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Abstract. The development of terahertz based technology has given the opportunity for the
realization of non destructive techniques capable of gaining meaningful information on delicate
systems such as biological samples. Here, the health status of leaves in vivo has been monitored
through a portable terahertz imaging system. The data have been extracted and analysed from
the images acquired and compared with analogous results reported in the literature on similar
systems. The possibilty of extracting additional information from the images regarding leaf
details has also been explored.

1. Introduction
The interest in terahertz radiation (100Ghz-30 THz) is motivated by its potential use in several
fields, such as environmental control, medical diagnosis, chemical and biological identification
[1, 2]. In the framework of materials identification, the vibrational, rotational and translational
responses of molecules and elements in the terahertz range provides informations which cannot
be supplied by similar techniques (i.e. optical, nuclear magnetic resonance, X-ray) [1, 2]. Water
is markedly well distinguishable since its presence is immediately detectable due to a strong
attenuation of the terahertz signal [3, 4].
Water content is the most meaningful datum regarding plants health condition, since it provides
an immediate information on illnesses, transpiration, nutrient transport [5, 6, 7, 8], even though
in most of the cases it can be measured only by sacrificing the sample [2, 9].
In this regard, since terahertz signal results to be more attenuated if water content is higher and
vice versa, it has been consequently exploited for the relization of effective and non-destructive
methods to measure water content [10] in a plant [11, 12]. It has been demonstrated that
leaf water status and the hydration and dehydration dynamics can be easily locally monitored
through terahetrz continuous wave or time domain spectroscopy both in removed leaves and in
vivo [13, 14, 15, 16]. A decrease in terahertz signal can be associated to hydration, while an
increase has been interpreted as dehydration [13, 14, 16]; dehydration dynamics have been fitted
with an exponential curve [17].
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a) b)
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Figure 1. Leaf images acquired with the sub-terahertz imaging system. Removed leaf: (a)
original image (b) leaf area. Attached leaf: (c) original image (d) leaf area. The stalk is on the
left upper part of the image.

The abundancy of information that can be achieved by an experiment immediately grows with
the acquisition of terahertz images, rather than single measurements [18, 19, 20]. As a natural
evolution of terahertz investigation techniques, an imaging system can be realized by using a
continuous wave [19, 20] or a time domain system [16]; high resolution necessary to highlight
some details can be achieved by using a quantum cascade laser as source [21].
Here a compact and portable active sub-terahertz imaging system composed by a 100 Ghz source
and a camera has been used to study hydration and dehydration dynamics on the whole leaf
surface both in removed leaves and in vivo (i.e. leaf still attached to the plant). The leaf image
is clearly identifiable from the picture (Fig.1), where different colors also reflect different water
concentrations (i.e. blue highest water concentration, red lowest).
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a) b)
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Figure 2. (a) hydration dynamics of a removed leaf; time zero corresponds to water supply. (b)
hydration and dehydration dynamics of an attached leaf (time zero corresponds to irrigation;
hydration and dehydration exponential regimes are highlighted with red circles): (c) focus on the
exponential hydration regime highlighted in Fig.2b; (d) focus on the exponential dehydration
regime highlighted in Fig.2b.

2. Materials and methods
The terahertz imaging system was provided by TeraSense company and was composed by an
impact avalanche transit time (IMPATT) diode source (generating an output of 80 mW at 100
GHz) and a camera composed by a bidimensional matrix of sensors (1024 pixel). The leaf edges
identification and the primary vein selection have been performed by using a software specifically
devoted to scientific images analysis (Gwyddion) and a general purpose software (ImageJ).
Long time hydration and dehydration dynamics (Fig.2 and Fig.3a) and leaf primary vein (Fig.3b)
have been studied on sage (Salvia Officinalis), both on removed and attached leaves.
In the case of removed leaf, the leaf was provided by water by immersing the stalk into a syringe
deprived of the needle and filled of water (see inset of Fig.2a). The hydration was supposed to
be sufficiently fast to be recorded immediately after the leaf has been put in contact with water,
when dehydration could be completely neglected.
In the case of attached leaf, water was provided by irrigating the whole plant. The plant was
put close to the system (see inset of Fig.2c); only one leaf was interposed between the source and
the detector even if leaves movements (addressable to water diffusion) have occurred, apparently
withouth affecting the overall hydration/dehydration dynamics.
Both for removed and attached leaves water was supplied in the late morning (about 11 a.m.); hy-



10th Young Researcher Meeting

Journal of Physics: Conference Series 1548 (2020) 012002

IOP Publishing

doi:10.1088/1742-6596/1548/1/012002

4
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Figure 3. a) Comparison of the relative leaf area and the mean relative water content for the
removed leaf. b) Width obtained by fitting the primary vein profile with a gaussian curve for
the removed leaf. In the inset, the primary vein area and a profile used for the fit (i.e. from the
10 minutes frame).

dration was performed under room artificial light (a video of the whole experiment was recorded
during hydration on the removed leaf), while dehydration in the dark. The leaves were as much
as possible of comparable size.
Once the leaf area was selected, the mean pixel intensity was determined, then it was assumed
as an indication of the mean terahertz transmission. The mean pixel intensity was then plotted
versus the time passed by water supply. Variations of the measured area (i.e. due to leaves
movements consequent to water diffusion) give rise to a shift of the mean pixel intensity.
The relative leaf area (i.e. leaf area in pixel at time t divided by leaf area at time zero) and
the mean relative water content are compared in Fig. 3a. The mean relative water content was
determined by an equation derived by the Lambert-Beer law [22]:

Mean Relative Water Content = ln(Iblank/I(t))/ ln(Iblank/I(t0)) (1)

where Iblank is the mean pixel intensity without leaf, I(t) is the mean pixel intensity with leaf at
the current time t, I(t0) is the mean pixel intensity with leaf at time zero. Lower pixel intensity
corresponds to higher attenuation of the terahertz signal and higher water content, and vice
versa.
In the central section of the leaf a continuous line was evident, which mostly conicides with the
primary vein. Even if it probably includes also some small secondary veins, an effort has been
spent on the selection of its area and on the estimation of its width, in order to provide a tool for
the identification of leaf details (i.e. such as in case of plant deseases). The profile perpendicular
to the primary vein direction was averaged on the central section of the leaf (in order to avoid
the stalk and the tip). The resulting profile was fitted by a gaussian function and the width was
plotted (Fig.3b) versus the time passed by water supply.

3. Discussion
In the case of the removed leaf, the mean pixel intensity decreases soon after water supply,
suggesting a water content increase (Fig.2a) This agrees well with the literature, where a similar
behavior was ascribed to a hydration dynamics. Mean pixel intensity decrease has been fitted
with an exponential equation (fitting parameters reported in Tab. 1):
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y = y0 +A exp(−x/t) (2)

In the case of the attached leaf (Fig.2b), the mean pixel intensity also decreases soon after plant
watering, then it maintains approximately constant (except for a shift which can be ascribed to
leaves movements) and then it increases again (i.e. suggesting dehydration beginning to occur).
An exponential regime can be identificated soon after plant watering (Fig.2c), which can be
addressed to hydrtatation dynamics as well. It has been also fitted with equation (2) (fitting
parameters also reported in Tab. 1).It seems to be slower than the case of the removed leaf.
Another exponential regime can be individuated at 42 minutes after irrigation (Fig.2d), and can
be consequently interpreted as dehydration dynamics. It is highly slower than the hydration
phenomenon, occurring on a time scale of hours instead than minutes. It has been fitted with
an exponential equation (fitting parameters reported in Tab. 1):

y = y0 +A exp(x/t) (3)

hydration flux in the leaf is not uniform throughout the overall area: for instance, it can be
different in the distal respect to the intermediate and the basal leaf regions [16]. Moreover,
monitoring the size variation of eventual defects present on the leaf could be useful for the de-
tection of deseases (somehow in analogy with medical diagnosis) [9].

Here, since the plant was basically healty, the attention has been focused on the region around
the primary vein, and, in particular, on the variation of its width during hydration. The width,
estimated with the procedure reported in the previous paragraph, seems to increase during
hydration, as well as the leaf area and the water content (Fig.3). It is worth to mention that the
leaf area does not necessarily correspond to the real leaf area (whose size variations are expected
to be minimal [22]) but to the area of the leaf where water concentration is sufficiently higher
than the background. Analogously, the increase in primary vein width is expected to simply
reflect an increase of the water content in the primary but also secondary veins, rather than a
real increase in its diameter. Further investigations in this direction will provide more detailed
information.

Table 1. Fitting parameters.

y0 A t red.χ2

(m)

Removed leaf 107.2±0.6 11.2±0.7 14±2 0.99

In vivo 120.95±0.04 226880±303992 2.3±0.2 0.99
(hydration)

In vivo 109.9±0.2 (1.6±9.9) ∗ 10−13 106±21 0.99
(dehydration)

4. Conclusion
Long time hydration and dehydration dynamics have been monitored through a terahertz
portable imaging system both in a removed leaf and in vivo. After leaf/plant watering a
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decrease in terahertz signal has been detected, in agreement with the literature [13, 14, 16]. The
removed leaf exhibits an exponential decay. For the attached leaf two exponential regimes have
been detected: an exponential decay few minutes after plant watering (identifiable as hydration
dynamics) and an exponential growth 42 hours after plant watering (identifiable as dehydration
dynamics). Some additional information have been extracted from the data regarding the leaf
area, the water content and the primary vein width variations. Those parameters all slightly
increase with time soon after water supply, as a direct consequence of the increased hydration
of the plant.
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