergman [13]. The Blok-Pigozzi algebraization machinery 
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associates to a logic with enough structure (an algebraizable logic) a quasivariety of algebras, called its equivalent 
algebraic semantics. The following can be proved in a very standard way:

Theorem 1.1. Let L be a logic and Q its equivalent algebraic semantics; then

1. L is structurally complete if and only if no proper subquasivariety of Q can generate the same variety as Q;
2. L is hereditary structurally complete if and only if every subquasivariety of Q is equational relative to Q (i.e. is 

axiomatized relative to Q by a set of equations).

In this paper we investigate the algebraic properties suggested by the above theorem in quasivarieties of Wajsberg 
hoops. Hoops are residuated monoids, introduced in an unpublished manuscript by Büchi and Owens, grounded on 
the work of Bosbach on partially ordered monoids [19]. Hoops are commutative semilattice ordered monoids and 
are in fact residuated; the monoidal operation · has a residuum → which makes the underlying ordering the inverse 
divisibility ordering (i.e. a ≤ b if and only if there is a c with a = bc. Hoops have been first studied systematically by 
I.M.A. Ferreirim in her PhD thesis [27] and later in [16].

Wajsberg hoops are hoops that satisfy Tanaka’s equation

(x → y) → y ≈ (y → x) → x

and play a very important role in mathematical fuzzy logic. The connection between hoops and many-valued logic 
has been first investigated in [7]; however the real impact of Wajsberg hoops was made clear in [8]. In that paper 
it was shown that one cannot really understand BL-algebras, i.e. the equivalent algebraic semantics of Hájek Basic 
Logic, without understanding Wajsberg hoops; this happens because every subdirectly irreducible BL-algebra can be 
constructed as an ordinal sum of a Wajsberg algebra and Wajsberg hoops.

Wajsberg hoops are also connected with �-groups: the totally ordered Wajsberg hoops generate the variety of 
Wajsberg hoops and they are either isomorphic to negative cones of an abelian �-group or intervals in abelian �-groups 
[9]. In terms that are perhaps more familiar to the reader versed in many-valued logic, totally ordered Wajsberg hoops 
are either cancellative hoops (hoops in which the underlying monoid is cancellative), or (term equivalent to) MV-
algebras, whose representation in terms of intervals of abelian �- groups with strong unit is actually a categorical 
equivalence via the Mundici’s functor [42]. From the logical point of view Wajsberg hoops are (term equivalent to) 
zero-free subreducts of MV-algebras, the equivalent algebraic semantics of Łukasiewicz many-valued logic; in fact 
they are the equivalent algebraic semantics of the positive fragment of that logic.

Since in this paper we use (sometimes sophisticated) techniques in general algebra, in order to make it understand-
able to a wider audience we felt it necessary to provide a reasonably thorough introduction to the algebraic properties 
of varieties and quasivarieties, as well as the main algebraic results that are needed. Some of these results are al-
ready known but we wanted to present them in a form that we could use in the remainder of the paper. We do this 
in Sections 2, 3 and 4. In Section 5 we investigate that lattice of subquasivarieties of Wajsberg hoops with special 
attention to quasivarieties generated by chains. In Section 6 we tackle the problem of characterizing the primitive and 
structurally complete subvarieties and subquasivarieties of Wajsberg hoops. In Section 7 we look at subquasivarieties 
not generated by chains and we try to highlight the complexity of the lattice of subquasivarieties. Finally in Section 8
we investigate the connections (or the lack thereof) between the lattice of subquasivarieties of Wajsberg hoops and the 
lattice of subquasivarieties of MV-algebras.

2. Quasivarieties

For general results in universal algebras, as well as for all the unexplained basic notions, we refer the reader to 
[20] or [41]; we will be constantly using the class operators I, H, S, P, Pu that, applied to a class K of algebras, give 
the class of isomorphic images, homomorphic images, subalgebras, direct products and ultraproducts of (families of) 
algebras in K. A class of algebras is a variety if it is closed under H, S and P; if V = HSP, then V(K) is a variety 
and it is the smallest variety containing all algebras in K. The subvarieties of a variety V form a complete lattice under 
inclusion, that we denote by �(V).

There are two fundamental results that we will be using many times and deserve a spotlight. Let (Ai)i∈I be a 
family of algebras; we say that B embeds in 

∏
i∈I Ai if B ∈ IS(

∏
i∈I Ai ). Let pi be the i-th projection (better the 
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composition of the isomorphism and the i-th projection) from B to Ai ; the embedding is subdirect if for all i ∈ I , 
pi(B) = Ai and in this case we will write

B ≤sd

∏
i∈I

Ai .

An algebra B is subdirectly irreducible if it is nontrivial and for any subdirect embedding

B ≤sd

∏
i∈I

Ai

there is an i ∈ I such that B and Ai are isomorphic under pi If V is a variety we denote by si(V) the class of subdirectly 
irreducible algebras in V.

Theorem 2.1. (Birkhoff [15]) Every algebra can be subdirectly embedded in a product of subdirectly irreducible 
algebras. So if A ∈ V, then A can be subdirectly embedded in a product of members of si(V).

A variety V is congruence distributive if the congruence lattices of all algebras in V are distributive.

Theorem 2.2. (Jónsson’s Lemma [36]) Suppose that K is a class of algebras such that V(K) is congruence distributive. 
Then

1. si(V) ⊆ HSPu(K);
2. if V1, . . . , Vn are subvarieties of V, then

si(V1 ∨ · · · ∨ Vn) = si(V1) ∪ · · · ∪ si(Vn)

where the join is taken in the lattice of subvarieties of V.

A quasivariety is a class of algebras defined by a set of quasiidentities; a quasiidentity is an implication whose 
premise is a finite join of equations and whose conclusion is a single equation. Given a class K of algebras the
quasiequational theory of K, denoted by Thq(K) is the set of quasiidentities holding in all algebras in K; given a set 
� of quasiidentities Mod(�) is the class of algebras in which every quasiidentity in � holds. A.I. Mal’cev showed 
first that for any class K of algebras Mod(Thq(K)) is a quasivariety and

ISPPu(K) = Mod(Thq(K)).

Therefore, if K is a class of algebras, then Q(K) = ISPPu(K) is the quasivariety generated by K. While in the western 
world doing general algebra mostly meant dealing with varieties of algebras, quasivarieties were vigorously pursued 
in Russia, under the impulse of A.I. Mal’cev. An extensive account of the results of the Russian school can be found 
in [34].

If Q is a quasivariety and A ∈ Q, a relative congruence of A is a congruence θ such that A/θ ∈ Q; relative 
congruences form an algebraic lattice ConQ(A) and for any congruence lattice property P we say that A ∈ Q is
relatively P if ConQ(A) satisfies P . So for instance A is relatively subdirectly irreducible if ConQ(A) has a unique 
minimal element; since clearly ConQ(A) is a meet subsemilattice of Con(A), any subdirectly irreducible algebra is 
relatively subdirectly irreducible for any quasivariety to which it belongs. For a quasivariety Q we denote by Qrsi the 
class of relatively subdirectly irreducible algebras in Q.

We have the equivalent of Birkhoff’s and Jónsson’s results for quasivarieties:

Theorem 2.3. Let Q be any quasivariety.

1. (Mal’cev [39]) Every A ∈ Q is a subdirectly embeddable in a product of algebras in Qrsi .
2. (Czelakowski-Dziobiak [24]) If Q = Q(K), then Qrsi ⊆ ISPu(K).

The class of all subquasivarieties of a given quasivariety V is a lattice under inclusion, called the lattice of sub-
quasivarieties of Q and denoted by �q(Q) Lattices of subquasivarieties are in general very complex. A quasivariety 
3
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Q is Q-universal [45] if for any other quasivariety Q′ of finite type, �q(Q′) is a homomorphic image of a sublattice 
of �q(Q).

Lemma 2.4. For every Q-universal quasivariety Q

• the free lattice on ω generators is embeddable in �q(Q);
• |�q(Q)| = 2ℵ0 .

So the lattice of subquasivarieties of a Q-universal quasivariety is horribly complex and unfortunately Q-universal 
quasivarieties are ubiquitous. First clearly Q-universality is upward hereditary: if Q is Q-universal and Q ⊆ Q′, then Q′
is universal as well. Second in [1] the authors gave a sufficient condition for a quasivariety to be Q-universal, condition 
that is satisfied in many cases. Here is a dumbed-down version of the condition that works well in our case (see [1], 
Corollary 3.4).

Lemma 2.5. Let Q be a quasivariety such that V(Q) is congruence distributive and has the congruence extension 
property. If Q contains and infinite family of simple algebras, such that none is embeddable in any other, then Q is 
Q-universal.

A quasivariety Q is locally finite if every finitely generated algebra in Q is finite, and it is finitely generated if it is 
generated by finitely many finite algebras. The following facts are easy to check:

• for any quasivariety Q, H(Q) = V(Q);
• Q is locally finite if and only if V(Q) is such;
• for any quasivariety Q and any subquasivariety Q′ of Q, V(Q′) is the smallest variety V such that Q′ ⊆ V ∩ Q.

3. Structurally complete and primitive quasivarieties

Because of the results in [17], one may argue that quasivarieties represent the real algebraic counterparts of logics 
understood as consequence relations (as opposed to varieties, that are counterparts of logics viewed as a set of theo-
rems). In fact there are some interesting algebraic properties of quasivarieties that have been considered only because 
of their connection with logic: to a logic with certain characteristics one can associate a quasivariety of algebras called 
to equivalent algebraic semantics. Conversely, given a quasivariety Q with certain algebraic properties one can find a 
logic such that Q is its equivalent. The procedure is algorithmic and it allows to pass definitions from one side to the 
other. However, once a logical property is transformed into an algebraic one, than it can be applied to any quasivariety 
of algebras, irregardless of its “logicizability”. The properties we are introducing in this section have both a logical 
origin that has been discussed in Section 1; more information can be found in [13].

A quasivariety Q is structurally complete if all its proper subquasivarieties generate proper subvarieties of H(Q); 
we have the following characterization.

Theorem 3.1. [21] For a quasivariety Q the following are equivalent:

1. Q is structurally complete;
2. for all quasivarieties Q′ ⊆ Q if H(Q′) = H(Q), then Q = Q′;
3. for all A ∈ Q if V(A) = H(Q), then Q(A) = Q;
4. Q = Q(FQ(ω)).

Proof. That (1) and (2) are equivalent is obvious. If (2) holds, and V(A) = H(Q(A)) = H(Q), then Q(A) = Q and (3) 
trivially implies (4). Finally assume(4) and let Q′ ⊆ Q such that H(Q′) = H(Q). Then FQ′(ω) = FQ(ω) and thus

Q = Q(FQ(ω)) = Q(FQ′(ω)) ⊆ Q′.

Thus Q = Q′ and (2) holds. �

4
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For any quasivariety Q, we define the least Q-quasivariety as the smallest Q′ ⊆ Q such that H(Q) = H(Q′). This 
concept has been introduced by J. Gispert in [32] for MV-algebras and it is very useful since:

Corollary 3.2. For any quasivariety Q, Q(FQ(ω)) is structurally complete and moreover it is the least Q-quasivariety.

It follows at once that a quasivariety Q is structurally complete if and only if it coincides with its least Q-
quasivariety. As a consequence the structurally complete subvarieties of a quasivariety Q are exactly those that are the 
least Q′-quasivarieties for some Q′ ⊆ Q; even more, since H(Q) is a variety, the structurally complete subquasivari-
eties of a variety V are exactly the least V′-quasivarieties for some subvariety V′ of V. This is not as good as it seems; 
in general describing the least V-quasivariety is not an easy task, since it requires knowledge of the free countably 
generated algebra in V.

To get more information we need some definitions: let A be an algebra and K a class of algebras of the same type 
as A. We say that

• A is projective in K if for all B ∈ K if f : B −→ A is a surjective epimorphism, then there is an embedding 
g : A −→ B with gf = idA;

• A is weakly projective in K if for all B ∈ K if A ∈ H(B), then A ∈ S(B).

It is clear that if A is projective in K, then A is weakly projective in K. An algebra A is finitely presented in Q if it is 
nontrivial and can be defined by a finite set of generators and relations in Q. This means that there is a finite set X and 
a compact congruence θ of FQ(X) such that FQ(X)/θ ∼= A.

Lemma 3.3. Let Q be a quasivariety and let K ⊆ Q such that every A ∈ K is weakly projective in Q(K). Then Q(K) is 
structurally complete.

Proof. Let Q ⊆ Q(K) with H(Q) = H(Q(K)); then for any A ∈ K there exists a B ∈ Q with A ∈ H(B). As A is weakly 
projective in Q, A ∈ S(B) and so A ∈ Q. This implies Q = Q(K) and so Q(K) is structurally complete. �

It is well-known (and a standard exercise in many books) that every algebra is embeddable in an ultraproduct 
of its finitely generated subalgebras; it is less known but still true ([34], Proposition 2.1.18) that any quasivariety 
Q is generated by its finitely presented algebras. Since any quasivariety is also generated by its relative subdirectly 
irreducible algebras we have

Corollary 3.4. Let Q be a quasivariety; if either

1. every finitely generated algebra in Q is weakly projective, or
2. every finitely presented algebra in Q is weakly projective, or
3. every finitely generated relative subdirectly irreducible in Q is weakly projective,

then Q is structurally complete.

Clearly (1) implies both (2) and (3); however none of these conditions is necessary and to get a necessary one we 
have to consider a smaller class of quasivarieties. We say that a class K of algebras is tame if every finitely generated 
algebra in K is finitely presented. Note that the concept has content: any class K of algebras of finite type which 
is locally finite in the usual sense (i.e. every finitely generated algebra in K is finite) is tame since in that case finite, 
finitely generated and finitely presented coincide. Tame classes of algebras have been studied mainly in groups (better, 
in algebras in which groups are interpretable): for instance any nilpotent class of groups is tame, so abelian groups are 
tame (and it is an example of a tame non locally finite variety).

If A ∈ Q we define

[Q : A] = {B ∈ Q : A /∈ IS(B)}.
It is also folklore that if A is finitely presented, then there is a first order formula (that in many cases can be made 
explicit) � such that for any B, A ∈ S(B) if and only if B � �.
5
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Lemma 3.5. Let Q be any quasivariety.

1. If A ∈ Q is finitely presented, then [Q : A] is closed under ISPu (i.e. it is a universal class);
2. if A is also relatively subdirectly irreducible in Q, then [Q : A] is a quasivariety;
3. if A is finitely presented and relatively subdirectly irreducible in Q, then A is weakly projective in Q if and only if 

[Q : A] is a variety.

Proof. Let’s prove (1) Consider B ∈ ISPu([Q : A]); if A ∈ IS(B), then A ∈ ISPu([Q : A]). Hence there exists a family 
(Ai )i∈I ⊆ [Q : A] and an ultrafilter U on I such that C = �i∈I A/U and A ∈ IS(C). So, if � is the first order formula 
mentioned above, C ��; but then by Łòs Lemma � must be valid in each Ai (i ∈ J for some J ∈ U ), which is clearly 
a contradiction, since Ai ∈ [Q : A]. So A /∈ IS(B) and B ∈ [Q : A].

For (2) we proceed as in (1) using ISPPu up to the point in which A ∈ ISPPu(C); but since in this case A is 
relatively subdirectly irreducible, really A ∈ ISPu(C) and the previous argument applies.

For (3) we observe that [Q : A] is a quasivariety by (2). First suppose that A is weakly projective in Q; let B ∈ [Q : A]
and let f : B −→ C be en epimorphism. If A ∈ S(C) we let D = f −1(C; then D ≤ B so that D ∈ [Q : A] and moreover 
A ∈ H(D). Since A is weakly projective, A ∈ S(D), a contradiction. Therefore A /∈ S(C) and C ∈ [Q : A].

Conversely suppose that A is not weakly projective in Q; then there is a B ∈ Q with A ∈ H(B) and A /∈ S(B). It 
follows that B ∈ [Q : A] but H(B) � [Q : A]. Therefore [Q : A] is not a variety and (3) holds. �

A subquasivariety Q′ of Q is equational relative to Q if Q′ = H(Q′) ∩ Q; a quasivariety Q is primitive if every 
subquasivariety of Q is equational relative to Q. Clearly primitivity is downward hereditary and a variety V is primitive 
if and only if every subquasivariety of V is a variety. The following is a straightforward exercise:

Lemma 3.6. For a quasivariety Q the following are equivalent:

1. Q is primitive;
2. every subquasivariety of Q is structurally complete (i.e. Q is hereditarily structurally complete).

A more interesting fact is:

Lemma 3.7. Let Q be a quasivariety and A ∈ Q; then A is weakly projective in Q if and only if [Q : A] is equational 
relative to Q.

Proof. Suppose that A is weakly projective in Q; we have to show that

[Q : A] = V([Q : A]) ∩ Q.

So take B in Q such that there is a C ∈ [Q : A] with B ∈ H(C) (here we are using the hypothesis that [Q : A] is a 
quasivariety). If B /∈ [Q : A] then A ∈ S(B); therefore A ∈ SH(C) ⊆ HS(C). This means that there is a subalgebra D
of C with A ∈ H(D); since A is weakly projective A ∈ S(D) ⊆ S(C), a clear contradiction. So B ∈ [Q : A] and [Q : A]
is equational relative to Q.

Conversely assume that [Q : A] is equational relative to Q and let B ∈ Q with A ∈ H(B). If A /∈ S(B), then B ∈ [Q :
A] and since [Q : A] is equational we must have A ∈ [Q : A] a contradiction. So A ∈ S(B) and A is weakly projective 
in Q. �

The following result was obtained for varieties of lattices by Slavik [46] (but his proof works for any variety of 
algebras) and later generalized to quasivarieties by Gorbunov [34].

Theorem 3.8. Let Q be a quasivariety of finite type. Then (1) implies (2) which is equivalent to (3); if Q is also tame, 
then they are all equivalent:

1. Q is primitive;
2. for every finitely presented relative subdirectly irreducible algebra in A ∈ Q, [Q : A] is equational relative to Q;
6
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3. every finitely presented relative subdirectly irreducible algebra in Q is weakly projective in Q.

Proof. (2) and (3) are equivalent by Lemma 3.7. Hence assume (1); if A ∈ Qrsi is finitely presented, then [Q : A] is a 
subquasivariety of Q and by (1) is equational relative to Q, hence (2) holds.

Conversely assume (3), let Q be tame and let Q′ ⊆ Q; we have to show that Q′ = V(Q′) ∩ Q. Suppose that

A ∈ (V(Q′) ∩ Q) \ Q′;
then A is a subdirect product of a family (Ai)i∈I of finitely presented algebras in Qrsi . Clearly each Ai ∈ Q; moreover 
A ∈ H(B) for some B ∈ Q′ and since Ai ∈ H(A) for all i, it follows by (3) that Ai ∈ S(B) ∈ Q′. Therefore A ∈ Q′, a 
clear contradiction, so Q′ is equational relative to Q and Q is weakly projective. �

We have a necessary and sufficient condition if Q is tame.

Theorem 3.9. If Q is a tame quasivariety, then the following are equivalent.

1. Q is primitive;
2. if A is relative subdirectly irreducible, then [Q : A] is a variety;
3. every relative subdirectly irreducible finitely presented algebra A ∈ Q is weakly projective in Q;
4. every relative subdirectly irreducible finitely presented algebra A ∈ Q is weakly projective in the class of finitely 

presented algebras in Q.

Again this has been proved by V. Slavik for locally finite varieties of lattices [46] and extended to locally finite 
quasivarieties of algebras by Gorbunov ([34], Proposition 5.1.24); tameness is more general than local finiteness and 
the same proofs go through with trivial modifications.

Most results in the literature are about structurally complete and primitive varieties of algebras and the reason is 
quite obvious; first the two concepts are easier to formulate for varieties. In fact a variety is structurally complete if 
and only if every proper subquasivariety generates a proper subvariety and it is primitive if and only if every sub-
quasivariety is a variety. Secondly being subdirectly irreducible is an absolute concept (every subdirectly irreducible 
algebra is relative subdirectly irreducible in any quasivariety to which it belongs) while being relative subdirectly 
irreducible depends essentially on the subquasivariety we are considering. Of course when a quasivariety is generated 
by a “simple” class (e.g. by finitely many finite algebras), then Theorem 2.3(2) gives a simple solution; but in general 
describing the relative subdirectly irreducible algebras in a quasivariety is not an easy task.

Let’s say that a (quasi)variety is structurally precomplete if all its proper sub(quasi)varieties are structurally 
complete; it is obvious that a structurally precomplete quasivariety is primitive if and only if it is structurally complete. 
A little less obvious but very useful is:

Lemma 3.10. Let V be a structurally precomplete variety; then V is primitive if and only if it is structurally complete.

Proof. One direction is obvious. Let then Q be a proper subvariety of V; since V is structurally complete, then Q must 
generate a proper subvariety of V. This means that there is a proper subvariety V′ of V such that H(Q) = V′; but V′ is 
structurally complete, hence Q = V′ (Theorem 3.1). So Q is a variety and V is primitive. �
Remark 3.11. A variety is minimal if it does not have any proper nontrivial subvarieties; so a minimal variety is 
primitive if it has no proper subquasivarieties. In [14] it is shown that a locally finite minimal variety is primitive 
if and only if it has exactly one subdirectly irreducible algebra that is embeddable in any nontrivial member of the 
variety. Moreover this is always the case if the variety is congruence modular. Recently this result has been extended 
in two directions in [22]: the author showed that every minimal dual discriminator variety is primitive and, if the 
variety is also idempotent, then minimality can be dropped.

Remark 3.12. If L is a finite projective subdirectly irreducible lattice, then V(L) is primitive (this is obvious by 
Jónnson’s Lemma) so for instance V(2) and V(N5) are primitive. By [43] every finite semidistributive lattice satisfying 
the Whitman condition (W) is projective, so all the (finite sets of) subdirectly irreducible ones generate a primitive 
7
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variety. On the other hand a variety V of modular lattices is primitive if and only if V = V(Mn) for some n, where Mn

is the height 3 modular lattice with n coatoms [34]. For a thorough investigation of primitive varieties of lattices we 
direct the reader to [35].

4. Splittings

A splitting of a lattice L is a pair of elements a, b ∈ L such that L is the disjoint union of the ideal generated 
by a and the filter generated by b; in this case a must be completely meet prime and b completely join prime [50]. 
Splittings in lattice of subvarieties have been extensively studied, starting from the seminal paper [40]; for residuated 
structures (which are the focus of this paper) we quote [3], [4], [5], [6] and [10]. On the other hand splittings in 
lattices of subquasivarieties has received much less attention, but the theory is not so different. Suppose that Q1, Q2
is a splitting in �q(Q); if �1 is the quasiequational theory of Q1 (i.e. all the quasiequations holding in Q1), then

Q1 = Mod(�1) =
⋂

{Mod(σ ) : σ ∈ �1}.
As Q1 is completely meet prime it must be Q1 = Mod(σ1) for some σ1 ∈ �.

On the other hand every algebra in a quasivariety is embeddable in an ultraproduct of its finitely generated subalge-
bras, each of which is a subdirect product of (necessarily finitely generated) relative subdirectly irreducible algebras. 
It follows that

Q2 =
∨

{Q(A) : A ∈ Qrsi ,A is finitely generated};
as Q2 is completely join prime Q2 = Q(A) for some finitely generated A ∈ Qrsi .

A splitting algebra is a finitely generated algebra A ∈ Qrsi such that there is a Q1 ⊆ Q such that Q1, Q(A) is a 
splitting in �q(Q); in this case σ1 is called the splitting quasiequation for A. In other words A is splitting if there 
exists a largest subquasivariety Q1 of Q, called the conjugate quasivariety of A such that A /∈ Q1.

A class of algebras K has the finite embeddability property (FEP for short) if for all A ∈ K and for all partial 
subalgebra A′ of A, there is a finite B ∈ K such that A′ is embeddable in B. For a quasivariety Q we let Qf in be the 
class of finite algebras in Q.

Theorem 4.1. For a quasivariety Q the following are equivalent:

1. Q has the FEP;
2. every algebra in Qrsi has the FEP;
3. Q = ISPPu(Qf in).

Proof. (1) implies (2) is obvious. Assume then (2) and let

� =
n∧

i=1

(pi ≈ qi) → r ≈ s

be a quasi equation in the language of Q such that Q ��; since any algebra is a subdirect product of algebras in Qrsi , 
there exists an A ∈ Qrsi such that A � �. Let x1, . . . , xn be the variables in �; then there exists a1, . . . , an ∈ A such 
that pi(a1, . . . , an) = qi(a1, . . . , an) for all i but r(a1, . . . , an) �= s(a1, . . . , an). Let

A′ = {a1, . . . , an} ∪ {t (a1, . . . , an) : t is a subterm of �};
then A′ is a finite partial subalgebra of A and, since Qrsi has the FEP, there exists a finite B ∈ Qrsi such that A′ is 
embeddable in B. But clearly B ��, hence (3) holds by counterpositive.

The proof that (3) implies (1) appears in [27] and it is an easy modification of the analogous result in [26] for 
varieties. �

As a consequence we get:
8
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Theorem 4.2. Let Q be any quasivariety with the FEP and let Q1, Q2 be a splitting in Q; then there exists a finite 
algebra A ∈ Qrsi such that Q2 = Q(A).

Proof. Since Q has the FEP by Theorem 4.1 we may assume that Q is the join in �q(Q) of all its finitely generated 
subquasivarieties. Since Q2 is completely join prime, then Q2 is contained in one of them and hence it is itself finitely 
generated. Hence Q2 is the join of a set of quasivarieties and each of one is generated by a single finite algebra that 
(by Theorem 2.3(2) can be taken to be relatively subdirectly irreducible; but since Q2 is completely join irreducible, 
it must be equal to one of them. This concludes the proof. �
Lemma 4.3. Let Q be a quasivariety; then every finitely presented A ∈ Qrsi is splitting in �q(Q) with conjugate 
quasivariety [Q : A].

Proof. Since A is relative subdirectly irreducible and finitely presented, then [Q : A] is a quasivariety. Suppose Q′ is 
a quasivariety such that A /∈ Q′; if Q′ � [Q : A] then there is an algebra B ∈ Q′ with A ∈ S(B) ⊆ Q′, a contradiction. 
Hence Q′ ⊆ [Q : A] and A is splitting with conjugate quasivariety [Q : A]. �

It follows (from Lemma 3.5) that every finitely presented weakly projective algebra in Q has a conjugate variety.

5. Quasivarieties of Wajsberg hoops: chain generated subquasivarieties

A left residuated semilattice (short for left residuated semilattice ordered monoid) is an algebra A = 〈A, ∧, ·,
→, 1〉 where

• 〈A, ∧〉 is a semilattice;
• 〈A, ·, 1〉 is a monoid;
• (·, →) form a left residuated pair w.r.t. the semilattice ordering.

Left residuated semilattices form a variety; for an axiomatization the reader can consult [2] where they have been 
studied under the (rather unfortunate) name of em BI-monoids. A left residuated semilattice is commutative if so is 
the monoid operation; in that case the left residuation is a also a right residuation and the monoid is residuated. A left 
residuated semilattice is integral if 1 is the uppermost element of the ordering. We will denote by CIRS the variety of 
integral and commutative residuated semilattices.

Residuated lattices are defined in the obvious fashion (see [18] and we denote by CIRL the variety of commutative 
and integral residuated lattices. CIRSs share a good chunk of the theory with CIRLs since CIRS is exactly the class of 
∨-less subreducts of CIRLs. They are congruence permutable with Mal’cev term

m(x,y, z) = ((x → y) → z) ∧ ((z → y) → x),

and moreover, since they have a semilattice term, they are also congruence distributive. The theory of congruences 
(and filters) is identical to the one of residuated lattices; as a matter of fact it can be easily shown that the congruences 
of a residuated lattice are exactly the congruences of its semilattice reduct. For a list of equations holding in residuated 
(semi)lattices the reader can consult [2] or [18]. A residuated (semi)lattice is bounded if it has a (necessarily unique) 
minimal element in the ordering.

A commutative and integral residuated semilattice A is representable if for all a, b, c ∈ A

(a → b) → c ≤ ((b → a) → c) → c;
it is divisible if for all a, b, c ∈ A

(a → b)a = (b → a)b.

We are mainly interested in quasivarieties of commutative and integral residuated lattices whose members are all 
representable and divisible. It is easy to check that any totally ordered CIRS is representable; moreover

Lemma 5.1. Let A be a representable commutative and integral residuated semilattice; then
9
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1. A is a subdirect product of totally ordered residuated semilattices;
2. the ordering of A is a lattice ordering where

a ∨ b := ((a → b) → b) ∧ ((b → a) → a).

For a proof the reader can consult [18] and/or [4]. It follows that any representable algebra in CIRS is really an 
algebra in CIRL; since both representability and divisibility are expressible by equations a (quasi)variety consists 
entirely of representable and/or divisible algebras if and only if it satisfies the corresponding equations.

A divisible CIRS is called a hoop [16]; a divisible and representable CIRS (that is also a CIRL by Lemma 5.1) is 
called a basic hoop [7]. We stress that a hoop is not in general a divisible CIRL even though many properties of hoops 
can be transferred easily to divisible CIRls. We will deal mainly with quasivarieties of basic hoops and the reason will 
be clear shortly.

A hoop A is cancellative if for all a, b ∈ A, a → ba = b; it is an easy exercise to check that this corresponds to the 
underlying monoid being cancellative in the usual sense. A hoop A is a Wajsberg hoop if for all a, b ∈ A

(a → b) → b = (b → a) → a.

Lemma 5.2. [16] Every Wajsberg hoop is a basic hoop and every cancellative hoop is a Wajsberg hoop.

We will denote by BH, WH and CH the varieties of basic hoops, Wajsberg hoops and cancellative hoops respectively.
Wajsberg hoops have a canonical representation. Let G be a lattice ordered abelian group; by [42], if u is a strong 

unit of G we can construct a bounded Wajsberg hoop 
(G, u) = 〈[0, u], →, ·, 0, u〉 where ab = max{a + b − u, 0}
and a → b = min{u − a + b, u}. The main result of [42] is that any bounded Wajsberg hoop can be presented in 
this way (really there is a catecorical equivalence between the category abelian �-groups with strong unit and the 
category of bounded Wajsberg hoops). Let now Z ×l Z denote the lexicographic product of two copies of Z. In other 
words, the universe is the cartesian product, the group operations are defined componentwise and the ordering is the 
lexicographic ordering (w.r.t. the natural ordering of Z); then Z ×l Z is a totally ordered abelian group and we can 
apply 
 to it. A Wajsberg chain is a totally ordered Wajsberg hoop. Let’s define some useful Wajsberg chains:

• the finite Wajsberg chain with n + 1 elements Łn = 
(Z, n);
• the infinite finitely generated Wajsberg chain Ł∞

n = 
(Z ×l Z, (n, 0));
• the infinite finitely generated Wajsberg chain Łn,k = 
(Z ×l Z, (n, k));
• the infinite bounded Wajsberg chain [0, 1]Ł = 
(R, 1), i.e. the real interval with operations induced by the Wajs-

berg norm. i.e. xy = max(x + y − 1, 0), x → y = min(1 + x − y, 1);
• the infinite bounded Wajsberg chain Q = 
(Q, 1) = Q ∩ [0, 1]L;
• the unbounded Wajsberg chain Cω that has as universe the free group on one generator, where the product is the 

group product and al → am = amax(l−m,0);
• finally we fix once and for all an irrational number α ∈ [0, 1] and we let X be the totally ordered dense subgroup 

of R generated by α and 1; then Sn = 
(X, n).

The proof of the following is a simple verification:

Lemma 5.3.

1. For n, m ∈ N , Łn ∈ S(Łm) if and only if n | m.
2. For n, r, j ∈N , Łn ∈ S(Łr,j ) if and only if n | gcd{r, j}.
3. For n, l ∈N , Łn ∈ S(Sl ) if and only if n | l.

A Wajsberg algebra is a Wajsberg hoop with an additional constant 0 which is minimal in the ordering; it is 
straightforward to show that a bounded Wajsberg hoop is polynomially equivalent to a Wajsberg algebra so all the 
bounded chains above have their Wajsberg algebra counterpart; we will denote by Wn and W∞

n the Wajsberg algebras 
counterparts of Łn and L∞

n . Similarly the variety of Wajsberg algebras will be denoted by WA. A complete description 
10
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of �(WH) is in [9] while �(WA) was first considered in [38] (for a complete description see and [44]); they are both 
countable and of course distributive.

On the other hand it is easy to see that CIRL has the congruence extension property and that each Łn is simple; so, 
by applying Lemma 2.5, to the set {Łp : p prime} or {Wp : p prime} we get at once that �q(WH) and �q(WA) are 
Q-universal, hence uncountable and extremely complex. Hence our only hope to understanding them, at least in part, 
is considering particular classes of subquasivarieties and then combining the information.

We first consider subquasivarieties generated by chains; we note in passing that those quasivarieties are exactly the 
subquasivarieties of WH that are relative congruence distributive, i.e. those quasivarieties Q for which ConQ(A) is 
a distributive lattice for any A ∈ Q. Let’s explain briefly why:

• the finitely subdirectly irreducible Wajsberg hoops coincide with the totally ordered ones, hence the class of 
finitely subdirectly irreducible Wajsberg hoops is a universal class;

• if V is any congruence distributive variety then a subquasivariety Q of V is relative congruence distributive if and 
only if it is generated by a class of finitely subdirectly irreducible algebras in V ([24], Corollary 2.7);

• so the relative congruence distributive subquasivarieties of WH are exactly those generated by Wajsberg chains.

A lot of information about universal classes and subquasivarieties of Wajsberg algebras is contained in [31] and 
[32] respectively; however to justify our use of these results we need to explain the context better. First the results 
are stated in terms of MV-algebras; this is not a great problem since MV-algebras are easily proven to be term-
equivalent to Wajsberg algebras and in fact they are two different avatars of the same concept. We recall that the 
operator ISPu on Wajsberg hoops has been studied in [8] using the results about Wajsberg appeared in [31]; while we 
maintain that it should be clear why we can do this (and in [8] no explanation was given), maybe some clarification 
is useful. Wajsberg algebras are polynomially equivalent to bounded Wajsberg hoops; it is easy to see that if O is a 
class operator that is a composition of I, H, S, P, Pu, A, B are Wajsberg algebras and A0, B0 are their Wajsberg hoop 
reducts, then O(A) ⊆ O(B) if and only if O(A0) = O(B0). This allows us to consider bounded Wajsberg hoops as 
they were Wajsberg algebras. Since a totally ordered Wajsberg hoop is either bounded or cancellative [16] we can use 
results about Wajsberg algebras and integrate them with the cancellative case.

In [31] (Lemma 4.3) the author observed that a quasivariety generated by a class K of totally ordered MV-algebras 
is determined by the universal class generated by K. This is not a property of MV-algebras, so let us state and prove it 
for the most general case we are aware of.

Theorem 5.4. Let K, K′ be classes of commutative and integral residuated chains with the property that, for all A ∈
K ∪ K′, 1 is join irreducible in A. Then Q(K) = Q(K′) if and only if ISPu(K) = ISPu(K′).

Proof. Any universal class is axiomatized by a set of finite conjunctions of so-called universal basic sentences; a 
universal basic sentence is of the form


 =⇒ r1 ≈ s1 ∨ · · · ∨ rn ≈ sn

where 
 is a finite disjunction of equations. But it is well-known (see for instance Lemma 3.1 in [29]) that in an 
integral and commutative residuated lattices the left hand side of the implication is equivalent to

n∨
i=1

((ri → si) ∧ (si → ri)) ≈ 1.

But in any algebra in K ∪ K′, 1 is join irreducible; so for any possible assignment of the variables the universal basic 
sentence in question is equivalent to a quasiequation. It follows that the quasivariety generated by K and the universal 
class generated by K satisfy the same quasiequations, from which the conclusion follows. �

We remark that any chain satisfies the hypothesis of Theorem 5.4; but so does any finitely subdirectly irreducible 
n-potent (i.e. satisfying xn ≈ xn+1) CIRL ([30], Lemma 3.60).

Now some definitions; the radical of a bounded Wajsberg chain A, in symbols Rad(A), is the intersection of the 
maximal filters of A; it is easy to see that Rad(A) is a cancellative basic subhoop of A. We say that a bounded Wajsberg 
11
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hoop A has rank n, if A/Rad(A) ∼= Łn. For any bounded Wajsberg hoop A, dA, called the divisibility index, is the 
maximum k such that Łk is embeddable in A if any, otherwise dA = ∞.

Here is the summary of the main results about the rank and the divisibility index; the proofs are either trivial or can 
be found in [31] or [8].

Lemma 5.5. For any n, k ≥ 1

1. Łn is simple and Łn ∈ S(Łk) if and only if n | k,
2. Łn has rank n and divisibility index n.
3. For any k ≥ 0, Łn,k has rank n and dŁn,k

= gcd(n, k); in particular dŁ∞
n

= n.
4. Sn has infinite rank and Łk ∈ S(Sn) if and only if k | n; hence dSn = n.
5. If A is a nontrivial totally ordered cancellative hoop then ISPu(A) = ISPu(Cω).
6. If A is a bounded Wajsberg chain of finite rank k, then dA divides k, and ISPu(A) = ISPu(Łk,dA).
7. If A is a bounded Wajsberg chain of finite rank n, then ISPu(A) = ISPu(Ł∞

n ) if and only if dA = n.
8. If A, B are a Wajsberg chains of infinite rank then ISPu(A) ⊆ ISP(B) if and only if {n : Łn ∈ S(A)} ⊆ {n : Łn ∈

S(B)}. In particular A ∈ ISPu(Sn) if and only if dA | n.

A v-presentation is a triple {I, J, K} where I, J are finite subsets of N and K ⊆ {0}; a v-presentation is reduced
if:

• I ∪ K ∪ J �= ∅;
• if K = {0}, then J = ∅;
• no m ∈ I divides any m′ ∈ (I \ {m}) ∪ J ;
• no t ∈ J divides any t ′ ∈ J \ {t}.

Theorem 5.6. [9] The proper subvarieties of WH are in one-to-one correspondence with the reduced triples via the 
mapping

{I, J,∅} �−→ V({Łm : m ∈ I } ∪ {Ł∞
t : t ∈ J })

{I,∅, {0}} �−→ V({Łm : m ∈ I } ∪ {Cω}).

If P = {I, J, K} is a v-presentation we denote by V(P ) or by V(I, J, K) the variety associated with P . Now it is 
clear from the description of �(WH) in [9] that if I, I ′ are reduced subsets of N then the relation

I ≤ I ′ if and only if for all i ∈ I there is a j ∈ I ′ with i | j
is a partial ordering. The following lemma is quite obvious:

Lemma 5.7. Let V = V(I, J, K), V′ = V(I ′, J, K ′) be proper subvarieties of WH ; then the following are equivalent:

1. V ⊆ V′;
2. I ≤ I ′ ∪ J ′, J ≤ J ′ and K ⊆ K ′;
3. if Cω ∈ V, then Cω ∈ V′ and I ≤ I ′ ∪ J ′, J ≤ J ′.

For quasivarieties things are slightly more complex. A q-presentation is a set P = {I, J, L, K} such that I, L, K ⊆
N , J ⊆ N × N such that:

• for any (r, j) ∈ J , j | r ;
• K ⊆ {0};
• if K = {0}, then J = L = ∅.

To any q-presentation P we associate sets of Wajsberg chains in the following way: where

QI = {Łi : i ∈ I }
12
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QJ =
⋃
r∈J

{Łr,j : (r, j) ∈ J }

QL = {Sl : l ∈ L}
QK = {Cω} if K = {0} and ∅ if K = ∅.

We will set

Q(P ) = Q(I, J,L,K) = Q(QI ∪ QJ ∪ QL ∪ QK)

so that Q(P ) is the quasivariety defined by the q-presentation P .

Theorem 5.8. Let Q be a quasivariety of Wajsberg hoops generated by chains; then Q = Q(P ) for some q-presentation 
P .

Proof. Let C be a set of chains such that Q = Q(C); since any algebra is embeddable in an ultraproduct of its finitely 
generated subalgebras we may consider only the finitely generated members of C. Let

C1 = {A ∈ C : A is bounded and finite}
C2 = {A ∈ C : A is bounded, infinite and has finite rank}
C3 = {A ∈ C : A is bounded, infinite and has infinite rank}
C4 = {A ∈ C : A is cancellative}.

We observe also that all algebras in C \ C4 have finite divisibility index, since they are bounded and finitely generated. 
Now we define P = {I, J, L, K} as:

I = {i : Łi ∈ C1}
J = {(r, j) : there is an A ∈ C2 with rank(A) = r and dA = j}
L = {l : there is an A ∈ C3 with dA = l}
K = ∅ if C2 ∪ C3 �= ∅.

Observe that {I, J, L, K} is a presentation, because of Lemma 5.5(6).
Let now A ∈ C2 with rank(A) = r ; by Lemma 5.5(6) ISPu(A) = ISPu(Łr,dA), where dA | r . Then

C2 ⊆ ISPu(
⋃

A∈C2

Lrank(A),dA)

= ISPu({Łr,d : r = rank(A),A ∈ C2, d | r} ⊆ ISPu(QJ ).

If A ∈ C3, then by Lemma 5.5(8), A ∈ ISPu(SdA) whenever dA | n. Hence C3 ⊆ ISPu({SδA : A ∈ C3}) ⊆ ISPu(QL). 
Since clearly C1 ⊆ ISPu(QI ) and C4 ⊆ ISP(QK) we get

C1 ∪ C2 ∪ C3 ∪ C4 ⊆ ISPu(QI ∪ QJ ∪ QL ∪ QK).

Therefore

Q = ISPPu(C1 ∪ C2 ∪ C3 ∪ C4)

⊆ Q(QI ∪ QJ ∪ QL ∪ QK) ⊆ Q,

as wished. �
The first question we want to answer is: which q-presentations P are generic, in the sense that Q(P ) = WH? It is 

well-known that WH [16] has the FEP, hence by Lemma 5.13 they are both generated as a quasivarieties by their finite 
totally ordered algebras. This implies that any reduced presentation P in which N = I ∪ {j : (r, j)J } ∪ L is such that 
Q(P ) = WH. Is this the only possibility? Everything boils down to characterizing the subsets X ⊆ N for which

Q({Łx : x ∈ X}) = WH.
13
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A. Tarski proved long time ago [47] that V({Łx : x ∈ X}) = WH if and only if X is infinite, but it this is not the case 
for Q({Łx : x ∈ X}). To prove that we need a lemma which will be useful also in the sequel.

In any Wajsberg hoop we can define a derived operation

x ⊕ y = (x → xy) → y

and then by induction

1x = x

(n + 1)x = x ⊕ nx.

Lemma 5.9. For every Wajsberg hoop A, Łn ∈ S(A) for n > 1 if and only if there is an a ∈ A, a �= 1 such that

(n − 1)a = a → an+1.

For a proof the reader can look at [8] or (for an even more general case) [4]; the idea however traces back to [48].

Lemma 5.10. Let K be any class of Wajsberg hoops. If A ∈ ISPu(K) is such that Łn ∈ S(A) for some n, then A ∈
ISPu({B ∈ K : Łn ∈ S(B)}).

Proof. Let Ai ∈ K for all i ∈ I and let U be an ultrafilter on I ; suppose that A ∈ S(
∏

i∈I Ai/U). Then Łn ∈
S(

∏
i∈I Ai/U) so, by Lemma 5.9, there is an a ∈ ∏

i∈I Ai/U such that (n − 1)a = a → an.
Let K = {i ∈ I : (n − 1)ai = ai → an

i } ∈ U and J = {i ∈ I : Łn ∈ S(Ai )}; then K ⊆ J , so J ∈ U . It follows that 
V = U ∩ J is a ultrafilter on J and∏

i∈I

Ai/U =
∏
j∈J

Aj /V .

The conclusion follows. �
So let X be the set of prime numbers; if Q({Łp : p ∈ X}) = WH, then for any composite n, Łn ∈ Q({Łp : p ∈ X}). 

Then, by Lemma 5.10,

Łn ∈ ISPu({Łp : p ∈ X and Łn ∈ S(Łp)});
but since n is composite the generating set is empty, a clear contradiction.

Theorem 5.11. Let P be a presentation; then Q(P ) = WH if and only if for any n ∈N there is an t ∈ I ∪ {j : (r, j) ∈
J } ∪ L with n | t .

Proof. Assume P has the desired property and let

� =
n∧

i=1

(pi ≈ qi) → r ≈ s

a quasi equation such that WH � �. Then there exists a finitely generated totally ordered Wajsberg hoop A such that 
A � �. Since WH has the FEP we may argue as in Theorem 4.1 and find a finite totally ordered Wajsberg hoop A′
with A′ � �. Of course A′ = Łn for some n; by the property we can find a t ∈ I ∪ {j : (r, j) ∈ J } ∪ L such that n | t , 
hence Łn ∈ S(Łt ) ⊆ Q(P ) and Q(P ) � �. This shows that Q(P ) = WH.

Conversely suppose that Q(P ) = WH = Q({Łn : n ∈ N}); this implies that ISPu(P ) = ISPu({Łn : n ∈ N}) and so 
Łn ∈ ISPu(P ) for any n. By Lemma 5.10

Łn ∈ ISPu({A : A ∈ QI ∪ QJ ∪ QL and Łn ∈ S(A)});
since the generating set cannot be empty, there exists an A with Łn ∈ S(A). But if A = Łi , then n | i; if A = Łr,j then 
n | j ∈ {j : (r, j) ∈ J } and if A ∈ Sl , then n | l. The conclusion follows. �
14
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We have already observed that, due to the fact that a Wajsberg chain is either bounded of cancellative, we can extend 
many results about Wajsberg algebras (MV-algebras) to Wajsberg hoops, simply taking care of the cancellative case. 
Theorem 5.8 is an example of this and we can find many others. We proceed to illustrate some of them without going 
into details. If A is a bounded Wajsberg chain (say by 0) the order of a ∈ A is{

min{n : an = 0}, if such n exists;
∞, otherwise;

the order of A is

ord(A) = sup{n : ord(a) = n for some a ∈ A}.
It is easily checked that rank(A) = ord(A/Rad(A)). From Lemma 5.5 and the analogous result in [31] (Theorem 4.4) 
about MV-algebras we get:

Theorem 5.12. Let A, B be two Wajsberg chains; then Q(A) = Q(B) if and only if

1. either A and B are both cancellative;
2. or they are both bounded rank(A) = rank(B), ord(A) = ord(B) and {Łn : Łn ∈ S(A)} = {Łn : Łn ∈ S(A)}.

Next we deal with inclusion properties between quasivarieties of Wajsberg hoops generated by chains. Let 
I, J,K,L be a q-presentation and for any r ∈ J let Jr = {s : s | r} = {j ∈ N : (j, r) ∈ J }. The q-presentation is
reduced if

• for all i ∈ I , i � | t for t ∈ (I \ {i}) ∪ ⋃
r∈J Jr ∪ L;

• for all l ∈ L,
(a) either there is an i ∈ I with l � | i, or
(b) there is an r ′ ∈ J such that for all j ′ ∈ Jr ′ , l � | j ′;

• for all r ∈ J and j ∈ Jr

(a) for all l′ ∈ L, j � | l′;
(b) for all r ′ ∈ J \ {r}, for all j ′ ∈ Jr ′ , either r � | r ′ or j � | j ′;
(c) either there is an i ∈ I with j � | i, or there is an r ′ ∈ J such that for all j ′ ∈ Jr ′ , j � | j ′.

Finally we remark that we can find an axiomatization of any quasivariety generated by chain; here the key point is 
that, as for Wajsberg algebras, every proper subvariety of WH can be axiomatized (modulo WH) by a single equation 
in one variable [9]. Using this (and the fact that cancellative hoops are axiomatized modulo WH by the single equation 
x → x2 ≈ x), one can find an analogue to Theorem 4.5 in [31].

A further question that we want to answer is for which q-presentation P , Q(P ) is a variety; let’s start with a lemma 
of general interest.

Lemma 5.13. Let K be any class of basic hoops; then Q = Q(K) is a variety if and only if all finitely generated totally 
ordered members of V(K) are in ISPu(K). If Q has the FEP, then Q = Q(Kf in).

Proof. If Q(K) is a variety, then Q(K) = V(K) and by Theorem 2.3 every relatively subdirectly irreducible in Q(K) is 
in ISPu(K). But since Q(K) is a variety a relatively subdirectly irreducible is subdirectly irreducible and the conclusion 
follows.

Conversely let F be the class of all finitely generated totally ordered members of V(K). Since any algebra is 
embeddable in an ultraproduct of its finitely generated subalgebras and any basic hoop is a subdirect product of totally 
ordered basic hoops we get

V(K) ⊆ ISPSPu(F) ⊆ ISPSPuSPu(k) ⊆ ISPPu(K) = Q(K).

Hence Q(K) = V(K) and Q(K) is a variety. The second claim is a straightforward consequence of Theorem 4.1. �
Theorem 5.14. Let A be a Wajsberg chain; then Q(A) is a variety if and only if
15
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• Łn is embeddable in A for all n, or
• A is finite, or
• A is cancellative, or
• A is infinite, bounded and the rank of A is equal to dA.

Proof. Since WH is generated as a quasivariety by its finite algebras [16] if every Łn is embeddable in A, then 
Q(A) = WH. If A is finite, Q(A) is locally finite so it is primitive; if A is cancellative, then ISPu(A) = ISPu(Cω) and 
so

Q(A) = ISPPu(A) = ISPPu(Cω) = C.

Finally assume that A is bounded and infinite (so it is not simple) and it’s rank is d = dA. Then ISPu(A) = ISPu(Łd,d); 
now any totally ordered member of V(Łd,d) is either cancellative or else it is bounded Wajsberg hoop B such dB di-
vides d and all these chains are in ISPu(Łd,d) (see for instance Lemmas 6.1 and 6.3 in [8]). Therefore by Lemma 5.13, 
Q(A) is a variety.

Conversely suppose that A is either of infinite rank and Łk is not embeddable in A for some k, or else A has finite 
rank and dA is strictly less than the rank of A. In the first case V(A) = WH ([9], Theorem 2.4); now Q = [0, 1]Ł ∩Q is a 
simple member of WH that does not belong to ISPu(A) (since Łk is embeddable in Q for all k). Hence by Lemma 5.13
Q(A) is not a variety. In the second case consider Ł∞

n ; then Ł∞
n ∈ V(A) (since it has rank n), but Ł∞

n /∈ ISPu(A) (by 
Lemma 5.5. Again by Lemma 5.13 Q(A) is not a variety. �

We can use Theorem 5.14 for proper subquasivaries of WH generated by chains applying Jónnson’s Lemma to 
varieties of basic hoops; for a variety V of basic hoops let Vt be the class of totally ordered members of V.

Lemma 5.15. Let A1, . . . , An be basic hoops, let Vi = V(Ai ) and let V = V(A1, . . . , An); then

Vt = V1
t ∪ · · · ∪ Vn

t .

Let us remark that, due to the existence of 1 which is idempotent w.r.t. any operation, if A, B ∈ CIRL, then A and 
B are both embeddable in A × B. This means that any subvariety of CIRL has the joint embedding property and thus 
every subquasivariety of CIRL (and so every subquasivariety of WH) is generated by a single algebra ([34], Proposition 
2.1.19). In particular if A1, . . . , An ∈ WH, then

Q(A1, . . . ,An) = Q(A1 × · · · × An).

Theorem 5.16. Let A1, . . . , An be totally ordered Wajsberg hoops; if for i = 1, . . . , n

• Łn is embeddable in Ai for all n, or
• Ai is finite, or
• Ai is cancellative, or
• Ai is infinite, bounded and the rank of A is equal to dA,

then Q(A1, . . . , An) is a variety.

Proof. By Lemma 5.13, to show that Q(A1, . . . , An) is a variety, it is enough to prove that every Wajsberg chain in 
V(A1, . . . , An) is in ISPu(A1, . . . , An). But each of such chains is a totally ordered member of V(Ai) for some i (by 
Lemma 5.15) and by Theorem 5.14 it is in ISPu(Ai ). �
Corollary 5.17. Let P be a reduced q-presentation; if

• P is finite (i.e. all the sets involved are finite),
• L = ∅,
• (r, j) ∈ J implies r = j ,
16
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then Q(P ) is a variety.

Actually a little more is true; by looking at the description of the proper subvarieties of WH and observing that 
ISPu(Ł∞

n ) = ISPu(Łn,n) (Lemma 5.5(7)) it is clear that any proper subvariety of Wajsberg hoop is Q(P ) for some 
finite q-presentation P of the type described above. This means that the class of quasivarieties of WH generated by 
chains contains all the subvarieties of WH and also that �q(WH) contains �(WH) as a distributive sublattice.

6. Primitivity and structural completeness in Wajsberg hoops

The question of primitivity in varieties of commutative and integral residuated lattices has been tackled in several 
papers [23] [37] in connection with the corresponding logics. Here need only a result that appears in [11]:

Theorem 6.1. [11] Every finite hoop is finitely projective, i.e. it is projective in the class of finite hoops.

By Theorem 3.9 we get:

Corollary 6.2. Every locally finite variety of basic hoops is primitive.

In particular, since every locally finite quasivariety is contained in a locally finite variety, any locally finite quasi-
variety of Wajsberg hoops is a primitive variety. On the other hand the variety of cancellative hoops CH = Q(Cω) is 
not locally finite but by Lemma 5.5(5) if A and B are totally ordered cancellative hoops, then [8]

ISPu(A) = ISPu(B).

It follows that CH has no proper nontrivial subquasivarieties and thus is primitive. So there are (quasi)varieties of 
Wajsberg hoops that are primitive without being locally finite. Now let V be any proper variety of Wajsberg hoops; 
then V = V(I, J, K) for some reduced v-presentation {I, J, K}.

Lemma 6.3. For any n > 1, V(Ł∞
n ) is not structurally complete; hence if V = V(I, J, K) is primitive, then J ⊆ {1}.

Proof. Since WH is not primitive, V must be proper, so it has a reduced v-presentation {I, J, K}. Suppose then that 
there is an n > 1 such that Ł∞

n ∈ V. Then by Lemma 5.5(7), Łn,n ∈ V and it is easily checked that Łn,1 ∈ S(Łn,n); but 
by Theorem 5.14 Łn,n /∈ ISPu(Łn,1), so ISPu(Łn,n) �= ISPu(Łn,1). By Theorem 3.5, Q(Łn,1) � Q(Łn,n) = V(Łn,n); 
however by Lemma 5.5(6,7)

V(Łn,1) = V(Łn,n) = V(Ł∞
n ).

Therefore V(Łω
n ) is not its own least Q-quasivariety and so it is not structurally complete. �

Now if J = K = ∅, then V is locally finite, hence primitive. It follows that a primitive variety of Wajsberg hoops 
must be either V(I, ∅, ∅) or V(I, ∅, {0}) or V(I, {1}, ∅). To proceed further we need to observe that every variety of 
Wajsberg hoops can be axiomatized by a single equation in one variable [9]. It follows that for any quasivariety Q of 
Wajsberg hoops, its least Q-quasivariety is Q(FQ(x)).

In all the following proofs we will write Łm, m ≥ 1, in multiplicative notation (as opposed to the additive notation 
suggested by the Mundici’s representation). In other words Łm = {1, a, a2, . . . , am} where

ak → an = amax(0,n−k) akan = amin(k+n,m).

We have the following easy lemma, whose proof is left to the reader.

Lemma 6.4.

1. ah generates Łk if and only if h < k and k, h are relatively prime;
2. there is an element c ∈ Cω such that c generates Cω and if c′ generates Cω, then c′ = c.
17
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3. if C is cancellative and c′ ∈ C with c′ �= 1, then c′ generates a subalgebra of C isomorphic with Cω.
4. there is an element d ∈ Ł∞

1 such that d2 is the minimum, d generates Ł∞
1 and if d ′ generates Ł∞

1 , then d ′ = d;
5. if d ′ ∈ Ł∞

1 and d ′ ≤ d ′ → d2, then d ′ generates a subalgebra of Ł∞
1 isomorphic with Ł∞

1 .

We simply observe that if we represent Ł∞
1 a 
(Z ×l Z, (1, 0)) then d = (0, 1).

Lemma 6.5. Let V = V(I, ∅, {0}) and let

I = {(k,h) : k |m for some m ∈ I and h, k are relatively prime}.
Let J = i ∪ {0} and let’s define for j ∈ J

Aj =
{

Łk, if j = (k,h);
Cω, if j = 0;

then define g ∈ ∏
j∈J Aj by

gj =
{

ah, if j = (k,h);
c, if j = 0,

where c is the generator of Cω. If B is the subalgebra of 
∏

j∈J Aj generated by g, then B ∼= FV(x).

Proof. First note that, since ah generates Łk whenever k, h are relatively prime the embedding of B into 
∏

j∈J Aj is 
subdirect. Next suppose that there is an equation in one variable t (x) ≈ s(x) that fails in V; then it must fail in some 
one-generated Wajsberg chain in V. This chain is either bounded or cancellative; if it is cancellative than it must be 
isomorphic with Cω, since it is one-generated. We claim that if it is bounded then it must be finite. In fact let C be an 
infinite bounded chain in V; since V is a proper subvariety C cannot have infinite rank, as any chain of infinite rank 
generates WH ([9], Theorem 2.4). Hence C must have rank n an thus, by Lemma 5.5, Ł∞

n ∈ V; but this contradicts 
Theorem 5.6, hence C must be finite. Therefore C ∼= Łk for k | m and m ∈ I .

Now if the equation fails in Cω, then it fails for some d ∈ Cω; clearly d �= 1, so the subalgebra generated by d
in Cω is isomorphic with Cω. Therefore t (c) �= s(c) in Cω; since p0(g) = c it follows that t (g) �= s(g) in B. If the 
equation fails in some Łk with k | m and m ∈ I , then there is a generator b of Łk such that t (b) �= t (c). Such generator 
must ah for some h which is relatively prime with k; since g(k,h) = ah, we have that t (g) �= s(g) in B.

The conclusion follows. �
Theorem 6.6. For each I , V = V(I, ∅, {0}) is structurally complete.

Proof. Let B, 
∏

j∈J Aj and I as in Lemma 6.5; then

B ≤sd

∏
j∈J

Aj .

Let I = {n1, . . . , nk} and let g be the generator of B i.e.

g = ((ah)(nk,h)∈I
, c);

if and m = n1n2 · · ·nk , then gm → g2m ∈ B; since (ah)m = (ah)2m for all (nk, h) ∈ I , we get that

g′ = gm → g2m = ((1)(nk,h)∈I
, cm).

By Lemma 6.4 g′ generates a subalgebra of B isomorphic with Cω, thus Cω ∈ IS(B).
Now consider g′′ = g′ → g; of course g′′ = ((ah)(nk,h)∈I

, 1). Then g′′ generates a subalgebra C of B which is 
isomorphic with a subalgebra of 

∏
(k,h)∈I

Łnk
. Hence C is finite and, since ah generates Łnk

for all (k, h) ∈ I , 
p(nk,h)(C) = Łnk

. So Łnk
∈ H(C) and, since any finite hoop is finitely projective (Theorem 6.1),

Łnk
∈ S(C) ⊆ S(B)

for all nk .
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Now we have

V = V({Łnk
: nk ∈ I },Cω)

= Q({Łnk
: nk ∈ I },Cω)

⊆ Q(B) = Q(FV(x)) ⊆ V.

Thus V = Q(FV(x)) and hence V is structurally complete. �
Lemma 6.7. Let V = V(I, {1}, ∅); let

I = {(k,h) : k |m for some m ∈ I and h, k are relatively prime}.
Let J = i ∪ {0, 1} and let’s define for j ∈ J

Aj =
⎧⎨
⎩

Łk, if j = (k,h);
Cω, if j = 0;
Ł∞

1 , if j = 1;

then define g ∈ ∏
j∈J Aj by

gj =
⎧⎨
⎩

ah, if j = (k,h);
c, if j = 0;
d → d2, if j = 1;

where c is the generator of Cω and d is the generator of Ł∞
1 . If B is the subalgebra of 

∏
j∈J Aj generated by g, then 

B ∼= FV(x).

Proof. The proof is almost identical to the one of Lemma 6.5. We have only to observe that any chain in V is either 
finite or cancellative or else has rank equal to 1; since we can consider only one-generated chains, the cancellative 
ones are isomorphic with Cω and bounded ones are isomorphic with Ł∞

1 . �
Theorem 6.8. If V = V(I, {1}, ∅), then V is structurally complete.

Proof. Let I = {n1, . . . , nk} and let I , B and g as in Lemma 6.7. Let

m =
{

n1n2 · · ·nk, if I �= ∅;
2, otherwise.

Then dm is the bottom of Łω
1 because the presentation is reduced and therefore if I �= ∅, then nk ≥ 2 for all k. As in 

the proof of Theorem 6.6

gm → g2m = ((1)(nk,h)∈I
, cm,1)

and therefore Cω ∈ S(B).
On the other hand

(gm → g2m) → g = ((ah)(nk,h)∈I
,1, d)

generates a subalgebra C of B which is isomorphic with a subalgebra of∏
(nk,h)∈I

Łnk
× Ł∞

1 .

Now, identifying C with its isomorphic copy, we may assume that C is generated by ((ah)(nk,h)∈I
, d) and by 

setting a = (ah)(nk,h)∈I
we may assume it is generated by (a, d). Observe that (ma, md) = (1, md) ∈ C; now the 

reader can easily check that (0, 1) �−→ (1, md) defines an embedding of Ł∞
1 in C. Therefore Ł∞

1 ∈ IS(C) ⊆ IS(B).
Next if we denote d2 by 0 we get

(1,md)2 = (1,0) ∈ C.
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On the other hand if we denote by 0 the bottom of each Łnk
we get that (am, dm) = (0, 0) ∈ C (it is also the minimum 

of C) and thus

(1,0) → (0,0) = (0,1) ∈ C.

Let C′ be the filter generated by (0, 1) in C; this is a bounded Wajsberg subalgebra of C which is isomorphic with a 
subalgebra of 

∏
(nk,h)∈I

Łnk
. Hence C′ is finite and since clearly (a, 1) ∈ C′ we get that pnk

(C′) = Łnk
. As in the 

proof of Theorem 6.6 we may deduce that Łnk
∈ IS(B) for all k.

In conclusion

V = V({Łnk
: nk ∈ I },Ł∞

1 )

= Q({Łnk
: nk ∈ I },Ł∞

1 )

⊆ Q(B)

= Q(FV(x)) ⊆ V).

Thus Q(FV(x)) = V; therefore by Theorem 3.1 V is structurally complete. �
Remark 6.9. We already know that V(Ł∞

n ) is not structurally complete for n > 1, so the proof of Theorem 6.8 must 
fail. The failure of structural completeness can be witnessed by

Q({Łi : i ∈ I },Łn,1) � V({Łi : i ∈ I },Łn,1) = V({Łi : i ∈ I },Ł∞
n ). �

We define the coradical of a Wajsberg chain A in the following way:

• if A is cancellative, then Corad(A) = ∅;
• if A is bounded, say by 0, then

Corad(A) = {a → 0 : a ∈ Rad(A)}.

A Wajsberg chain A is perfect if A = Rad(A) ∪ Corad(A) (hence every cancellative chain is perfect and Ł∞
1 is 

perfect). For an example of a bounded perfect chain different from Ł∞
1 we may take a totally ordered group G and 

consider 
(G ×l Z, (1, 0)). Really it can be shown that every bounded perfect Wajsberg chain can be obtained in this 
way and this in turn implies that A ∈ ISPu(Ł∞

1 ) whenever A is a perfect chain. Hence the variety generated by all the 
perfect Wajsberg chains is exactly V(Ł∞

1 ) and it is axiomatized by 2x2 ≈ (2x)2. The reader can easily verify that all 
these facts can be deduced from the corresponding results about perfect MV-algebras (see for instance [25]). Now we 
can characterize all primitive and structurally complete varieties of Wajsberg hoops.

Theorem 6.10. A proper variety V of Wajsberg hoops is primitive if and only if every chain in V is either finite or 
perfect.

Proof. Let V = V(I, J, K) be such variety; suppose that in V there is a chain that is neither finite nor perfect. Then 
such chain cannot belong to V(Ł∞

1 ), otherwise it would be perfect; this implies that there is at least a j ∈ J with 
j > 1. It follows that Ł∞

j ∈ V and since V(Ł∞
j ) is not primitive, neither is V.

For the converse, if every chain in V is either finite or perfect and V is proper, then either V = V(I, {1}, ∅) or else 
V = V(I, ∅, K) for some finite set I = {n1, . . . , nk}. If m = n1n2 · · ·nk then V ⊆ V(Łm, Ł∞

1 ), which is structurally 
complete by Theorem 6.8.

If D is the set of divisors of m, then every subvariety of V(Łm, Ł∞
1 ) is of the form V(I ′, ∅, K) or V(I ′, {1}, ∅) for 

some reduced set I ′ ⊆ D. But those varieties are all structurally complete because they are either locally finite o else 
they satisfy the hypotheses of Theorem 6.6 or Theorem 6.8. By Lemma 3.10 V(Łm, Ł∞

1 ) is primitive and so is V. �
Corollary 6.11. A variety of Wajsberg hoops is structurally complete if and only if it is primitive.

What about primitive quasivarieties (that are not varieties) of Wajsberg hoops? For those generated by chains there 
seems to be a promising path to their description (and we will talk about it in Section 9). We will consider some 
quasivarieties not generated by chains in the next section.
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7. Quasivarieties of Wajsberg hoops: highlighting the complexity

Observe that Q(Ł1) and Q(Cω) are varieties that are the only two atoms in �(WH) [12]. Since they are both 
primitive, they are also atoms in �q(WH). Are there any other atoms in �q(WH)? This question was asked first a 
long time ago [27]; we still do not have a solution, but we can clarify the matter a little bit. First we observe that 
for all n, k ≥ 1, Łn, Ł∞

n and Łn,k are finitely generated and subdirectly irreducible, so they are splitting in �q(WH)

(Lemma 4.3). We also observe that none of them can be weakly projective in WH; really no bounded finitely generated 
Wajsberg hoop can be weakly projective in WH. In fact if A is n-generated and weakly projective, then it must be a 
subalgebra of FWH(n); but it is clear from the description of FWH(n) in [9] that the only idempotent element therein 
is 1. This prevents any bounded Wajsberg hoop from being embeddable in FWH(n). Also Cω is finitely generated, 
subdirectly irreducible (hence splitting) and not weakly projective in WH (this has been proved by S. Ugolini in [49]
using geometrical methods). It follows from Lemma 3.5 that the conjugate quasivarieties [WH : Łn], [WH : Ł∞

n ] and 
[WH : Łn,k] for n, k ≥ 1 and [WH : Cω] are all proper quasivarieties. Now a possible third atom must be Q(A) for 
some A (since WH has the joint embedding property) and moreover

Q(A) ⊆ [WH : Ł1] ∩ [WH : Cω].
Of course A can be taken to be 1-generated and moreover no relative subdirectly irreducible in Q(A) can be subdirectly 
irreducible otherwise it would be totally ordered, hence bounded or cancellative, hence containing either Ł1 or Cω. In 
conclusion Q(A) would be a very strange object indeed, even though we know nothing in the theory that prevents its 
existence.

To proceed further it is clear that the finitely generated covers of Q(Ł1) are the Q(Łp) with p prime; a further 
cover is Q(Ł1, Cω) and the reason is that it is a primitive variety, so it has no other subquasivarieties except for Q(Ł1)

and Q(Cω). The existence of other covers depends on the existence of other atoms; if there are no more these are the 
only covers of Q(Ł1). Clearly Q(Ł1, Cω) is also a cover of CH = Q(Cω) and it is the only cover above Q(Ł1); since 
Ł1 is splitting with conjugate quasivariety [WH : Ł1] any other cover of CH must lie in [WH : Ł1].

Let’s look now at the quasivarieties [WH : Łn] for n ≥ 1; it is an easy exercise to check that A ∈ [WH : L1] if and 
only if A has no idempotent different from 1; this means that [WH : Ł1] is axiomatized by the single quasiequation

x ≈ x2 ⇒ x ≈ 1. (q1)

If n ≥ 2 then we can use Lemma 5.9; from that it follows that [WH : Łn] is axiomatized by the single quasiequation

(n − 1)x ≈ x → xn ⇒ x ≈ 1,

which is of course the splitting quasiequation for Łn. In Fig. 1 we see the slices relative kp for a prime p and k ∈ N; 
both chains of subvarieties in the figure have WH as their join, because of Theorem 5.11.

Next we will show that none of the [WH : Łn] is structurally complete; it is obvious from Tarski’s result that 
H([WH : Łn]) = WH for n ≥ 2. The following lemma is a consequence of some very general facts (see [20], Chapter 
II, §10):

Lemma 7.1. For any variety V the smallest quasivariety Q such that H(Q) = V is exactly Q(FQ(ω)).

Now every subvariety of WH is axiomatized by a single equation [9], so

H(Q(FWH(x))) = H(Q(FWH(ω))).

It is clear from the description of FWH(x) in [9] that FWH(x) satisfies (q1), so (using Lemma 7.1),

WH = H(Q(FWH(x))) ⊆ H([WH : Ł1]) ⊆ WH.

The final step is to show that Q(FWH(x)) � Q([WH : Ł1]); but this is obvious since there are clearly subquasivarieties 
Q such that H(Q) = WH but [WH : Ł1] � Q (for instance the quasivariety generated by all the Łp with p prime).

Now [WH : Ł1] � [WH : Łn] for all n and

H([WH : Ł1]) = H([WH : Łn]);
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T

Q(Ł1)

Q(Łp)

Q(Ł2p)

CH

WH

[WH : Ł1]

[WH : Łp]

[WH : Ł2p]

[WH : Ł3p]

Fig. 1. The slices for Łkp .

so the conclusion holds by Theorem 3.1.
We close this section with an example of an uncountable set of proper quasivarieties; for a set � of Wajsberg hoops 

we define

[WH : �] = {B : for all A ∈ �, A /∈ IS(B)}.
We have the following lemma whose proof is similar to the “if” direction of Lemma 3.5(3).

Lemma 7.2. If � consists entirely of finitely presented Wajsberg hoops, then [WH : �] is a quasivariety.

Let now P be the set of primes; for any subset Q ⊆ P we let

�Q = {Łq : q ∈ Q};
then for any Q ⊆ P , [WH : �Q] is a quasivariety; moreover if Q, Q′ ⊆ P , then [WH : Q] = [WH : Q′] if and only 
if Q = Q′. In fact let q ∈ Q \ Q′; then Łq ∈ [WH : Q′] \ [WH : Q]. It follows that the set of such quasivarieties 
is in 1-1 correspondence with the subsets of a countable set, i.e. it is uncountable. We cannot prove that they are 
all quasivarieties that are not varieties since the proof of the “only if” direction of Lemma 3.5(3) does not work; 
however since there are only countably many subvarieties of Wajsberg hoops, at least uncountably many of them are 
not varieties.

8. A glance at quasivarieties of Wajsberg algebras

Though quasivarieties of Wajsberg algebras have been studied thoroughly ([28], [33], [31], [32]), there are some 
observations that we can make. We recall that Wn, W∞

n , Wn,k denote the bounded versions of Łn, Ł∞
n , Łn,k respec-

tively and that BL-algebras are the bounded version of basic hoops. Now it is obvious that a version of Lemma 5.13
holds for classes of BL-algebras and from that we get at once:

Theorem 8.1. Let A be a totally ordered Wajsberg algebra; then Q(A) is a variety if and only if

• Wn is embeddable in A for all n, or
22
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• A is finite, or
• A is infinite, bounded and the rank of A is equal to dA.

Theorem 8.2. Let A1, . . . , An be totally ordered Wajsberg algebras; if for i = 1, . . . , n

• Wn is embeddable in Ai for all n, or
• Ai is finite, or
• Ai is infinite, bounded and the rank of A is equal to dA,

then Q(A1, . . . , An) is a variety.

Another similarity is that any proper subvariety of Wajsberg algebras admits a v-presentation. In other words every 
proper subvariety V is generated by finitely many chains that are either finite or W∞

n for some n. If {Wi : i ∈ I } and 
{W∞

j : j ∈ J } are the generators of V we can denote V by V(I, J ). As for Wajsberg hoops we can define the concept 
of reduced pair in the obvious way and it turns out that the set of proper subvarieties of WA is in 1-1 correspondence 
with {V(I, J ) : (I, J ) a reduced pair} [44].

Now lattice �(WH) is indubitably more complex that �(WA), the reason being that there is an entire variety of 
algebras, the variety of cancellative hoops, that simply was not there before. On the other hand adding the constant 
makes it harder for an algebra to be a subalgebra of something else; in particular it is no longer true that A, B ≤ A × B
a fact that conceivably should make �q(WA) more complex than the interval [V(Ł1), WH] in �q(WH). Let’s confirm 
this intuition: in �q(WH), Q(Łp) covers Q(Ł1) for every prime p. This is not the case for �q(WA) because of the 
following:

Lemma 8.3. Let V = V(Wn1, . . . , Wnk
); then

Q(W1 × Wn1, . . . ,W1 × Wnk
)

is a proper subquasivariety of V.

Proof. The proof is based on the fact that Wn is embeddable in a chain in WA if and only if there is an a ∈ A such 
that (n − 1)a = ¬a (where ¬a = a → 0) ([8], Lemma 4.4).

We will prove the case k = 1 and n1 = 2; the procedure is general and the interested reader can fill the details for 
any other case. W2 is embeddable in A if and only if there is an a ∈ A with a = ¬a. If A is any subalgebra of a power 
of W1 × W2, then no such a ∈ A can exist since the negation switches 0 and 1 in all the “coordinates” coming from 
copies of W1. This shows that W2 /∈ Q(W1 × W2) and hence the conclusion. �

Now in [32] it is shown that Q(W1 × Wp) covers Q(W1) for every prime p and that

Q(W1 × W1,1) = Q(W∞
1 ) = V(W∞

1 ).

This implies that {Q(W1 × Wp) : p prime} ∪ Q(W∞
1 ) is a complete set of covers of Q(W1), which is of course the 

only atom in �q(WA).
The problem of describing all the structurally complete quasivarieties of Wajsberg algebras has been almost solved 

by J. Gispert in [32]; in fact therein he was able to describe all the least V-quasivarieties where V is a proper subvariety 
of V.

Theorem 8.4. If V = V(I, J ) is a proper variety of Wajsberg algebras and (I, J ) is a reduced pair, then the least 
V-quasivariety of V(I, J ) is

Q(I, J ) = Q({W1 × Wi : i ∈ I } ∪ {W1 × Wj,1 : j ∈ J }).

So the only structurally complete quasivarieties of Wajsberg algebras, besides Q(FWA(x)) for which no description 
is available, are those of type Q(I, J ) where (I, J ) is a reduced pair. It follows for instance that Q(W∞

1 ) = Q(∅, {1})
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is structurally complete and together with Q(W1) = Q({1}, ∅) is the only quasivariety generated by a chain that it is 
structurally complete.

Which of those structurally complete varieties are also primitive? It is evident that all the covers of the unique 
atom in �q(WA) are such; in fact they are all structurally complete and their unique subvariety is Q(W1) which 
is also structurally complete. More generally a quasivariety Q of Wajsberg algebras is primitive if and only if all 
its subquasivarieties are the least V-quasivariety for some V ⊆ H(Q). Let’s see that this is not always the case by 
generalizing an argument in [32]. First we observe:

Lemma 8.5. [32] If (I, J ), (I ′, J ′) are two residuated pairs then Q(I, J ) ⊆ Q(I ′, J ′) if and only if for every n ∈ I , 
n > 1, there is an n′ ∈ I ′ with n | n′ and for any m ∈ J there is an m′ ∈ J ′ such that m | m′.

If (I, J ) is a reduced pair and I = {n}, J = {m} we will write V(n, m) for V(I, J ). Let p, q, r be three distinct 
primes; then

V(pq,pr) ∩ V(pr,pq) = V(∅,p).

It follows that every least V-quasivariety contained in Q(pq, pr) and Q(pr, pq) is a least V(∅, p)-quasivariety. Using 
Lemma 8.5 it is easy to verify that those are exactly {Q(1, ∅), Q(∅, 1), Q(p, ∅), Q(∅, p)}; clearly Q(p, ∅) and Q(∅, p)

are maximal in that set and they are incomparable by Lemma 8.5. So Q(pr, pq) ∩ Q(pq, pr) is a quasivariety that 
is not a least V-quasivariety. Therefore for instance Q(2pqr, 3pqr) of which both Q(pr, pq) and Q(pq, pr) are 
subquasivarieties, cannot be primitive. Of course this argument can be further generalized in many ways to exclude 
primitivity for many structurally complete quasivarieties of Wajsberg algebras.

9. Conclusion and further investigations

The main problem that has not been solved in this paper is determining the structurally complete subquasivarieties 
of Wajsberg hoops. A possible path (as observed also by Reviewer # 1 of this paper) is to use the classification of free 
Wajsberg hoops in [9] to generalize the arguments in Lemmas 6.5 and 6.7. The conjecture formulated by Reviewer #1 
is that Q(Łn,1) is structurally complete and it is indeed the least V(Ł∞

n )-quasivariety. We do agree with that conjecture 
and we plan to work on it in the next future.

Another possible path of investigation comes from the fact that Wajsberg hoops constitute the building blocks of 
basic hoops in a precise sense; let A0, A1 ∈ CIRL such that A0 ∩A1 = {1}, and consider A0 ∪A1. We define operations 
in the following way: the ordering intuitively stacks A1 on top of A0 \ {1} and more precisely it is given by

a ≤ b if and only if

⎧⎨
⎩

b = 1, or
a ∈ A0 \ {1} and b ∈ A1 \ {1} or
a, b ∈ Ai \ {1} and a ≤Ai

b, i = 0,1.

Moreover we define the product inside of the two components to be the original one, and between the two different 
components to be the meet:

a · b =
⎧⎨
⎩

a, if a ∈ A0 \ {1} and b ∈ A1;
b, if a ∈ A1 and b ∈ A0 \ {1};
a ·Ai

b, if a, b ∈ Ai , i = 0,1.

a → b =
⎧⎨
⎩

b, if a ∈ A1 and b ∈ A0 \ {1};
1, if a ∈ A0 \ {1} and b ∈ A1;
a →Ai

b, if a, b ∈ Ai , i = 0,1.

The resulting structure is called the ordinal sum of A0 and A1 and we denote it by A0 ⊕ A1. It is easily checked that 
A0 ⊕ A1 is a commutative and integral and residuated semilattice. However, it might not be a residuated lattice: for 
instance if 1A0 is not join irreducible, A1 is not bounded and a, b ∈ A0 \ {1} are such that a ∨A0 b = 1A0 , then all the 
upper bounds of {a, b} lie in A1. Since A1 is not bounded there can be no least upper bound of {a, b} in A0 ⊕ A1, 
thus the ordering cannot be a lattice ordering. However it is clear that the ordinal sum of two totally ordered CIRLs 
is again a totally ordered CIRL. This allows us to define the ordinal sum of a set of totally ordered CIRLs in the 
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obvious way; for more details about this construction the reader can consult [4] or [8]. A totally ordered CIRL is sum 
irreducible if it cannot be expressed as the ordinal sum of two nontrivial CIRLs; moreover any totally ordered CIRL
can be decomposed into a ordinal sum of sum irreducible CIRLSs in an essentially unique way ([4], Theorem 3.2). 
The key result is:

Theorem 9.1. [8]

1. A totally ordered hoop is sum irreducible if and only if it is a Wajsberg hoop. Hence every totally ordered hoop is 
the ordinal sum of Wajsberg hoops.

2. A totally ordered BL-algebra is sum irreducible if and only if it is a Wajsberg algebra. Hence every totally ordered 
BL algebra is a bounded ordinal sum of Wajsberg hoops, the first of which is a Wajsberg algebra.

So it is not unreasonable to think that some properties of quasivarieties of Wajsberg hoops (and Wajsberg algebras) 
can be lifted to basic hoops (BL-algebras) via ordinal sums. There are some results that are quite straightforward to 
generalize, while others require a great deal of attention; we plan to investigate this topic in the future.
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